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This paper addresses the question of how chaotic scattering arises and evolves as a system param-
eter is continuously varied starting from a value for which the scattering is regular (i.e., not chaotic).
Our results show that the transition from regular to chaotic scattering can occur via a saddle-center
bifurcation, with further qualitative changes in the chaotic set resulting from a sequence of homo-
clinic and heteroclinic intersections. We also show that a state of "fully developed" chaotic scatter-
ing can be reached in our system through a process analogous to the formation of a Smale horse-
shoe. By fully developed chaotic scattering, we mean that the chaotic-invariant set is hyperbolic,
and we find for our problem that all bounded orbits can be coded by a full shift on three symbols.
Observable consequences related to qualitative changes in the chaotic set are also discussed.

I. INTRODUCTION

Chaotic scattering occurs in a variety of situations of
practical interest, including satellite encounters in celes-
tial mechanics, ' molecular dynamics, vortex pair scatter-
ing in fluid dynamics, and classical potential scattering
of point particles. In this paper we consider scatter-
ing from potentials which depend on some set of parame-
ters. For example, if the physical space is two dimension-
al and the potential consists of a number of hills, then the
parameters might be such as to characterize the heights
of the individual hills and the relative locations of the
centers of the hills. Given such a situation it is natural to
ask how chaotic scattering arises and evolves when these
system parameters are allowed to vary. That is, given a
set of parameters where the scattering is regular (i.e., not
chaotic), what are the typical sequences of events
("routes") that occur as parameters are varied and the
scattering becomes chaotic? This is the question ad-
dressed in the present paper.

Most of the previous work on chaotic scattering has
concerned systems with fixed potential parameters and
fixed scattering particle energy. This past research has
clarified the phenomenology of chaotic scattering, the
structure of the fractal invariant sets responsible for the
observed chaos, and the role of unstable periodic orbits in
determining the scattering process. In particular, some
of these results are the following. Initial conditions on a

set of Lebesgue measure zero in the phase space lead to
orbits that are trapped in the scattering region for an ar-
bitrarily long time. This is because of the existence of un-
stable invariant sets in the potential region. The trapping
initial conditions lie on the stable manifolds of these in-
variant sets. If the scattering is regular, the invariant set
can be very simple, e.g. , a few isolated periodic orbits and
their associated stable and unstable manifolds. For
chaotic scattering the invariant set is complicated, in-
volving Cantor-set-type structure on all scales. Due to
the presence of such chaotic sets, the scattering process
exhibits two prominent features. First, a particle trajec-
tory can be very complicated in the potential region, even
though it only spends a finite amount of time in the re-
gion before it heads off to infinity. Second, if we plot the
dependence of some variable characterizing the outgoing
trajectory against some other variable characterizing the
initial condition, then this function can be very compli-
cated, displaying extreme sensitivity of the outgoing vari-
able to changes in the initial condition. Specifically, the
function is singular ("infinitely sensitive") on a Cantor set
of initial condition values. Furthermore, this Cantor set
in the initial conditions is just those initial conditions that
lie on the stable manifold of the chaotic-invariant set.

Recently, some progress has been made on the general
problem we address in this paper: understanding how
and why scattering can become chaotic as a parameter is
varied. ' In Ref. 6 the authors argue that the onset of
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chaotic scattering can be achieved either through a
saddle-center bifurcation or through another, new type of
bifurcation which they call an abrupt bifurcation and
that, for two degrees of freedom systems, these are the
only two generic routes to chaotic scattering. They per-
formed detailed analysis of the abrupt bifurcation but did
not investigate the consequences of the saddle-center bi-
furcation route to chaotic scattering. In this paper we
study the saddle-center bifurcation route by investigating
a particular model scattering problem and use the results
so obtained to draw some general conclusions.

