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The spectral densities of the fluctuations of noise-driven underdamped nonlinear oscillators are
discussed with particular reference to the large class of systems whose eigenfrequencies vary non-
monotonically with energy. It is shown by analog electronic experiments and theoretically that, as-
tonishingly, the widths of their spectral peaks can sometimes decrease with increasing noise intensi-
ty T. The specific system studied, as an example, is the single-well Duffing oscillator in a constant
homogeneous field. An explicit expression is derived in terms of T and a field parameter for the
shape of the spectral peak. It is shown to be in good agreement with experiment. The possibility of
observing such spectral features for localized and resonant vibrations of impurities in solids is dis-

cussed.

I. INTRODUCTION

A revealing characteristic feature of noise-driven non-
linear systems is the spectral density of their fluctuations.
Where a system is in thermal equilibrium this determines,
in particular, its (frequency-dependent) susceptibility via
the fluctuation-dissipation theorem.! The power spectra
of underdamped systems are of special interest in this
respect because they include narrow peaks related to
small-amplitude vibrations of the system about its equi-
librium positions. These peaks enable the fundamental
characteristics of the system, such as its eigenfrequencies
and relaxation times, to be investigated.

For very weak noise the peaks are narrow and symme-
trical but, as the noise intensity increases, their shapes
change because of the nonlinearity of the eigenoscilla-
tions, which gives rise to a dependence of their frequency
o(E) on their energy E. Consequently, the noise-induced
energy straggling AE gives rise to a corresponding fre-
quency straggling Aw. When the latter exceeds the un-
certainty in frequency due to relaxation, the shape of the
principal spectral peak is determined primarily by non-
linearity. For small E (we set E equal to zero at the equi-
librium position), the dependence of w(E) on E is linear in
the general case; the frequency straggling and the charac-
teristic width of the spectral peak will also increase
linearly with noise intensity 7, therefore, if we assume
that AE ~ T as is usually the case. In view of the impor-
tance of the problem, the power spectra of classical vibra-
tional systems have been considered by many authors,
both numerically and analytically (see, for example, Refs.
2-10 and the reviews in Refs. 11 and 12). Explicit ana-
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lytic expressions for the shapes of spectral peaks of un-
derdamped systems driven by white noise have already
been obtained;*’ see also Ref. 10.

A peculiar situation of particular interest arises when
the dependence of w(E) on E is significantly nonlinear
and the slope |dw(E)/dE| decreases with increasing E.
In such cases there can in principle occur some narrowing
of the central part of the spectral peak with increasing
noise intensity. This seemingly bizarre possibility arises
because the range of E for which w(E) is flatter comes
into play and, as the noise intensity (and hence the ampli-
tude and energy of the vibrations) is increased, so that the
frequency straggling is partially suppressed by noise.

The peak narrowing phenomenon may be expected to
be most pronounced in underdamped systems for which
the function w(E) possesses an extremum at some energy
E, ie.,

do(E)

JE =0. (1)

Ee

Indeed, if frequency straggling is the dominant broaden-
ing mechanism, then the spectral density of fluctuations
Q(Q) for a given ( is formed from eigenvibrations with
frequencies w(E)=Q (cf. Ref. 3). Consequently, Q(Q) is
proportional to the “density”’ of vibrations of the relevant
frequency, i.e., to ida)(E)/dEl_1 with o(E)=Q (the
higher harmonics also contribute to Q (), their contribu-
tions being proportional to |dw(E)/dE| ™! calculated for
nw(E)=Q with n =2,3,. . .: cf. Ref. 7). The divergence
of Q(Q) at Q=w(E,) in the zero-damping limit when (1)
is fulfilled has already been noted.!’> Relaxation effects
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will naturally tend to smear the singularity but, for small
enough damping, there should be a distinct *“zero-
dispersion” peak'’ at Q =w(E,).

The zero-dispersion peak will be resolved only if the
damping is extremely weak. Nonetheless, the existence
of the |dw(E)/dE| " '— singularity in the zero-
damping limit will play an important role in the forma-
tion of the spectral peak for noise intensities 7 ~E,. The
increased noise effectively “suppresses” the broadening of
Q(Q) arising from frequency straggling and the spectral
peak may become narrower as a result.

