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Recent work in statistical mechanics has developed new analytical and numerical techniques to
solve coupled stochastic equations. This paper describes application of the very fast simulated rean-
nealing and path-integral methodologies to the estimation of the Brennan and Schwartz two-factor
term-structure (time-dependent) model of bond prices. It is shown that these methodologies can be
utilized to estimate more complicated n-factor nonlinear models. Applications to other systems are
stressed.

I. INTRODUCTION

In this paper we present an alternative methodology of
very fast simulated reannealing' (VFSR) to compute the
parameters of term-structure models, here applied to the
evolution of interest rates. The term "term-structure"
here is equivalent to "time-dependent, " wherein stochas-
tic differential rate equations are used to model these
financial systems. It is also shown that the VFSR metho-
dology is capable of handling complicated n-factor non-
linear models. The advantages of using the simulated an-
nealing methodology are as follows: (I}Global minima in
parameter space are relatively more certain than with re-
gression fitting. (2) All parameters, including parameters
in the noise, are simultaneously and equally treated in the
fits, i.e., different statistical methods are not being used to
estimate the deterministic parameters, then to go on to
estimate noise parameters. (3) Boundary conditions on
the variables can be explicitly included in the fitting pro-
cess, a process not included in standard regression fits.
(4) We can efficiently extend our methodology to develop
n-state models, including higher-order nonlinearities.

We also present an alternative method of calculating
the evolution of Fokker-Planck-type equations, here in
the context of describing the evolution of bond prices.
Our particular non-Monte Carlo path-integral technique
has proven to be extremely accurate and efficient for a
variety of nonlinear systems. ' The following are a few
advantages: (I) A variable mesh is calculated in terms of
the underlying nonlinearities. (2) Initial conditions (IC)
and boundary conditions (BC) typically are more easily
implemented with integral, rather than with differential,
equations, e.g., by using the method of images. (3) In-
tegration is inherently a "smoothing" process, ~hereas
differentiation is a "sharpening" process. This means
that we can handle "stiff" and nonlinear problems with
more ease.

model, which is developed in the variables of short- and
long-term interest rates. These interest rates are assumed
to follow a joint Wiener stochastic process,

dr =l3, (r, l, t)dt+rt, (r, l, t)dz, ,

dl =I3z(r, l, t)dt+rtz(r, l, t)dzz,

dr =[a&+b, (l r)]dt—+ro ~dz~,

dr =l(az+bzr+czl )dt+ 1trzdzz,
(3)

where ta„b,,az, bz, czI are parameters to be estimated.
Using methods of stochastic calculus, BS further derived
a partial differential equation (PDE) for bond prices as
the maturity date is approached:

8 „8 tB ~~ 8 „t 8
8 8 dL (jrz Oral

+g ll

QI2

=AB, (4)

where r and I are the short- and long-term rates, respec-
tively. P, and Pz are the expected instantaneous rates of
change in the short-term and long-term rates respective-
ly. g& and g2 are the instantaneous standard deviations of
the processes. dz& and dz2 are Wiener processes, with ex-
pected values of zero and variance of dt with correlation
coefficient p. That is,

E[dz, ]=E[dzz] =0,
E[dz, ]=E[dzz]=dt, E[dz, dzz]=pdt,

where E[]—= ( ) is the expectation with respect to the
joint Wiener process.

BS simplified and reduced this system to

II. CURRENT MODELS OF TERM STRUCTURE

There are several term-structure models of bond pric-
ing that use interest rates as proxy variables. ' For
specificity, here we consider the Brennan-Schwartz (BS}

where the coefficients [f,g ) depend on r and l, r = T t-
for t calendar time and T the time of maturity, and A can
be considered as a diff'erential operator on 8.

It may help to appreciate the importance of the BS
methodology by discretizing the above partial differential
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equation for 8, in a "mean-value" limit. That is, at a
given calendar time t indexed by s, noting that
Blur = d—ldr, take

Bsri=(l —~srirl ) 'Bs+ir( (7)

where the operator inverse of the differential operator A
has been formally written, and its dependence on inter-
mediate values of r' and l' has been explicitly portrayed.
Their discretized calculation of their partial differential
equation, and our discretized calculation of the path-
integral representation of this model, essentially are
mathematical and numerical methods of calculating this
evolution of 8, .

