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Stochastic relaxation in a one-dimensional, bistable potential driven by colored noise e is investi-

gated by means of both numerical codes and analog simulation. By embedding the process under

study x into a suitable two-dimensional phase space (x,e), a striking topological effect, observable in

the two-dimensional probability density P(x, e), appears at a critical value of the noise correlation
time ~, . The change of the topology in the neighborhood of ~, can be characterized as a critical
transition. In particular, the top of the potential barrier is shown to give rise to a single saddle in

the trajectory space of the embedding process so long as ~& ~, . Where ~=~„however, the single
saddle disappears and is replaced by a pair of saddles, which move away from the location of the top
of the potential barrier when v )~„leaving behind a concave depression or "hole" in the probabili-

ty density. The relevance of this observation to the problem of calculating the mean first-passage
time for particle escape from one well to the other at large ~ is discussed in detail ~ A complete
analytical description of this transition has defied all attempts thus far. Consequently, many in-

teresting open questions remain.

I. INTRODUCTION

The stochastic relaxation of particles in bistable sys-
tems driven by colored noise plays a major role in a num-
ber of problems in statistical mechanics and in synerget-
ics. A great deal of work has been devoted to this prob-
lem; see, for instance, Refs. 1 —4 for reviews. The sim-
plest case is described by the stochastic differential equa-
tion

dimensional Fokker-Planck equation. The investigation
for the white noise case can thus be carried over to the
short correlation time regime.

For larger correlation times it seems to be more ap-
propriate to consider a two-dimensional process. The
noise e(t) is now considered to be a variable obeying the
stochastic differential equation

(1.3)

x = —f '( x ) +(et ), (1.1)
where I (t) is the usual white-noise force

where f (x) is a bistable potential and e(t) an external
Gaussian stochastic force with zero mean and correlation
function,

(e(t)) =0; (e(t)e(s)) =—exp
It —sl (1.2)

The problem of mean-first-passage times and other prob-
lems in bistable potentials have been studied for many
years, starting with the pioneering work of Kramers. In-
vestigations beyond the white-noise limit have first fo-
cused on the small-~ regime. In first order in ~, the dis-
tribution function P(x) still obeys a bona fide one-

In the limit of vanishing noise correlation time ~~0, the
correlation function in (1.2) reduces to the white-noise 5-
function

(e(t)e(s))=2D5(t —s) .

( I (t) ) =0, ( I (t)I (s) ) =2D5(t —s) . (1.4)

t)P(x, e; t) =L (x,e)P(x, e;t),
Bt

(l.sa)

a, a 1 a DOL (x,e) = f'(x) e+— a+ ——
ax ax ~ a~ ~ a~

(1.5b)

Many publications deal with the problem of the mean-

Equations (1.3) and (1.4) describe an Ornstein-Ulhenbeck
process with correlation function (1.2). Thus the process
under consideration can as well be described by the two
Langevin equations (1.1) and (1.3) with the white-noise
force (1.4). Instead of the one-dimensional probability
density we may now look for the two-dimensional density
P(x, e, t) It follows fr.om the Langevin equations (1.1)
and (1.3) that P (x, e, t) obeys the two-dimensional
Fokker-Planck equation (FPE)
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first-passage time (MFPT) in bistable systems driven by
colored noise. In particular, the dependence of the
MFPT on the correlation time for intermediate 7. and
asymptotic expressions for large ~ have been derived re-
cently. ' ' The main message of these investigations
seems to be that the MFPT decreases exponentially with
increasing correlation time.