The phenomenon of noise-induced narrowing of the
spectral peak was first observed in the analog electronic
experiments described below and the theory of the effect
was developed subsequently. In Sec. II below a simple
model of a nonlinear oscillator displaying nonmonotoni-
city of its eigenfrequency with energy is described and the
theoretical description of its spectral peak is reduced to a
boundary value problem for an ordinary second-order
differential equation. Section III presents the results of
an experimental investigation of the spectral density of
fluctuations in an analog electronic model of the system,
for a wide range of parameters. The experimental results
are compared with the theory in Sec. IV, and a qualita-
tive and quantitative explanation of the observed features
is proposed. Section V presents concluding remarks.

II. THEORY OF THE SPECTRAL PEAK
NEAR THE OSCILLATOR EIGENFREQUENCY

A. Model

The system considered in the present paper is an asym-
metric oscillator with fourth-order nonlinearity. Its
Hamiltonian function in terms of dimensionless coordi-
nate g and momentum p is of the form

H(p,q)=1ip’+U(q), Ulg)=Ag+1q*+1g*. (2
This model is interesting not only because, although ex-
tremely simple, it demonstrates some unusual kinetic
features, but also because it is directly related to local and
resonant vibrations in certain doped crystals (see, for ex-
ample, Ref. 14). The term linear in q arises for inversely
symmetrical defects when an electric field or external
pressure is applied to the crystal, readily enabling the pa-
rameter A in (2) to be varied. As demonstrated below,
this variation causes significant changes in the spectral
density of fluctuations of the oscillator.

The term Agq in (2) shifts the equilibrium position g,
of the oscillator from zero to a new value determined by
the real solution of

ng—i—qqurA:O, (3)

which is readily shown to be

A% 1
ﬁ+_
4 27

A,
2
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The dependence of the eigenfrequency w(E) of the oscilla-
tions on the energy E of the oscillator [measured from the
bottom of the potential well, i.e., from U(q,,)] and on the
parameter A can be found from the expressions

T
E)= 1002172
o(E) 2K(k)(zz z')
kzzl(‘1(”"1(2))2‘(2(“—2(2))2
4 £ D,(2)
z(j)._=[(q(3)_qu))(q(4l_q(j))]l/Z’ ]:1’2 (4a)
where ¢!, ¢'? are real roots and ¢'*',¢'*'=¢'** are com-
plex conjugate roots of the equation
U(g'"+qey)—Ulgey) —E =0,
n=1,...,4,g">q¢?,  (4b)

and where K (k) is an elliptic integral of the first kind and
k is its modulus. The function w(E) is plotted for several
values of A4 in Figs. 1(a) and 1(b).

The “eigenfrequency of the oscillator” ,, defined as
the frequency at the bottom of the potential well,

w0=w(0)=(1+3q§q)1/2 , (%)

increases monotonically with increasing |4|. At the
same time, the slope of w(E) at E—0 changes nonmono-
tonically. For | 4] < 4.=0.99 it monotonically decreases:
one can show using (3) and (4) [or immediately by apply-
ing the small E asymptotics of w(E) given in Ref. 15] that

do(E)
dE

’

o=

=3(1—7g%)/(1+3¢%, )" . (6)
E=0

For | A|=8/7"2~0.43 the slope is seen from (3), (6) to
become zero. For higher | 4|, the dependence of w(E) on
E becomes nonmonotonic [cf. Fig. 1(c)]. It is just this
nonmonotonicity that gives rise to substantial narrowing
of the principal peak in the spectral density of the fluc-
tuations as the noise intensity increases.

We shall analyze the fluctuations of the oscillator (2)
supposing that is subject to a linear friction force and ad-
ditive white noise, so that the equation of motion is of the
form

daUlq) _
dg f,

(f(O)f(t"))=4TT8(t —1t') .

g+2Ig+
¢))

The dimensionless friction coefficient I is assumed small,
I'«<l1,

so that the oscillator is underdamped. In the case where
the noise f (7) results from thermal fluctuations in a bath
and it is the coupling to the bath that gives rise to the
friction force, the noise intensity parameter 7T represents
the temperature of the bath. [An extension of the model
(7) is discussed below].