III. DEVELOPMENT OF MATHEMATICAL
METHODOLOGY

A. Background

The BS equations are of the more general form

=f, (r, 1 )+gg ', (r, 1)rA,
dt

where the g 's and f's are general nonlinear algebraic
functions of the variables r and /. These equations
represent differential limits of discretized stochastic
difference equations, e.g., Wiener noise d 8'~ g dt. '

The resulting stochastic differential equations (SDE's) are
referred to as Langevin equations. ' ' ' ' The f's are
referred to as the (deterministic) drifts, and the squares of
the g 's are related to the diffusions (fiuctuations or vola-
tilities). In fact, the statistical mechanics can be
developed for any number of variables, not just two. The
g's are sources of Gaussian-Markovian noise, often re-
ferred to as "white noise. " The inclusion of the g 's,
called "multiplicative" noise, recently has been shown to
very well mathematically and physically model other
forms of noise, e.g. , shot noise, colored noise, dichotomic
noise. ' Finite-jumps diffusion also can be included.

These new methods of nonlinear statistical mechanics
only recently have been applied to complex large-scale

a8, a8, a8,
0 rr

g
rl ll

(jr 2 Br31 ())~

8 —8 = —r8s s+1 s s

This yields the popular expectations-hypothesis spot-
interest estimate of bond prices, working backwards from
maturity,

B,=(l+r, ) 'B, +, .

The important generalization afforded by BS is to in-
clude information about r and I and treat them as sto-
chastic variables with drifts and diffusions. Then, this
discretized treatment yields

physical problems, demonstrating that observed data can
be described by the use of these algebraic functional
forms. Success was gained for large-scale systems in neu-
roscience, in a series of papers on statistical mechanics of
neocortical interactions, and in nuclear physics.
This methodology has been used for problems in combat
analyses. ' These methods are also suggested for
financial markets.

The utility of these algebraic functional forms goes fur-
ther beyond their being able to fit sets of data. There is
an equivalent representation to the Langevin equations,
called a "path-integral" representation for the long-time
probability distribution of the variables. This short-time
probability distribution is driven by a "Lagrangian, "
which can be thought of as a dynamic algebraic "cost"
function. The path-integral representation for the long-
time distribution possesses a variational principle, which
means that simple graphs of the algebraic cost function
give a correct intuitive view of the most likely states of
the variables, and of their statistical moments, e.g. ,
heights being first moments (likely states) and widths be-
ing second moments (uncertainties). Like a ball bouncing
about a terrain of hills and valleys, one can quickly visu-
alize the nature of dynamically unfolding r and I states.

Especially because we are trying to mathematically
model sparse and poor data, different drift and diffusion
algebraic functions can give approximately the same alge-
braic cost function when fitting short-time probability
distributions to data. The calculation of long-time distri-
butions permits a clear choice of the best algebraic func-
tions, i.e., those which best follow the data through a
predetermined long epoch of trading. Afterwards, if
there are closely competitive algebraic functions, they
can be more precisely assessed by calculating higher alge-
braic correlation functions from the probability distribu-
tion.

The mathematical representation most familiar to oth-
er modelers is the system of stochastic rate equations,
often referred to as Langevin equations. From the
Langevin equations, other models may be derived, such
as the times-series model and the Kalman filter method of
control theory, quite popular in economics. However, in
the process of this transformation, the Markovian
description typically is lost by projection onto a smaller
state space.