Only very few investigations are concerned with the
stationary probability density P(x, E) By. numerically
solving the FPE, (1.5), with the matrix-continued-fraction
(MCF) method' and the Langevin equations (1.1) and
(1.3) with analog simulation techniques, ' P(x, e) has
been determined for the quartic potential,

f(x)= ——x +—x
2 4

(1.6)

for values of v. 1. The distributions thus obtained show
a single saddle point at x=0 and e=O and two maxima
located symmetrically in the plane (x, e) in correspon-
dence with the potential minima. As was erst discovered
by analog simulation techniques, ' the topology of P(x, e)
changes drastically when ~ exceeds a certain critical
value ~„which depends on the noise intensity D. A pre-
cise determination of the critical behavior of the process
described by Eqs. (1.1) and (1.3) in the close neighbor-
hood of ~„however, requires the implementation of ac-
curate numerical tools such as the MCF algorithm.

We have previously presented evidence that the
colored-noise-induced topological transition discussed
here occurs for a variety of bistable and multistable po-
tential shapes, including even a random potential. ' We
decided to carry out our numerical analysis for the bi-
stable, periodic potential,

II. TOPOLOGICAL EFFECTS INDUCED BY COLOR

The existence of topological effects induced by strongly
correlated noise has been pointed out first in Ref. 18 for a
"soft" potential, so called because of its linear behavior in
the limit of large displacement. Since that time, evidence
has been obtained that such effects are generic to any
bistable or multistable potential, irrespective of its
asymptotic behavior. Even spatially random potentials
exhibit such properties. ' In this section, we study two
potentials in detail: the periodic bistable potential, Eq.
(1.7), for which the FPE has been solved by means of the
MCF algorithm of Ref. 3; and the quartic double-well po-
tential, Eq. (1.6), the dynamics of which has been simulat-
ed by an analog electronic circuit. In the following, we
demonstrate the occurrence of color-induced topological
effects for both families of potentials. We also exhibit the
critical nature of this phenomenon. This transition, to be
sure, occurs in the two-dimensional stationary probability
density but is otherwise very similar to the one-
dimensional noise-induced transitions discussed by
Horsthemke and Lefever. '

A. The periodic bistable potential

The potential defined by Eq. (1.7) is plotted in Fig. 1

for a =0.5 and b =1.0. Our discussion in a sequel will
make use of the following parameters which characterize
the potential: (a) the stable and unstable fixed points,

a
xp =+cos, x~ =0, +7T ',

4
(2.1)

(b) the curvature of the potential f (x) in the neighbor-
hoods of xp and x„=O,

f (x)= —a cos(x)+b cos(2x), (1.7)

2

coo=f"(xo)=4b —,co„=~f"(0)~=4b—a; (2.2)

which had been introduced previously' to calculate the
dependence of the MFPT on the noise correlation time.

The reason for the choice of the system given by Eq.
(1.7) rather than Eq. (1.6) is merely numerical: The MCF
algorithm employed throughout the present work con-
verges much faster when a Fourier expansion of P(x, e, t)
is possible. The convergence achieved for the periodic,
bistable potential allowed us to obtain accurate contours
of constant stationary probability at sufticiently large
values of ~& ~, . As a consequence, we were able to ob-
tain the positions of the off-axis saddle points with high
precision and to investigate in detail the dependence of ~,
on the noise intensity D.

The present paper is organized as follows: In Sec. II
we demonstrate the occurrence of the topological transi-
tions in the presence of colored noise for both the period-
ic and the quartic double-well potential by means of the
MCF algorithm and analog simulation, respectively. In
Sec. III, we characterize the critical nature of the process
in the neighborhood of v„and we describe the asymptot-
ic behavior for ~))~, . The connection of the
phenomenon investigated here with the problem of the
MFPT for large z is discussed in Sec. IV.

and (c), the height of the barrier at x„=0and x„=kn. ,

ahf(0)=f(0) —f(x )=2b —a+
8b

' (2.3a)

2

f(x)
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FIG. 1. The periodic bistable potential of Eq. (1.7) for a =0.5
and b =1.0.
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a
5f(+m )=f(+n) f—(xo) =2b+a+ (2.3b)

5 -'"

~ I I I I I

~ ~ i
~ ~ 0 ~

All calculations reported here were made for the follow-

ing parameter values: a =0.5, b = 1 ~ 0 xo =+0.46~,
coo =—', 6, co„=—,', bf(0)= », and hf (+m ) = —,",.