B. General expression for the shape of the spectral peak

To calculate the spectral density of the fluctuations of
the coordinate ¢



42 NOISE-INDUCED NARROWING OF PEAKS IN THE POWER . ..

:i @ inp
Q(Q)=—Re [ “dre'¥G(r) ,

(8)
O(t)=((q(t)—{g))Ngq(0)—{g)))

for (7) it is convenient’ to start from the Fokker-Planck
equation (FPE) for the probability density
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FIG. 1. (a) The dependence of the eigenfrequency w(E) of the
oscillations on the energy E of the oscillator, measured from the
bottom of the potential well, for several values of the inclination
parameter A, calculated from Eqgs. (4a) and (4b). The corre-
sponding values of A4, from bottom to top, were 0, 0.2, 0.43, 0.6,
1.0 and 2.0. (b) As in (a), but over a wider range of E. (c) The
dependence on A of the initial gradient wy=[dw(E)/dE]g - of
the curves shown in (a), calculated from (5) and (6).
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w(q,p,t;q¢,D0,0) of the transition from the point (gy,p,)
occupied at the instant O to the point (g,p) occupied at
the instant ¢,

ow_ 9

’ +2Tfw ,
3t Py [U'(q)w] w

9
(pw)+ o
~ 3 *w

=— i
Lw ap(pw) o’
w(q,p,0;90,P0,0)=8(q —q¢)d(p —py) .

, w=w(g,p,t;90,P0,0) , 9)

(Note that w is a conditional probability density, and not
a joint density.) According to the definition (8) we can
express the time correlation function of the coordinate
Q(t) in terms of w(q,p,?;90,P,0) and of the stationary
distribution wg(qg,p,) as

Q(t)Zqu dp(qg —{q))Wi(g,p,t),

W(g.p.0)= [ dgodpogo—<{go))

Xw(q,p,t390,P0,0)ws(q0,P0) »

(10)
wy(g,p)=Z " 'exp{ —[H (p,q)—U(geg)1/T} ,

T

Z=qudpexp —

The function W(q,p,?) satisfies the FPE (9) for w. For a
further analysis, it is convenient to rewrite this equation
in the energy-phase representation and to make the
Fourier transform (8):

—iQW+w(E)%—=2r£'W+(q — (g ) wgy(q,p),
WEW(E,¢;Q)=fowdtem’W(q,p,t) , (11
q=q(E,¢), p=p(E,d) .

The operator L' in (11) coincides with the operator L in

(8) except that the differentiation with respect to p has
been replaced by differentiation with respect to E and ¢,

P |, O _ 99 9
L P3E w(E)aE 36
9 |_ 9q 9
X |p H—TaE Ta)(E)aE 3 (12)

We have also taken into account in (11) the initial condi-
tion W(q,p,0)=(q— (g ))w(q,p) which follows from (9)
and (10). Like g¢g(E,¢) and p(E,$), the function
W (E, ;) is periodic in ¢ with the period 2, and so it
can be expanded in a Fourier series:

WI(E,¢:;Q)= 3 W,(E,Qexpling) . (13)

On substituting (13) into (11) we obtain a set of equations
for the function W, (E,Q):
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—i[Q—nw(E)]W,(E,Q)=2T 3 L, W,(EQ)

+19,(E)=(q)8,0lwy(E) ,
—f dpexp(—ing)g(E,d), (14)

wy(E)=2Z""

g,(E)=

exp(—E/T) .

It is evident that, to zeroth order in I', the function
W, (E,Q) has a pole at Qd=w(E). Although the singulari-
ty is smeared because of damping, |W,(E,Q)| nonethe-
less remains large for the frequencies in question. It is
clear from (14) that the functions W,(E,Q) with n#1
within the frequency range where |Q —nw(E)| 2 wy>>T
will be given to lowest order in I" /w, by

—2r ,
W (E,Q)= o s LW (E,Q)
_ 4.(E)={(g)8,
wy(E),
i[Q—now(E)]
[Q—nw(E)| Zwy>T, n#1.