B. Path-integral Lagrangian representation

Consider a multivariate system with variance a general
nonlinear function of the variables. The Einstein summa-
tion convention helps to compact the equations, whereby
repeated indices in factors are to be summed over. The
Ito (prepoint) discretization for a system of stochastic
differential equations is defined by

dM(t, )
=M(t, i) +—M(t, ) .

dt

The stochastic equations are then written as
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P = DM exp — htLFs
s=0

u Qg

DM=g' (2~bt) " gg' g (2mbt) ' dM
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(13)

;;here R is the Riemannian curvature, and we also have
explicitly noted the discretization in the mesh of M„by

Because of the presence of multiplicative noise, the
Langevin system differs in its Ito (prepoint) and Stratono-
vich (midpoint) discretizations. The midpoint-discretized
covariant description, in terms of the Feynman Lagrang-
ian LF, is defined such that (arbitrary) fluctuations occur
about solutions to the Euler-Lagrange variational equa-

GdM ~G+ G;
g ~ '17

i=1, . . . , =, (10)

6=1, . . . , 0
The operator ordering (of the 8/BM operators) in the
Fokker-Planck equation corresponding to this discretiza-
tion is

dP 8( g—P) 1 B (g P)
Bt

+
aMG 2 aMGaM' '

gy, 6

BM
(11)

g
GG'

g~ Gg~ G'

where a "potential" Vis present in some systems.
The Lagrangian corresponding to this Fokker-Planck

and set of Langevin equations may be written in a Strato-
novich (midpoint) representation, corresponding to

M(t, ) = ,' [M(t, —+,)+M(t, )] . (12)

This discretization can be used to define a covariant
Feynman Lagrangian LF that possesses a variational
principle, and which explicitly portrays the underlying
Riemannian geometry induced by the metric tensor gGG,
calculated to be the inverse of the covariance matrix:

dM
dt

dM 6 G'

but the variational principle associated with the Lagrang-
ian L is not useful for moderate to large noise. Still, this
prepoint-discretized form has been quite useful in all sys-
tems examined thus far, simply requiring a somewhat
finer numerical mesh.

C. Interest rates

To illustrate this methodology, the BS model is sum-
marized by

dr = [a1+b1( I r) ]dt +—r o 1dz1,

dl = [1(a2+b2r+c21)]dt+ lo2dz2,

(dz, ) =0, i =
I 1,2I

(15)
(dz, (t)dz (t')) =dt 5(t —t'), i =j
(,dz, (t)dz, (t')) =p dt5(t t'), iWj—

0, tAt'

where ( ) denotes expectations. These can be rewritten
as Langevin equations (in the Ito prepoint discretization)

dr +=a1+b1( l r) +o 1r(y —n1+ y n 2 ),
dt
dl—=l(a2+b2r +c2l )+o21(y n, +y+n2),
dt

(16)+
[ 1+( 1 p

2
)

1 / 2 ]
1 / 2

n; =(dt )'/ p;,
where p1 and p2 are independent [0,1] Gaussian distribu-
tions.

The cost function C is defined from the equivalent
short-time probability distribution P for the above set of
equations:

P =g ' (2mdt )
' exp( Ldt)—

=exp( —C),
C =L dt+ —,'In(2' dt ) —1n(g),
L=—'F gF,2

dr /dt —[a1+b1(l —r ) ]F=
dl/dt —l(a2+b2r+c2l )

p(rlo, cr2)—
(l o 2)

(17}

(ro1)
g=

k p(rlo, o 2)—
g =det(g ),
k=1 —

p

tions. In contrast, the usual Ito and corresponding Stra-
tonovich discretizations are defined such that the path in-
tegral reduces to the Fokker-Planck equation in the
weak-noise limit. The term R /6 in LF includes a contri-
bution of R/12 from the WKB approximation to the
same order of (b, t )

A prepoint discretization for the same probability dis-
tribution P gives a much simpler algebraic form,

M(t, )=M(t, },
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(ro, ) prlcr, o ~

prlcr, o~ (Icr~)
(18)

As discussed below, the correct mesh for time, dt, in or-
der that I' represent the Langevin equations (to order
dt )is

g, the metric in I r, I I space, is the inverse of the covari-
ance matrix,

However, for our numerical procedures, it is more con-
venient to write this equation as a "truly nonlinear"
Fokker-Planck equation with B present in V. If c/B is a
smooth function, such that

5V dB(M' ),o+hv.
5B 5~

dt ( I/L, (19) =O(hr"), (21)
where L is L evaluated with ds/dt =dl /dt =0. If dt is
greater than 1/L, then it is inappropriate to use I', and
instead the path integral over intermediate states of fold-
ed short-time distributions must be calculated. It should
be noted that the correct time mesh for the correspond-
ing differential equations must be at least as small, since
typically differentiation is a "sharpening" process. This
will be noted in any discipline requiring numerical calcu-
lation, when comparing differential and integral represen-
tations of the same system.