The boundary conditions for the corresponding FPE,
(1.5), were set as follows:

— (a)

P (x +2m, e; t) =P (x, e;t),
lim P(x, e;t)=0+ .

(2.4a)

(2.4b)

~ y ~ ~ ~ ~ ~

\ ~ 1~ 1

~ ~ \
~ ~ ~ ~

~ g ~ ~
~ ~ ~ ~

~ o ~

0-0.5
I I I

I I I I I I I I I I

t'=0.6

0.5

The reason for choosing the periodic boundary condition,
Eq. (2.4a) has been explained in Ref. 10. Any time the
random walker associated with the coordinate x (t) jumps
over the potential barrier at x„=+a,it is reinjected at
the opposite potential barrier at x„=+ ~, so that the

only detectable hopping mechanism between the poten-
tial barrier at x„=+ m., so that the only detectable hop-

ping mechanism between the potential wells at xp takes
place across the lower barrier at x„=0.In this respect,
the periodic potential, Eq. (1.7), is a good surrogate for a
bistable potential, provided that D ((bf(0). '

Solving the FPE, (1.5), for the periodic bistable poten-
tial, Eq. (1.7), with the boundary conditions given by Eq.
(2.4), is equivalent to determining the discrete eigenvalues
and eigenfunctions of the relevant spectral problem,

5-""

0-

I I I I I I I I I I I I I I

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ y

~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ +
P

~ ~ ~ ~ ~

I ~ I I I I I ~ I I I ~ ~ I I

0 0.5
x/e

I I I I ~ I ~ I I I I ~ I

-0.5

I I ~ I I ~

L (x,e)P(x, e) = AP(—x, e) .

The stationary probability distribution,

P„(x,e}—= lim, „P(x,e;t),

(2.5)

0- — (c)

coincides with the eigenfunction Po(x, e) corresponding
to A, =0. The contour lines of Po(x, e} for one value of
the noise intensity are displayed in Fig. 2. On increasing
r from zero, the double-peaked structure of Po(x, e) is

first twisted clockwise, and then the single saddle at the
origin is suddenly replaced by a loca1 minimum or
"hole." Simultaneously, the single saddle branches into a
pair of symmetric, off-axis saddles which move farther
apart upon further increases in v.. %e denote the coordi-
nates of these new saddle points by

s+ =( x( )r, e( )r) .

For extremely large values of r s~(r) appears to ap-
proach two asymptotic fixed points s+( ~ ), while the cor-
responding value of Po(x„e,) becomes vanishingly small.
However, the depth of the hole, measured by the ratio
Po(x„e,)/Po(0, 0), increases with r. Note that typically

Po(x„e,) is orders of magnitude smaller than the off-
axis' peaks of Po(x, e).

The topological effect we have observed is a critical
transition in that, at a given noise intensity, it only ap-
pears for ~ greater than some threshold value ~, and vice

versa. In Fig. 3 we plot the phase plane, wherein the crit-
ical values D, and ~, lie on a line dividing the two topo-
logical behaviors. The critical value ~, appears in both
the numerics and the analog simulations to exhibit a
definite positive lower bound ~p. It is worth emphasizing,
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FIG. 2. Po(x, e) contour lines for the potential shown in Fig.
1 at fixed noise intensity D =3. The probability values of the
contour lines were chosen to emphasize the hole at the origin.
They are as follows. (a) Dotted: 1.31 and 3.77X10 ', solid: 3,
6, . . . , 12X10 . (b) Dotted: 1.01 and 3.21X10; solid: 3,
6, . . . , 15X10 . (c) Dotted: 4.4 and 19.4X10; dashed: 2,
2.2, 2.4, and 2.5X10; solid: 3, 9, . . . , 21X10 . (d) Dotted:
2.2 and 28. 1 X 10 '; dashed: 4,8, ~ . . , 16X 10; solid: 0.1, 0.3,
and 0.5.
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FIG. 3. The phase plane, D, vs ~„for the potential shown in