Their contribution to Q(£) which, according to Egs. (8)
and (10)-(14), is determined by ReS , .. g5 W,(E,Q) [cf.
Eq. (19) below] and thus comes only from the first term
on the right-hand side, contains the small parameter
I' /wy and can therefore be neglected. The operators L,,m
here are given by

~, __lﬁ 27 . ~, .
L= fo d¢exp(—ind)L'explim) . (15)

In the limit of small damping I" << 1 it usually suffices
to retain only the diagonal terms L, (n=m) in (14)
where the shape of the spectral peak is analyzed. Indeed,
the terms < I' <<1 in (14) are important only under reso-
nance conditions, when |Q —nw(E)| <<1 for the energies
in question; but these conditions are not fulfilled for the
same E and different n simultaneously (in particular for
the system under consideration). The shape of the peak
of Q(Q) near the eigenfrequency w, is determined by the
“resonant” function W (E,Q). The equation for it, mak-
ing allowance for expressions (12) and (15) for the diago-
nal term L | 11> is of the form
—i[Q—w(E)]W,(E,Q)
2 d

dE

1+T— d

=2T |1+p JE

W,(E,Q)

—2FTa)2(E)(qE PW,(E,Q)+q,(E)w(E) ,

|Q—w(E)| <o, , (16)

pT=pE ——f”dqs E$),

2

o [Tag |44

The boundary conditions for Eq. (16) can easily be ob-

(CIE) —(CIE
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tained if one notes, on the one hand, that the function
W (E,¢,Q) vanishes for E— o« and, on the other hand,
that it must remain finite as E —0. For small E the oscil-
lator is practically harmonic, and so

PI=E, (gg)=(4a3E)™"

(17)
g, =(E /20¥)"? (E <<1) .
0

The solution of (16) and (17) for E—0 can be seen to be
either W, <E'?2 or W, <E~!/2 So, allowing for the
finiteness of W, we arrive at

W,(0,Q2)=0, W (E,Q)—>0 for E—x . (18)

The spectral density of the fluctuations in the region of
the eigenfrequency w, when the main contribution to
W(E,$,Q) in (13) comes fromW, (E,Q), according to
Egs. (8) and (10)-(13), is given by the expression

), | Q—wol <oy ,
(19)

QI(Q)=2RefO°°dEafl(E)ql*(E)Wl(E,Q) .
We note that for small I and not too large T there will
also be relatively narrow peaks near the overtones, i.e.,

for Q~nw,. Their shapes are described by the function

0,(Q)=2 RefowdEw_‘(E)[q,T(E)—(q,, )8,01W, (E,Q),

(20)
QO=naw, .

The intensities of these peaks are proportional to
(lg,—(g)8,0/*) and they increase rapidly with increas-
ing noise intensity T (as T'+1" =V for small 7). The nar-
rowest of these peaks is that for n=0. Its evolution is in-
vestigated in detail in Ref. 16.

Calculated values of Q () found from numerical solu-
tions of (16) are shown (solid curves) in Figs. 2—4 for
various parameter values and compared with experimen-
tal measurements (histograms, see Sec. III); the method
for obtaining the coefficients in (16) is given in the Ap-
pendix.

III. ANALOG EXPERIMENT

The analog electronic model of (7) was constructed on
the basis of the design principles discussed previously.'?
A block diagram of the circuit is shown in Fig. 5. The
damping coefficient ' was made as small as practically
possible; it was determined experimentally by measure-
ment of the response of the circuit to very low amplitude
sinusoidal forcing. The external noise was obtained from
a Wandel and Golterman noise generator, model RG1,
and taken to the circuit via an active single-pole filter of
time constant 7y, =47.1 us which was much longer than
the correlation time (approximately 8 us) of the noise out-
put from the generator. The time constants of the two in-
tegrators in the circuit were both 7, =2.74 ms>>7y. The
noise was therefore perceived by the circuit as being
white and of intensity

T=

(vi), (21)

2I'm,;
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FIG. 2. Spectral density of the fluctuations Q() of the oscil-
lator (2) and (7) calculated (solid curves) from (16) and measured
(histograms) for the analog electronic model, with the inclina-
tion parameter 4=0, for noise intensities: (a) T7=0.078; (b)
0.687; (c) 3.04.

where ( V%) is the mean-square noise voltage.