D. Security prices

= —a, b, (1 r)+A, ,ra—, , —

g'= —(P2 —4n2)

l(cr, + I ——r ),
(g )=(g)

cV= ——r
B

(20)

where c is the continuous coupon rate for bond 8, and A,
&

is an additional parameter to be fit by the data.
The above equation can be rewritten as a Fokker-

Planck-type equation with an inhomogeneous term c.

BS (Ref. 8) present arguments recognizing that the sto-
chastic price of a discount bond for a given maturity date
T can utilize straightforward stochastic calculus to derive
a form in terms of coeScients appearing in their r Icou--
pled stochastic equations. They use arbitrage arguments
on portfolios of bonds with different maturity dates to
derive zero risk conditions for the market prices of risks,
k& and kz, for short-term and long-term interest rates, re-
spectively. By considering l as related to a bond's price,
they straightforwardly derive an arbitrage expression for
A.2. Their resulting PDE is an equilibrium (mean-value)
equation for a pure discount-bond price 8, at a given time
until maturity ~=T—t and "continuous" coupon pay-
ment of c.

The above formulation of interest rates is used by BS to
determine the parameters needed to calculate their de-
rived PDE for securities, i.e., bond prices 8. Using some
notation developed above, with IM;G =r, I I, they ob-
tain

aB a( —g'B) 1 a'(g"'B)
aM' 2 aM'aM' '

IV. NUMERICAL CALCULATIONS

A. Methodology

Recently, two major computer codes have been
developed, which are key tools for the use of this ap-
proach to estimate model parameters and price bonds.
The first code, very fast simulated reannealing, ' fits
short-time probability distributions to observed data, us-

ing a maximum-likelihood technique on the Lagrangian.
An algorithm of very fast simulated reannealing has been
developed to fit observed data to a theoretical cost func-
tion over a D-dimensional parameter space, ' adapting for
varying sensitivities of parameters during the fit. The an-
nealing schedule for the temperatures" (artificial fiuc-
tuation parameters) T; decreases exponentially in "time"
(cycle number of iterative process) k, i.e.,
T, = T,,exp( —c, k "D).

Heuristic arguments have been developed to demon-
strate that this algorithm is faster than the fast Cauchy
annealing, T, = To/k, and much faster than Boltzmann
annealing, ' T, = To/ink. To be more specific, the kth es-
timate of parameter a',

a'k E[A;,B; ]j, (22)

for v) 1, where ~'=~+eh~, then our numerical path-
integral codes may be used here as well.

In practice we do not have to use this truly nonlinear
Fokker-Planck equation to price bonds with coupons.
Assume we already have fit our parameters for the entire
epoch of interest. Actual bond prices with coupons may
then be evaluated straightforwardly by considering a
portfolio of n pure discount bonds with a series of matu-
rity dates T„equivalent to the dates of payment of
coupons and the face value of the actual coupon bond to
be modeled. This prescription requires that we integrate
back such a portfolio of n pure discount bonds with ma-
turity T„,to various times t; (T (including only those
bonds in the portfolio with maturity T„)t; ). At each of
these times, we use the observed values of r(t;) and l(t,).
to calculate the bond prices B„(t,). This portfolio of
IB„(t,)i is then compared to the observed coupon bond

B(t;), i.e., for many such times [t; J. For each zero-
coupon bond in this portfolio, we start at its time of ma-
turity T„,enforcing the IC B„(r,I;T„)=1, and integrate
back to a given time t (T„.We then weight each zero-
coupon bond by the actual coupon or face value paid on
the coupon bond.
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is used with the random variable x' to get the k + 1th es-
timate,

ak+, =ak+x'(B; —A;),
x'E[—1, 1] .