Fig. 1.

however, that the existence of ro is one of the few predic
tions which we have been able to prove analytically. An
additional feature shown by Fig. 3 is the kink represented
by the abrupt change in slope of the curve D, (r, ) near
~p —=21o. We shall further discuss the critical nature of
the mechanism responsible for the bifurcation of the sin-
gle saddle into the off-axis pair s+ in Sec. III.

FIG. 5. Po(x, e) cross section through the saddle point for
the potential shown in Fig. 4 measured on the analog simulator
for r=5: (a) D =2.2)D„(b) D =2.1—=D„and (c)
D =0.45 & D, ; and for v =10: (d) D =48.4)D„(e)
D =22.5=D, and (f) D =6.4(D, .

B. The quartic double-well potential

The potential given by Eq. (1.6) is plotted in Fig. 4 for
a =b =1.0. This potential exhibits two stable points and
one unstable fixed point at xo, where xo =+&a lb, and
x„=0,respectively. The curvatures at xo and x„are
given by coo=f"(xo ) =2a, and co„=

~f"(0)
~

=a. The bar-
rier height is

b f(0)=f(0) f(xo)=a l4b . —

The dynamics of the process defined by Eqs. (1.1) and
(1.2) was simulated with an analog electronic circuit us-

ing by now well-developed techniques. After simultane-

ously sampling the trajectories x (t) and e(t) for
sufficiently long times, the stationary distribution Po(x, e)
was determined to reasonably good accuracy. Typically,
the trajectories were digitized into 1000-point samples
each, and 1000—2000 such samples were obtained. The
final distribution thus was built up from 2 to 4 million di-
gitized points. The resulting statistical errors in Po were
small enough that the main features of the topological
transition could easily be observed, though in the close
neighborhood of the D, (7, ) curve only the MCF method
was sufficiently accurate to explore the critical features in
detail. In Fig. 5 we display some measured cross sections

0.50 ~ 1 ~ ) ~ 1 ~
J

~ ) ~

0.25—

0

—0.25

—0.50—2.0 —'l .0 0
x (V)

I

1.0

0
~@
'Y

2 3 4 5 6 7
(dimensionless)

FIG. 4. The quartic double-well potential of Eq. (1.6) for
a =b =1.0.

FIG. 6. The phase plane measured by analog simulation for
the potential of Eq. (1.6) with b =1 and a =0.82 (circles) and

a =0.72 (crosses).
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through Po(x, E) for two fixed values of the noise correla-
tion time and increasing values of intensity. The cross
sections have been chosen close to the saddle point(s}.
The appearance of the hole in the probability distribution
is clearly evidence when the noise intensity is larger than
some threshold value which itself increases with ~. We
verified that the dependence of this effect on ~ and D ex-
hibits the very same features which we demonstrated for
the periodic bistable potential. In particular, our data for
D, and v., as shown in Fig. 6 are consistent with the pre-
vious MCF observations though not as accurate. No
holes were observed for ~ smaller than a certain threshold
ro, no matter how weak the noise intensity. The kink in
the D, (r, } curve, seen earlier using the MCF algorithm
with the periodic bistable potential, is here also clearly
evident.

III. CRITICAL BEHAUIORS

We discuss here the implications of the most remark-
able features of the mechanism under study. This discus-

10"

10'—

FIG. 7. D, vs v, —~0 on a log-log plot. The data are taken
from Fig. 3. A line of slope 1 (dashed) is shown for comparison.
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FIG. 8. x, (~) (circles) and e, (~) (triangles) on linear scales (left) and logarithmic scales (right) for three values of D (a)—(c) for the
potential shown in Fig. 1. The dashed curves represent the law given by Eq. (3.5) for e, with the critical exponent set equal to —,

'.
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sion is based largely on the MCF results for the periodic
bistable potential for two reasons: First, and most
significant, it seems very difficult to obtain comprehensive
analytical results, and consequently we have not yet been
able to develop such a theory. Second, only the MCF re-
sults are sufficiently accurate to closely examine the criti-
cal behavior.