The fluctuating x (?) from the circuit was analyzed by
means of a Nicolet 1180 data processor. The signal was
discretized into blocks of 512 samples, each of which was
digitized with 12-bit precision. A standard fast Fourier
transform (FFT) technique was applied to each block to
determine the power spectral density Q(Q), and the re-
sults were summation averaged. For the data presented
below, each final Q ({}) represents an average of the anal-
yses of 300 individual x (#) blocks. The data were record-
ed in the course of two separate experiments. For the ini-
tial investigation I'=0.0150. Subsequently, after the (ini-
tially quite unexpected) spectral narrowing effect had
been observed and identified as a phenomenon of some
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NI B B

0.0 &
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FIG. 3. Spectral density of the fluctuations Q({) of the oscil-

lator (2) and (7) calculated (solid curves) from (16) and measured

(histograms) for the analog electronic model with the inclina-

tion parameter 4=0.43 for noise intensities: (a) 7=0.0191; (b)
0.154; (c) 1.15.

7045
_VIlllllvvllifl]fvrvl'lllr-
15 — -]
1.0 +—
—~
(o) .
~= +
4 o
0.5 —
00 Lo o 1
0.5 1

FIG. 4. Spectral density of the fluctuations Q () of the oscil-
lator (2) and (7) calculated (solid curves) from (16) and measured
(histograms) for the analog electronic model with the inclina-
tion parameter 4=2.0, for noise intensities: (a) 7=0.078; (b)
0.687; (c) 3.04.

considerable intrinsic interest, a second set of data was
recorded; for this latter experiment the damping was
slightly different, with '=0.0143. In the comparisons of
experiment and theory that follow, some selected data
from each of the experiments are presented, with the ap-
propriate value of I' being used for the corresponding
theoretical curves in each case.

Some power spectral densities, typical of those mea-
sured for the electronic model of Fig. 5, are shown in
Figs. 2—-4. In each case, the spectrum consists of discrete
points which have been joined to obtain a histogram.
Q(Q) is plotted as a function of the normalized (to take
account of the time scaling!” of the circuit) dimensionless
frequency Q/Q, for which, in our circuit, we have set
Qy=1. [The measured Q(Q) at very small  exhibits a
zero frequency peak with a peculiar and very characteris-
tic dependence on the magnitude of A; this behavior,
though interesting, is not connected to the subject matter
of the present paper and it will be analyzed and discussed

1L
I

x(t)

FIG. 5. Block diagram of the circuit used to model the sys-
tem (2) and (7).
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FIG. 6. The spectral width, defined as the half width at half maximum (HWHM), 8Q, of the spectral peaks of the system (2) and
(7) measured (data points) for the analog electronic model and calculated (solid curves) from (16) under different conditions. (a) Spec-
tral width HWHM as a function of noise intensity T for three values of the inclination parameter: 4=0 (X); 0.43 (0); 2.0 (Q). (b) As
in (a), but plotted with an expanded ordinate scale for 4=2 to demonstrate more clearly the spectral narrowing phenomenon: there
is a range of noise intensities 7 for which the HWHM markedly decreases with increasing 7. (c) Spectral width, HWHM, as a func-
tion of the inclination parameter A for a noise intensity 7=0.098. The experimental uncertainty is approximately the same size as
the symbols. (d) Spectral width, HWHM, as a function of 4 for 7=0.98.

elsewhere'®]. Figure 6(a) demonstrates the effect on the
half-width of changing the magnitude of the noise inten-
sity T while keeping the inclination parameter 4 at a
fixed value; Fig. 6(b) shows on an expanded vertical scale
the data recorded for 4=2.0. Figures 6(c) and 6(d) show
the result of changing A while keeping T at fixed nonzero
values.

A detailed discussion of the results is presented in Sec.
IV below, but we may note immediately by inspection of
Fig. 4 [see also Fig. 6(b)] one feature of particular in-
terest: the narrowing of the spectral peaks with increas-
ing noise intensity within a certain range of T'and A.

IV. DISCUSSION OF RESULTS

It is evident from Figs. 2—4 that the power spectra cal-
culated from Egs. (16), (18), and (19), with parameter
values taken from the experiment, fit the experimental
spectra very closely (and we stress that there are no ad-
justable parameters at all in this comparison). To obtain

insight into the origin of the observed spectra, and into
the underlying phenomena, we now consider in turn two
ranges of noise intensity where different properties of the
system manifest themselves.