The generating function is defined as

D
1 D

gr(x) = II
;=i 2»(1+1/T~)(lx'I+T;

T, = T,,exp( —c, k "D} .

(23)

(24)

Note that the use of C, the cost function given above, is
not equivalent to doing a simple least-squares fit on
M(t +Et }.

The second code develops the long-time probability
distribution from the Lagrangian fit by the first code. A
robust and accurate histogram-based (non-Monte Carlo)
path-integral algorithm to calculate the long-time proba-
bility distribution has been developed to handle nonlinear

N

P(M;t)= g n(M —M, )P, (t), (25)

1, (M; —
—,'bM;, ) ~M &(M, +—,'bM;),

n M —M 0 otherwise,

which yields

Lagrangians, ' ' ' including a two-variable code for ad-
ditive and multiplicative cases.

The histogram procedure recognizes that the distribu-
tion can be numerically approximated to a high degree of
accuracy as sum of rectangles at points M; of height P,.
and width hM;. For convenience, just consider a one-
dirnensional system. The above path-integral representa-
tion can be rewritten, for each of its intermediate in-
tegrals, as

P(M;t+ht)= f dM'[g, '~ (2mht) ' exp( L, h—t)

XP(M', t)

P, (t + ht) = T;,(6 t )PJ(t),
2 M, +b,M, /2 M. +5M /2 (26)

T; is a banded matrix representing the Gaussian nature
of the short-time probability centered about the (varying)
drift.

This histogram procedure has been extended to two di-

mensions, i.e., using a matrix T~ki, e.g., essentially simi-

lar to the use of the A matrix in Sec. II. Explicit depen-
dence of L on time t also can be included without compli-
cations. We see no problems in extending it to other di-
mensions, other than that care must be used in develop-
ing the mesh in hM, which is dependent on the diffusion
matrix.

Fitting data with the short-time probability distribu-
tion, effectively using an integral over this epoch, permits
the use of coarser meshes than the corresponding sto-
chastic differential equation. The coarser resolution is

appropriate, typically required, for numerical solution of
the time-dependent path integral: By considering the
contributions to the first and second moments of hM
for small time slices 0, conditions on the time and vari-
able meshes can be derived. The time slice essentially is
determined by 8~L ', where L is the "static" Lagrang-
ian with dM /dt =0, throughout the ranges of M giv-

ing the most important contributions to the probability
distribution P. The variable mesh, a function of M, is

optimally chosen such that hM is measured by the co-
varianceg, or bM —(g 8}'~ .

The BS use of "natural" BC, actually more general
unrestricted or singular BC, is in part based on their
own admittedly ad hoc choice of functional forms for r
and I difFusions, in both their SDE and PDE, and in the r
drift in their SDE. Since we are using these equations in

our calculations, we properly use unrestricted BC, relying
on the algebraic form of the drifts and diffusions to en-
force them. This is in contrast to BS who, when solving
their PDE numerically, resort to redundantly using these
BC to define their basic transition matrix.

In future work, where it likely will be desirable to test
other algebraic models of these drifts and diffusions, oth-
er BC will be appropriate, e.g. , absorbing or reflecting
BC, both of which we have used in previous work in oth-
er systems. We believe that the appropriate BC must be
determined by finance considerations, permitting applica-
tion of more general BC. The path-integral methodology
readily permits such inclusion in its numerical implemen-
tation. We believe it is extremely important to gain this
freedom over the functional forms of the drifts and
diffusions. For example, our calculations with this
model clearly demonstrate that the rather mild nonlinear-
ities of the BS model only permit inflationary evolution,
since those were the periods that were fit to data and
since the functional forms likely cannot accommodate
many swings and dips, on time scales of months or years,
much longer than that of the fluctuations, yet shorter
than the period of long-term bonds. This appears to re-
quire a higher degree of nonlinearity and/or an increase
in the number of independent interest-rate variables.