We show how the onset of chaotic scattering can be
obtained via a saddle-center bifurcation, and we demon-
strate how the character of the chaotic scattering process
changes as the parameter is varied. Starting from a stage
where the scattering is regular, we observe that the
saddle-center bifurcation marks the transition from regu-
lar to chaotic scattering. Immediately after this bifurca-
tion, the stable and unstable manifolds of the newborn
saddle intersect each other and a chaotic set is therefore
generated. The next important state in the evolution of
chaotic scattering in our model is the occurrence of a
heteroclinic tangency between the stable and unstable
manifolds of the saddle which came into existence at the
saddle-center bifurcation and the stable and unstable
manifolds of another saddle which exists throughout the
course of the system evolution. This event not only
causes qualitative changes in the chaotic set, but it also
marks the beginning of the formation of a structure topo-
logically equivalent to a horseshoe-type map. As the pa-
rameter changes further, the chaotic scattering set be-
comes hyperbolic [in particular, in the hyperbolic param-
eter range, there are no Kolmogorov-Arnold-Moser
(KAM) surfaces, no stable periodic orbits, and the dy-
namics is described by a full shift on three symbols]. This
is in contrast with the "abrupt bifurcation, " studied in
Ref. 6, for which the scattering set changes from non-
chaotic directly to hyperbolic chaotic as a parameter
passes through a critical value. The fact that the dynam-
ics in our model is hyperbolic in some range of the pa-
rameter is significant because it implies that no bifurca-
tions annihilating or creating periodic orbits can occur
(e.g. , there are no saddle-center or period-doubling bifur-
cations in the hyperbolic range). Such a hyperbolic situa-
tions has been called "fully developed chaotic scatter-
ing. " One of the important results obtained from observ-
ing this sequence of events is that stable-unstable mani-
fold intersections not only lead to sudden changes in the
chaotic-invariant set, but also have clearly observable
global effects on the behavior of the scattering properties
of the potential.

The potential we use to perform our analysis is illus-
trated in Fig. 1. It consists of three nonoverlapping po-
tential hills with their centers on the vertices of an isos-
celes triangle. Each individual hill is circularly sym-
metric and can be represented as

C&, (x,y)= V, I 1 —[(x —x;)'+(y —y;)']«,'I

for (x —x, ) +(y —
y, ) a,

and 4;(x,y)=0 for (x —x, ) +(y —
y, ) &a, . In Eq. (1),

V2

FIG. 1. Top view of the three potential hills defined by Eqs.
(1) and (2j and the three periodic orbits m&, ~2, and m, ~2 and
~3 are created at the saddle-center bifurcation.

i = 1,2, 3, (x„y; ) is the center of the ith potential hill, a;,
is the hill radius, and V, is the hill height. The coordi-
nate system is such that the vertical line through the
center of hill 2 is the y axis, the horizontal line through
the centers of hills 1 and 3 is the x axis, and their inter-
section is the origin. The full potential is then symmetric
with respect to the y axis and can be written as

4(x,y) =4~(x,y)+42(x, y)+43(x,y) . (2)

Since each potential hill is a paraboloid of revolution, the
equation of motion can be solved exactly inside each of
the regions (x —x; ) +(y —

y, ) a;, and there is no need
for numerical integration of differential equations. For a
particle traveling outside the hill regions, the trajectory is
a straight line. As compared to more general 4(x,y), this
both saves computer time and improves the accuracy of
our calculations. Throughout most of this paper we fix

the geometrical configuration of the potential (i.e., x;, y;,
and a;), the particle energy E, the potential heights

V] V3 0+E, and then investigate the system behavior
as a function of the control parameter V2.

As we have already mentioned, we find that as the pa-
rameter V2 is varied, we come to a range of V2 where the
chaotic-invariant set is hyperbolic. To understand the
nature of this hyperbolic set refer to Fig. 1. The solid
lines labeled by m, ~2, and ~3 in Fig. 1 are trajectories of
three different unstable periodic orbits which travel back
and forth between hills 1 and 3. We find that all bounded
orbits are made up of sequences of "legs" bouncing be-
tween hills 1 and 3 in the three possible ways illustrated.
That is, each leg of a bounded orbit passes close to m~, ~z,
or m3 and can be uniquely associated with that unstable
periodic orbit. We emphasize that all sequences of legs
are possible and that no bounded orbits other than these
are permissible. Thus the chaos, in this parameter range
of V2, is completely described by a full shift of three sym-
bols.