Im‘#

1
-1 0 ut 2

Re‘#

FIG. 7. Contour of integration for the determination of the
harmonics of the coordinate.
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A. Weak noise range

A striking feature of underdamped nonlinear systems is
the strong change of the spectral density of their fluctua-
tions that occurs within a narrow range of low noise in-
tensities. As mentioned above, this effect is attributable
to a competition between the two superimposed broaden-
ing mechanisms: the purely relaxational one, and that
due to noise-induced straggling of the eigenfrequency of
the vibrations. Their contributions are comparable when

dw=|w(T)—w(0)|~T (22)

with T <<1. Within the range of T given by (22), the
shape of the peak of Q(€) which is Lorentzian for T—0,
changes to a complicated asymmetric distribution as
shown in Figs. 2-4.

The peculiar feature of the system under consideration
is the nonmonotonic dependence of the frequency strag-
gling |o(T)—w(0)| on the inclination parameter | 4| for
T << 1. It is evident from Fig. 1(b) that because, to lowest
orderin T,

lo(T)—w(0)| « |dw(E)/dE|g _oT ,

the function |w(T)—(0)| has two maxima (for 4A=0
and A4 ~0.99) and decreases for large | A| (as | 4| ™! ap-
proximately). One would expect, therefore, that the
dependence on A of the half-width at half maximum
(HWHM) 8Q of the peak of Q(Q) should be nonmono-
tonic for small T: it should follow approximately the
dependence of |wy| =|dw(E)/dE|g_, on A and, in par-
ticular, should be minimal for 4 ~0.43. Such behavior
of 8Q is indeed evident in Figs. 6(c) and 6(d) where the
theory is compared to the experimental data for two
noise intensities.

Analytical results for the shape of the peak of Q () in
the small-T region can be obtained if one notices that,
within the whole range of T given by (22), i.e., even where
the effects of noise are no longer small, the coefficients on
the right-hand side of (16) are given by (17) to good accu-
racy. A solution of the relevant equation and an expres-
sion for Q(Q) for the case of the linear “dispersion law”,
ie.,

" ' ’ dw(E
leol <<|CO0|, COO= CZ(E ) N
E=0
(23)
e |2%0lE)
* LB e

was obtained in Refs. 4 and 7. For the system (2) and (7),
in the range of values of | 4| close to its critical value of
| 4] ~0.43 at which wy=0, it is also important to take ac-
count of the terms with wg. This can be done by pertur-
bation theory in g, using the method of generating func-
tions proposed in Ref. 7. Here we give the explicit ex-
pression for Q({1) in the limit of very small noise intensi-
ty T where the frequency straggling is small, implying
that S <<T':
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Q)= —L[R, (T, A)1+1E+3¢,6,+ 2E
Q( -—277_(0(2)[ L( , )( 761 €€, EGZ)
—R, (3T, A) (L€l +3¢€.€,+ 2€3)
— 1R, (5T,A)
—R(T,A)(€}+6€,6,+2€3)],
A=0—w,—T(2¢,+3¢,) , 24)
6,=woT /T, €=wyT*/T, |€,l<<1,
where
R, (T,A)=T /(I'*+A?),
(25)

R(T,A)=T(I'2—A2)/(I'2+A%)? .

[Equation (24) can be obtained also by solving with per-
turbation theory in €,,€, the set of difference equations
for the moments,

N, (Q)= fo“’dE E™ T2 (E,Q)

(cf. Ref. 4); obviously Q () < N,(Q)].

It is evident from (24) that, to second order in w, the
peak in Q(Q) remains symmetrical. It becomes non-
Lorentzian, however, and its HWHM may be seen to be
given by the expression

8Q=T[1+ (e, +3¢,)*+ 2 €3] . (26)
So far, for finite noise intensity, 6} exceeds its zero-T
limit I'. However, within the range

_5.2762 < 61 < _3.7362

the derivative d8Q/dT is seen to be negative. This im-
plies a narrowing of the peak in the spectral density of the
fluctuations with increasing noise intensity. Thus the
unexpected phenomenon of noise-induced narrowing
occurs even within the small-T" regime where perturba-
tion theory is applicable.