We findtit quite straightforward to adjust A.2 to fit a set
of bond prices. Our path-integral calculations are
currently being performed on a large aggregate of bond
data. This is necessary before meaningful comparisons
can be made with other methodologies, in accord with
other investigators who use such portfolios to average
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over systematic particulars of individual bonds. This
data will be published in a future paper.

B. Fits to interest rates

Interest rates were developed from Treasury bill and
bond yields during the period October 1974 through De-
cember 1979, the same period as one of the sets used by
BS.' Short-term rates were determined from Treasury
bills with a maturity of three months (BS used 30-day ma-
turities), and long-term rates were determined from
Treasury bonds with a maturity of 20 years (BS used at
least 15-year maturities). For monthly runs, we used 63
points of data between 74-10-31 and 79-12-28. For daily
runs, we used 1283 points of data between 74-10-31 and
79-12-31. We used yearly rates divided by 12 to fit the
parameters.

For daily data, the actual number of days between suc-
cessive trades was used; i.e., during this time period we
had 1282 pieces of daily data and 62 pieces of end-of-
month data. Although a rescaling in time only simply
scales the deterministic parameters linearly, since that is
how they appear in this model, this is not true for p.
Then we did all subsequent runs using the scale of one
day. We used yearly rates divided by 365 to fit the pa-
rameters.

The BS parameters also were run through the data, cal-
culating the cost function they give. The single cost func-
tion bears the weight of determining all parameters. Typ-
ically, three or four significant-figure stability is required
to get even one or two significant-figure stability in the
parameters. (All runs were performed using double pre-
cision for all fioating-point variables. ) The "cost func-
tion" calculated is the sum over all Lagrangians at each
short-time epoch (divided by the number of epochs,
which does not affect its minimum, but helps to compare
cost functions over different sets of data). That is, a max-
imurn probability fit is done by minimizing the cost func-
tions (each the argument of the exponential representing
the probability distribution of the variables) over all time
epochs. The BS versus our fitted parameters are given in
Table I. Note that we have used data not quite the same
as they used; we used the same time period, but a
different set of bonds to determine interest rates. This
likely can account for some of the apparent drastic im-

provernents of our fits over theirs. Also note that the
negative C we calculate is obtained from the negative ln

term which has a very small argument. For example, in
the final column, C= —23.83 is obtained by adding an
average (over all data points) ln contribution of —24. 80
to a positive average L. "Competition" between the di-
minishing positive nurnerators in L and the diminishing
diffusions in the ln term and in the denominators of I. ac-
counts for the final value of C.

It should be noted that for all periods before October
1974, back through December 1958, using monthly data,
BS found a, &0, and for the period April 1964 through
June 1969 they found cz &0.

Fits were performed on a Hewlett Packard 9000-
835SE, a "12-MIPS" computer. The VFSR code was
tested by generating data from the BS Langevin

TABLE I. BS parameters were fit to data using our Lagrang-
ian representation for their coupled r -l equations, for both end-
of-month and daily data between 74-10-31 and 79-12-31. The
second column, designated BS monthly, gives their published
1982 results, using somewhat different data during this period.
The third column gives our monthly fits on somewhat different
data during this same time period. The fourth column gives dai-

ly fits scaled to daily time. The last line gives the cost function
C averaged over the number of data points. Note that the data
used here are not quite the same data used by BS.