One of the notable aspects of the situation just de-
scribed is that the orbit deflection provided by hill 2 re-
sults in two (rather than only one) possible paths between
hills 1 and 3: one path which penetrates close to the po-
tential peak of hill 2 (resulting in a&), and one which
stays further away from this peak (resulting in ~2). An
interesting question (to be discussed in Sec. III C) con-
cerns what happens to our picture of the full three shift
chaos as the height of hill 2 increases through E (i.e., Vz
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becomes greater than the particle energy). In this case,
one can regard the single periodic orbit n.

3 as bifurcating
into two periodic orbits: one bouncing between hills 1

and 2 and the other between hills 3 and 2. For hills of
small enough radii compared to their separations, we find
that a new type of bifurcation which massively changes
the hyperbolic chaotic set takes place at V2 =E . In par-
ticular, in this bifurcation the in6nite number of bounded
orbits whose sequences of legs contained segments coded
by n, are destroyed and a new class of bounded orbits is
created. For this new class of orbits we can again con-
struct a symbalic dynamics which is a full three shift.

The organization of this paper is as follows. In Sec. II
we introduce our numerical techniques and discuss regu-
lar scattering and its characterization. In Sec. III we
present our results on the saddle-center bifurcation and
the subsequent homoclinic and heteroclinic intersections.
We emphasize the existence of a horseshoe-type map
describing the dynamics of the system and the massive bi-
furcation at V2 =E~. In the same section we discuss ob-
servable consequences of the major qualitative changes
that we find in the invariant set. In Sec. IV we summa-
rize our results and conclusions.

II. NUMERICAL EXPERIMENTS
AND REGULAR SCAI IRRING

In this section we discuss the simple system obtained
by letting V2 =0 in Fig. 1 and in Eq. (1}. A major reason
for doing this is to simply introduce and illustrate the nu-
merical techniques we will be using later. Because of the
simplicity of this case (twa identical hills}, the scattering
is regular and all aspects of the scattering process can be
understood. Since the height of the hills is presumed
larger than the energy of scattering particles, there is a
periodic orbit nr, which bounces back and forth between
the two hills along the line joining their centers (Fig. 1).
The orbit n, and its stable and unstable manifolds are the
only invariant sets in this case.

For definiteness, we choose x, = —x3 6 yl y3 0,
a, =a3=3, V, =V3=10, and E =1 [cf. Eq. (1)]. Fur-
thermore, we choose initial conditions lying on the line

y =6, with the additional assumption that the initial par-
ticle velocity is straight down (parallel to the y axis).
Thus such initial conditions will be specified by xp the x
coordinates of particles on that line. The parameter xp is
also referred to as the impact parameter in the scattering
theory. Some of the initial conditions give rise to trajec-
tories that are simply downward-going straight lines that
never hit either of the potential hills. Other initial condi-
tions correspond to orbits which hit the hills and bounce
between them a number of times before heading off (along
straight line paths} to infinity. Due to the symmetry
present in the potential, we need only consider initial
conditions with positive x coordinates (xp )0). Figure 2
displays the trajectories of a few particles with different
impact parameters. Note that the range of impact pa-
rameters used in Fig. 2 is very narrow so that, to the reso-
lution of the Sgure, the down-going initial legs of the tra-
jectories appear to be the same for all the particles. After
bouncing in the potential, however, various trajectories

y
0

-5

FIG. 2. Trajectories of ten particles with initial conditions ro
ranging from 3.7564 to 3.7566.