A striking result, introduced in Sec. II, is that the sin-
gle saddle in the probability density Po(x, e) at the origin
bifurcates to a symmetrically located, off-axis pair as the
critical line, D, (r, ), is crossed for increasing r or decreas-
ing D, and that there is some threshold 7p) 0 at which
the critical line terminates. Though the former part of
this statement seems to defy analytical procedures, the
latter can be rigorously justified. Let us recall that any
extremal point of Po(x, e) designated by e =(x„e,), is
determined by the requirements

Po(x, e) = Po(x, e)~, =0 . (3.1)

Substituting Eq. (3.1) into the FPE, (1.5), yields

B r „1
Po = ——f"(x,)+—Po

D
(3.2)

Let us suppose that Po(x, e) can be expanded in a Taylor
double-power series in the neighborhood of (x„e,). The
analyticity of Po(x, e) was understood when we adopted
the MCF algorithm of Ref. 3 to solve Eq. (1.5). That
such solutions are comparable with the results of analog
simulations supports our assumption. The left-hand side
of Eq. (3.2) is the curvature of Po(x, e) parallel to the e
axis at the extremal point and, of course, Po(x„e,) is

positive definite. Let us now identify the extremal point e
with the origin. For (0,0) to become a local minimum of
Po(x, e), (B /Be )Po~~oo~ must become positive or,
equivalently, the factor in large parentheses in Eq. (3.2)
must change sign. This condition allows us to determine
analytically the minimum 7 value, 7p for the appearance
of the hole in the distribution:

the actual shape of the potential f (x) (see Figs. 3 and 6).
In Sec. II we also showed how, at 7=7„the single sad-

dle point bifurcates to two o6'-axis saddle points s+,
which, on further increasing 7, move to two symmetric
fixed points s+( ~ ). Moreover, the probability distribu-
tion at s+ vanishes asymptotically for 7~ ~, but at a
slower rate than at the origin. The dependence of x, on 7
can be explained from this piece of information as a natu-
ral consequence of the discussion following Eq. (3.2). Let
us rewrite' Po(x, e) as exp[ P—(x,e)] At the saddle
points (B/Be)P~, =0, and, see Eq. (3.2)

B r „1f"(x,)+-
Be s D

As r~ ao, Po(x, e) shrinks into two 5 functions centered
at +(x0,0), while at the off-axis saddle points s+(~ ),
seem to flatten out and eventually vanish. (See Fig. 2.)

This requirement leads to the simple prediction
x, ( ~ )

—=x„,where x
„

is the positive solution of the
equation, f"(x„)=0.

In Fig. 8, we report our numerical determination of
x, (r) and e, (r) for the periodic bistable potential shown
in Fig. 1. The bifurcation of the saddle point (0,0) into
the symmetric saddle points s+ is clearly characterized
by a pitchfork-type curve for both coordinates. The off-
axis branches of such curves appear to take on asymptot-
ic values +x, ( ~ ) and +e, ( ~ ), respectively. For r))r„
x, (7) approaches x, ( oo ) fairly closely. There is, however,
an overshoot effect which is present for large enough D,
whereupon x, (r) first exceeds the asymptote, then ap-
proaches it from above. For small D, the approach is al-
ways from below the asymptote.