Parameter BS monthly L monthly L daily

a&

bl
Ol

P
Qp

b2

Cp

0'2

C

0.0361
0.0118
0.0777
0.442
0.169
0.0089

—0.271
0.0243

23.69

3.02 x10-'
3.89 X 10
0.0700
0.534
9.73 x 10-'
0.0262

—0.707
0.0278

—13.87

—6.33 x 10-'
0.0902
0.0132
0.136
2.43 X 10
0.0320

—0.492
4.01 X 10

—23.83

differential equations, then using the VFSR code using

the Lagrangian cost function to refit their parameters
after they had been displaced from their values in the
differential equations. A typical fit took approximately
100 CPU minutes for 1500 acceptance points, represent-

ing about 2000 generated points per 100 acceptance
points at each reannealing cycle, in this six-dimensional

parameter space. It was found that once the VFSR code
repeated the lowest cost function within two cycles of 100
acceptance points, e.g. , typically achieving 3 or 4
significant-figure accuracy in the global rninirnum of the
cost function, by shunting to a local fitting procedure, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
only several hundred acceptance points were required to
achieve 7 or 8 significant-figure accuracy in the cost func-
tion. This also provided yet another test of the VFSR
methodology.

V. CHAOS OR NOISE?

Given the context of current studies in complex non-

linear systems, the question can be asked: What if mar-

kets have chaotic mechanisms that overshadow the above

stochastic considerations? The real issue is whether the

scatter in data can be distinguished between being due to
noise or chaos. In this regard, we note that several stud-

ies have been proposed with regard to comparing chaos
to simple filtered (colored) noise, ' Since we have pre-

viously derived the existence of multiplicative noise in

neocortical interactions, then the previous references
must be generalized, such that we must investigate
whether markets scatter can be distinguished from multi-
plicative noise. A previously described application of this
methodology follows.

In our analysis of military exercise data, ' we were
able to fit short-time attrition epochs (determined to be
about 5 min from mesh considerations determined by the
nature of the Lagrangian) with short-time nonlinear
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Gaussian-Markovian probability distributions with a
resolution comparable to the spread in data. When we
did the long-time path integral from some point (spread)
at the beginning of the battle, we found that we could
readily find a form of the Lagrangian that made physical
sense and that also fit the multivariate variances as well
as the means at each point in time of the rest of the exer-
cise interval. That is, there was not any degree of hyper-
sensitivity to initial conditions that prevented us from
"predicting" the long-time means and variances of the
system. Of course, since the system is dissipative, there is
a strong tendency for all moments to diminish in time,
but in fact this exercise was of sufficiently modest dura-
tion (typically I to 2 h) that variances do increase some-
what during the middle of the battle. In summary, this
battalion-regiment scale of battle does not seem to pos-
sess chaos.

Similar to serious work undertaken in several
fields, ' ' here too, the impulse to identify "chaos" has
been premature. It is not supported by the facts, tenta-
tive as they are because of sparse data.

A more purposeful project is to compare stochastic
with deterministic models of data. Today much attention
is turning to the use of deterministic chaotic models for
short-time predictions of systems. For example, if only
short-time predictions are required, and if a deterministic
chaotic model could well describe stochastic data within
these epochs, then this model might be more computa-
tionally efficient instead of a more "correct" stochastic
model which would be necessary for long-time predic-
tions. The scales of time involved are of course system
dependent, and the deterministic chaotic modeling of
data is still in its infancy.

For example, it has been widely noted that the correla-
tion dimension of data is difficult to calculate; perhaps it
is often not even a well-founded concept. Its calcula-

tion, e.g. , using the popular Grassberger-Procaccia algo-
rithm, ' even when supplemented with finer statistical
tests and noise reduction techniques, may prove fruit-
ful, but likely only as a sensitivity index relative to shift-
ing contexts in some systems.

VI. CONCLUSION

We have described how mathematical methodologies
and numerical algorithms recently developed in the field
of statistical mechanics can be brought to bear on term-
structure models. Specifically, methods of very fast simu-
lated reannealing can be used to statistically find best glo-
bal fits of multivariate nonlinear stochastic term-
structure models, without requiring approximation of the
basic models.

This new formalism also permits a fresh look at some
of these models and affords comparison with other non-
linearity stochastic systems. Elsewhere, we are publish-

ing some numerical results on fits to daily Treasury bill
and bond yields during the period October 1974 through
December 1979. Another paper in progress will report
on more extensive comparison with observed bond prices.
Similar studies, e.g. , using these mathematical physics
and computational techniques, are underway to deter-
mine behavioral correlates of electroencephalographic
(EEG) data.
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