With increasing T, when frequency straggling becomes
the dominant broadening mechanism, the shape of the
peak is described near its maximum by the function
x exp(—x), where x=(Q—w,)/woT, if |wglT>>T,
lwg|T2. [It reproduces the function g¢}(E)wg(E)
< E exp(—E /T) with E=(Q—wy)/w, and ¢,(E) given
by (17), i.e., the product of the squared amplitude of the
vibrations with the proper eigenfrequency w(E)=} mul-
tiplied by their population.] This function is strongly
asymmetric: it is steeper on the side adjacent to w,. Just

such asymmetry is evident in the curves and data of Figs.
2-4.

B. Narrowing of the spectral peak
for intermediate noise intensities

The noise-induced peak-narrowing phenomenon is
most pronounced if the eigenfrequency w(E) has an ex-
tremum at some E =E,; that is, if (1) is fulfilled and, in
addition, |wg|E, >>T. This condition guarantees that fre-
quency straggling is the major source of peak broadening
for intermediate noise intensities.
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As noted in Sec. 1, it was shown in Ref. 13 that an ad-
ditional ‘““zero-dispersion” peak can arise in Q(w) at fre-
quency Q~w(E,) with a characteristic half-width
~(I'T|w!|p?)'/?, where the e subscripts show that the
quantities in question are calculated for E=E,. The
zero-dispersion peak is pronounced provided damping is
sufficiently small, (Fp/|w[)!*<<T?*. Its height is
proportional to (Cp2T) ™ "*w(E,). The peak is strongly
asymmetric: Q () decreases very sharply in the range
(Q—w,)/w, <0 because there are no eigenvibrations of
the system with eigenfrequencies w(E)={ in this range.

Unless the damping is extremely small (in practice, a
rather strong limitation), the zero-dispersion peak is not
resolved. However, the cutoff of the eigenfrequencies at
Q=w, can still give rise to a substantial narrowing of the
peak of Q(Q) with increasing noise. Indeed, in the range
['/|lwgl < T <<E,, the peak near the frequency wg
broadens with increasing T as discussed above and, for
T >>T /|wyl, its characteristic width becomes ~ |wglT.
Thus, relaxation-induced broadening is not substantial
near the maximum. The position of the maximum shifts
approximately as w(T; that is, it shifts towards the cutoff
frequency w,, and the peak becomes steeper on its @ side
as already mentioned above. At sufficiently large 7, how-
ever, the frequency cutoff becomes important and the
peak then starts to narrow with further increase of T.
The peak is being ‘“‘pressed” up against w,: vibrations
with higher and higher amplitudes are being excited, and
their eigenfrequency approaches w,; but there are no
eigenfrequencies beyond the cutoff. As a result, the peak
becomes steeper on the w, side, i.e., the exact opposite of
the situation for small 7. In addition, the effects of relax-
ation become important in this range [since, otherwise,
Q(Q) would diverge], i.e., the broadening of the peak is
determined more by the ‘“‘weaker” mechanism (relaxa-
tion) than by the mechanism (frequency straggling) which
was operative in [ /|wg| << T <<E,.

These qualitative arguments are confirmed by the
direct computations and explain the narrowing of the
spectral peaks observed experimentally. The broadening,
subsequent narrowing, and shape changes (including in-
terchange of the steeper side) of the peak with increasing
noise intensity are clearly visible in Fig. 4. The depen-
dence of the HWHM on the noise intensity parameter T’
for different values of the inclination parameter A is
shown in Fig. 6(a). The effect of narrowing is pro-
nounced for | A|>0.43 when the function w(E) has a
minimum. For the parameter values used in the experi-
ment, the narrowing is strongest in the range | 4| > 1,
where the difference (0,—w,) exceeds I' appreciably. We
note that for high noise intensities 7> E, the spectral
peak for the model (2) again broadens with increasing T
because of the contribution of vibrations with high ener-
gies whose frequencies differ substantially from w, (cf.
Fig. 1).