A similar check has been carried out for the quartic
double-well potential, leading to the same conclusions
even though with less compelling accuracy. Consistently,
all the computations and simulations which we have per-
formed seem to suggest that (B /Be )Po~, becomes neg-

ative for r large enough. (See Figs. 2 and 9.) In fact, this
implies that rf"(x, )) —1 for r))r„orequivalently,
x, (r) )x(r), where x(r) is given by

(3.3) rf"(x(r))+1=0, (3.4)

This prediction compares very well with both numerical
(Fig. 3) and analog simulation (Fig. 6) results. Within
the accuracy of the two methods, it becomes evident that
7, approaches 7 + for vanishingly small values of D, . A

similar observation of a threshold in the noise correlation
time has been made in the context of the breakdown of
the small 7 expansion by Tsironis and Grigolini. "

Determining the analytic dependence of D, on 7, turns
out to be an extremely challenging problem, wherein the
nonlinear nature of the process plays a dominant role.
Because of this it may be advantageous to manipulate the
data in various ways. For example, recalling that 7, ~ 7p,
we have replotted the data from Figs. 3 and 6 on suitable
logarithmic scales as shown in Fig. 7. For both poten-
tials, D, seems to be proportional to 7, —7p for 7, (7k,
whereas it increases much more rapidly for 7, )7k. The
location of the kink in the D, (r, ) curve, r„,varies with

C 7c
Xs ~ 1. X& Es E

7
(3.5)

respectively, where v„and v, are critical exponents. This
property is evident in the log-log plots of Fig. 8. Within
the accuracy of our numerical analysis v„and v, are
equal. Most notably, for finite D they are always smaller
than, but close to —,

'
~ Note that —,

' is, in fact, the critical
exponent of x(r) given by Eq. (3.4). The investigations
using both methods become difficult for small D so that

with x (ro) =0 and x ( oo ) =x„.
The behavior of x, (r) and e, (r) for r close to r, is also

remarkable. The curves of these quantities, as shown in
Fig. 8, are peculiar to second-order phase transitions.
The dependence of x, (r) and e, (r) in the neighborhood
of 7, is governed by familiar laws of the type

V
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0—

I s a a l a a a I

lines inside the hole. Such curves resemble a family of
nested ellipses, the major axes of which rotate clockwise
with the contour shrinking more closely around the ori-
gin. In the neighborhood of the origin (0,0), these ellipses
all line up on the same direction, which, for increasingly
large ~ values and with D fixed, turns closer toward the x
axis.

IV. CONCLUDING REMARKS

0-
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-0 ~ 2

I
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1 f l

0 0.2

I

0.2
x/m

0.4

We hope that our study of the two-dimensional process
described by Eqs. (1.1) and (1.3) may help to shed light on
the debated problem of the escape dynamics in bistable
potentials driven by colored noise. ' In fact, the ap-
pearance of a hole in the stationary distribution implies
that the most probable escape trajectory from one well
into the other no longer runs through the origin, but in-
stead crosses the border line between the two basins of at-
traction centered on (xo, 0) along an off-axis path.

To clarify this property of the escape process, we fol-
low the approach outlined in Ref. 15. In Fig. 10, we de-
pict an example of deterministic flow in the periodic bi-
stable potential, obtained by solving numerically Eqs.
(1.1) and (1.3) after setting I (t) =0. The separatrix curve
e„(x),dividing the two basins of attraction, is represented
by a dotted line. The turning points of the flow lines are
determined by the equation dx/de=0, and from the no-
dal curve

FIG. 9. Magnification of the holes of Po(x, e) taken from Fig.
2 for (a) ~=1.0 and (b) ~=1.8. The probability densities on the
contours are as follows. Dashed: 1.95 and 2X10 ', and solid:
2.1, 2.2, and 2. 5X10

results for the critical exponents are not reliable.
The asymptotic behavior of e, (r) is largely an open

problem. All of the data collected support our guess that
e' (7 ) attains a finite value e, ( ~ ) for asymptotically large
values of ~. Unfortunately, we did not achieve high
enough accuracy to answer at least the question as to
whether (and how) e, ( oo ) depends on the noise intensity.
We shall further touch this point in Sec. IV.