separate as shown.
In our first numerical experiment we unifarmly space a

large number of particles, say 10000, aver an interval of
impact parameters, let these particles descend toward the
potential region, and follow their orbits until they exit the
region of the potential, never to return. We then plot the
angle 8 between the outgoing particle velocity and the y
axis as a function of the impact parameter xp [Fig. 4(a)].
Here the definition of 8 is shawn in Fig. 3, and 8 is taken
to lie in the range [ n, n ]. W—e also obtain plots of "exit
time" versus impact parameter [Fig. 4(b}]. By "exit
time" we mean the amount of time a particle spends from
the time it first hits a hill [i.e., when it first satisfies
(x —x;) +(y —y;) =a; for some i] to the time it last
leaves a hill [i.e., when it last satisfies
(x —x; ) +(y —y; ) =a; for some i], after which it heads
off to infinity. We observe a sharp peak in the exit time
plot Fig. 4(b). It we increase our resolution near this
peak as shown in the enlargement, Fig. 4(d), we see that
the peak gets higher and higher. This indicates that there
is an impact parameter value near the finite resolution
peak in the plot for which the exit time is infinite. This
point is indicated by the arrows on the xo axis of Figs. 4.
Another interesting observation is that the location of

FIG. 3. A particle trajectory and the definition of the exit an-

gle 8.
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this peak also serves to separate the initial conditions of
particles exiting upward ( ~ 8~ & n. /2) and downward
(~8~ )m/2). [As can be seen in Fig. 4(a) and its enlarge-
ment Fig. 4{c},~8~ is always less than m. /2 to the right of
the arrow on the x0 axis and is always greater than m. /2
to the left. ]

The value of x0 where the exit time is infinite corre-
sponds to the place where the stable manifold of the
periodic orbit n, in. tersects the line of initial conditions

y =6. To illustrate this we send a number of particles to
the potential region with initial conditions straddling the
value indicated by the arrow on xo axis in Fig. 4. The
trajectories of these particles are the ones shown in Fig.
2. They first approach the periodic orbit and then stay
close to it for a while before leaving the potential region.
The closer an initial condition is to the stable manifold,
the longer it stays close to the periodic orbit, and the
longer it takes to exit the potential. Another thing which
we note from Fig. 2 and Figs. 4(a) and 4(c) is that at the
stable manifold point, 8 is infinitely sensitive to x0. That
is, arbitrarily small changes in xz suSciently near this
stable manifold point make large changes in 8. In what
follows we often refer to the plots in Figs. 4 as scattering
functions.

In the second numerical experiment we again send a
large number of particles, say 30000, with impact param-
eters uniformly spaced in some interval, say
3.75&xo &3.76, of the line y=6 into the potential re-
gion, and examine the "particle decay process" by plot-
ting the number of particles N( T} which, after a time T,
are still left in the region (i.e., have not yet experienced
their last encounter with one of the potential hills) as a
function of T. This is shown in Fig. S(a). Figure 5(b)
displays a semilogarithmic plot of the same data shown in
Fig. 5(a). The result is a straight line (shown dashed)
with periodic oscillations. It can be seen from numerical
and theoretical evidence that N ( T) scales approximately
with Tas

-n
3.756

Xp

3.757

N(T)-e

The slope of the dashed line in Fig. 5(b) gives p, which is
also

42 p =1n(A, )!T (4)

30—

18
3.756

xo

3.757

FIG. 4. (a) and (c) exit angle vs the impact parameter; (b) and
(d) exit time vs the impact parameter; (c) and (d) enlargements
of (a) and (b), respectively ( V~ =0).

where A.~ and T are defined in the figure. The origin of
the exponent p can be understood in terms of the period
and eigenvalues of the orbit n, (see Appendix A).

%e now introduce another numerical technique which
is used throughout our study, namely, the Poincare sur-
face of section. For a time-independent Hamiltonian sys-
tem, the energy is an integral of the motion and (for sys-
tems of two degrees of freedom) the motion in the four-
dimensional phase space is restricted to the three-
dimensional energy surface. Hence a surface of section
transversal to the particle trajectory yields a two-
dimensional area-preserving map. For the present system
we place our surface of section at x =0. As coordinates
on the surface of section (x =0), we use the y coordinate
and the y component of the velocity U (p =v for particles
with unit mass). For a given point {U,y) on the surface
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of section there are two possible points on the energy sur-
face with opposite signs of u„which it could correspond
with, (u~, y, u„,0) and (u,y, —u„,0). In such a case, the
usual way of eliminating the ambiguity between the two
possible choices is to only count a point to be on the sur-
face of section if the orbit crosses the surface in a particu-
lar direction (e.g. , from x (0 to x & 0, implying u„&0).
In our case this is not necessary. In particular, we note
that the system in Fig. 1 possesses a reflection symmetry
about x=0. Thus both of the points, (v,y, u„,0) and
(v~,y, —u„,0), when evolved forward in time, yield orbits
which next intersect the surface of section at the same
point (i.e., with the same u and y coordinate values).
This allows us to identify crossings coming from either
side of the x =0 plane as equivalent and thus we can ac-
cumulate twice as many points on the surface of section
for an orbit of a given length. We denote the resulting
discrete Poincare map as P. Then, (u~, y')=P(u~, y),
where (u', y') denotes the next surface of section crossing
following the one at (u, y ). Note that for some points on
the surface of section the image under P may not exist,
because the corresponding trajectories can leave the sur-
face of section without ever returning to it. (For those
points P is undefined. )