V. CONCLUSION

It follows from the experimental data and the theory
presented above that there exists a class of nonlinear sys-
tems for which, in contrast to the usual noise-induced
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broadening of the peaks of the spectral densities of fluc-
tuations (which was commonly supposed to be the gen-
eral rule), there is a noticeable narrowing of spectral
peaks with increasing noise intensity. These are under-
damped vibrational systems with non-monotonic depen-
dences of the eigenfrequencies of their vibrations upon
their energy. The phenomenon is quite general: it is not
restricted to the particular model (2) investigated. In the
course of the narrowing there are substantial changes in
the shape of the spectral peak due to the different
broadening mechanisms that are responsible for its for-
mation. These changes, and the effect of the narrowing,
must certainly affect not only the peaks in the spectral
densities of the fluctuations, but also those in the suscep-
tibilities.

We note in conclusion that the above results are valid
for a much broader class of underdamped fluctuating vi-
brational systems than those described by the model of a
Brownian particle. They are relevant, for example, to a
variety of vibrational subsystems weakly coupled to a
thermal bath, including localized and resonant vibrations
in solids. The stationary distribution of such systems is
Gibbsian, just like that for a Brownian particle. For the
model to be applicable, the characteristic time for relaxa-
tion and the correlation time (‘“‘color”) of the noise result-
ing from the coupling to the bath should both be small
compared, not to the period of the vibrations ~w, ', but
to a much longer time interval ~I' ! (cf. Refs. 4 and 7).
However, the effective friction coefficients, which deter-
mine the drift of the energy for both small (E <<1) and
relatively large (E ~ E,) energies (and which influence the
shape of the spectra in the small-T limit and in the region
of the strongest noise-induced narrowing, respectively)
can differ somewhat from each other. It would be in-
teresting, therefore, to try to observe the effects described
above for the case of, say, an impurity atom in a solid
where the relevant parameters can be varied by means of
external fields.
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APPENDIX

__To obtain the expressions for the coefficients p*(E),
(gg)? q,(E) in (16), we note first that the solution of the
conservative equation of motion of the oscillator under
consideration,
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_ U 9
- 1 q
=— (E)—/—,

3 C ag’ 8¢
can easily be expressed in terms of the Jacobian elliptic
functions'® and shown to be of the form

=0 YE)p (A1)

q Z(Z)+q Z )_(q(l)z(l) q z(”)cnv

(l +z(2)+(z(1)_z(2))cnv

q(E,¢)=

ki

(A2)

where the values of ¢'"'?,z'"? and of the modulus k for a

given energy E are determmed by (4a) and (4b).
To calculate the Fourier components

1 T
= —i A3
q,(E) zﬂfvﬁdtpexp( ing)q(E,¢) (A3)

we note, allowing for the double periodicity of the elliptic
cosine

cn(v +4K)=cn(v +2K +2iK')=cnw , (A4)
K'=K'(k)=K(V'1—k?)
that
ke 1
—[1—(—1\1,nmK'/Ky_1_ .
E)=[1—(—1)" ]vacdqﬁexp( ing)q(E,$)
(AS)

where the contour C is as shown in Fig. 7. The function
q (E,¢) is seen from (A2) to have two poles inside the area
bounded by the contour C, at the points P, (where
¢=iy,) and P, (where ¢=n+imK'/K —iy,), with ¢,
being the solution of the equation
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It follows from (A2), (AS5), and (A6), with due account
taken of known expressions'® for dcnu /du and of (4a)
and (4b), that

qn(E)~————”‘/*2’;) :
exp(ny,)—(—1)"exp[(mnK'/K)—ny,]
1—(—1)"exp(7nK’' /K) ’
n70. (A7)
Since ¢! and ¢'% are the limiting points of the motion,

they correspond to g (E,#) with ¢=0 and ¢=, respec-
tively. Therefore,

9o(E)=1¢qg'"+¢*) =2 3 q,,(E) (A8)
n>0
Equation (A7) with n=1 gives g,(E) in (16). The

quantities p_f,(qE 2 are given by

pUE)=wXE) ¥ m¥gl(E),
(A9)
@ dq,,(E)
2 im
(qE) = dE

For the noise intensities and values of A4 investigated in
the present paper, where E was restricted to E <10, it
was sufficient to limit the summation in (A9) to |m|=
yielding an accuracy of ~1078

2K(k 5 ZW_,@
¥, |V1-k? — L@ (A6)
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