Finally, in Fig. 9, we take a closer look at the contour

i I I I I I I I j I I I I I I I a s a

er(x)=f'(x) . (4.1)

I a I I I I I I I I 4 a I I I I I I I

]I& l
' 111 rI /I] r
err r

r
~ ~ ~

~ ~
~ ~ ~

For large values of 7, eT(x) and e, (x) come very close to
one another, in the domain ~x

~
(x„,rendering it unlike-

ly for the flow lines to approach the origin. On the other
hand, deterministic flow lines run almost parallel to the
separatrix for a long distance, so that even a small exter-

I I I I f f I I I
l

~ I I I f I I ~ ~

-0.5 0 0.5

~ ~ I \ f 0 I I 0
/

I I 0 I I t 1 I

-1 -0.5 0 0.5

FIG. 10. Deterministic flow given by Eqs. (1.1) and (1.3) at
~=1 for the potential shown in Fig. 1. The separatrix e (x)
(dotted) and the nodal curve eT(x) (dashed) are also plotted.

FIG. 11. P, (x, e) contour lines for the same conditions
of Fig. 10 in the presence of noise I (t) with D =3. The proba-
bility densities on the contour lines are as follows.
Solid: 1 X 10,2 X 10', . . . , 5 X 10, 1 X 10,6 X 10, . . . , 3.6 X 10;
dashed: negative but with the same absolute values as the posi-
tives. All probability densities are normalized with respect to
the separatrix, shown dotted, which has been assigned the value
zero.
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nal noise might happen to kick a flow line over the
separatrix into the adjacent basin before it reaches the
top of the potential barrier at x„=0.The region where
such a mechanism is more likely to take place is the
domain in the phase space (x, e) encompassed by the
separatrix and the extremal points +x„ofthe nodal
curve' [see Eq. (3.4)].

We verified this picture of the escape processes driven

by strongly colored noise by monitoring the eigenfunc-
tion of the spectral equation (2.5) corresponding to the
smallest nonzero eigenvalue, P, (x,e}. An example is
shown in Fig. 11. Under the action of the additive noise
1 (t), the trajectories of the two-dimensional process leak
out of one basin of attraction into the other. The escape
path runs from ( —

~xo~, O) to (~xo~, O) through s+ and
back from (~xo~, O) to (

—
~xo~, 0) through s . In this

respect, the saddle points s+ are nonsymmetric. The
relevant stochastic escape trajectories in the phase space
(x, e) have also been obtained recently by Lindenberg and
co-workers by means of a digital simulation, thus lead-
ing to the same phenomenological description of the es-
cape mechanism.

It is clear now why we have attached so much impor-
tance to the question of locating s+ with varying v. The
analytical determination of the curve x, (r) and e, (r)
would amount to solving the problem of the ~ depen-
dence of the relevant escape times. ' ' Conversely, fol-
lowing the line of reasoning expounded in Ref. 15, we can

lim, „e„(x)=' (4.2)

to suggest that e, ( ae ) is likely to coincide with
er(x„)=f"(7„),at least for vanishingly small D and
asymptotically large ~. For the sake of comparison with
the results displayed in Fig. 8, we report the predicted
values of x, (ae ) and e, (ao ) for the potential of Fig. 1,
namely x, (oo)=0.739 and e, (ae)=1.655. The conver-
gence of e, (r} to its expected asymptotic value, if
confirmed, would turn out to be very slow (see Fig. 8).
However, such a behavior would be consistent with the
slow convergence of the relevant escape rate toward its
estimated asymptotic value. ' '
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get a clue to the existence of the asymptotic limit e, ( ao ).
Having already noticed that the most probable escape
trajectory must run through an off-axis saddle point, we
can make use of the fact that for ~~ ~ the separatrix ap-
proximates the line

&T(x},
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