On the surface of section the periodic orbit m, is
represented by a single fixed point which for the potential
being considered here is the origin, (v,y)=(0,0). The
eigenvalues of P numerically evaluated at this point for

the system configuration specified in this section are
A,

~
=6.7 and A,z= I/A, Knowing the location of the fixed

point, one can numerically determine its stable and unsta-
ble manifolds by making use of the sprinkler method:
take a small square on the surface of section containing
the fixed point, uniformly sprinkle a large number of
points in the square, say, 10, let these points evolve un-
der P for a certain number of iterations, and plot the
points which are still left on the section. These points
give us the approximate location of the intersection of the
unstable manifold with the surface of section. To obtain
the stable manifold we first note the basic time reversal
symmetry of the dynamics implied by the invariance of
the Hamiltonian to the transformation v~ —v. This im-
plies that each point on the unstable manifold (v„,x„)
corresponds to a point on the stable manifold
(v„x,)=( —v„,x„) and vice versa. To obtain the inter-
section of the stable manifold with the surface of the sec-
tion we further note the equivalence of points in the sur-
face of section with the same

~ v„~ but opposite signs of
u„. Thus to each unstable manifold point (u „,y„) in the
surface of section there corresponds a stable manifold
point (v, y, ) =( —v „,y„). That is, the intersection of the
stable manifold with the surface of section can be ob-
tained from the intersection of the unstable manifold with
the surface of section by reflecting the unstable manifold
intersection through the y axis. Figure 6 shows the com-
puted manifolds, and they appear (as they should) to be
straight lines.

Now we are in a position to perform our third numeri-
cal experiment, in which we take a small interval of ini-
tial conditions on the line y=6 such that this interval
contains the intersection of the stable manifold with the
y=6 line. We then place 2000 uniformly spaced initial
conditions in this interval and evolve them under the
equations of motion. Then we take the resulting first or-
bit crossing with the surface of section. This gives an im-
age I of the crossing of the original interval with the sur-
face of section. In Fig. 7 we superpose I on the data of
Fig. 6. As we should expect, the interval I intersects the
stable manifold transversely. In addition, upon further
application of P, the points of I falling in the upper mid-
dle section of Fig. 7 follow the stable manifold downward

(b)
1.5

I E

ln Xp
I I

~ 4 ~ 0 ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ 4 ~ OOttO ~ 0 ~ ~

Tp

10 20 30 40
I

0
V

0.5

FIG. 5. (a) Plot of N(T) vs Tand (b) semilogarithmic plot of
the same data in (a).

FIG. 6. The intersection of the stable and unstable manifolds
of m.

i with the surface of section x =0 ( V2 =0).



7030 DING, GREBOGI, Ol I, AND YORKE 42

1.5 (a) V2 ( Vsg

0-

-1.5
-0.5

Vy

0.5

FIG. 7. The image I of the interval of initial conditions
3.74&xo &3.77 on the surface of section x =0 superposed on
the data shown in Fig. 6 ( V2 =0).

first and then follow the upward branch of the unstable
manifold and exit upward; in contrast, those falling in the
left section of Fig. 7 map downward and exit downward
following the downward branch of the unstable manifold.

Before concluding this section, we remark that the ad-
dition of a sufficiently small middle hill (hill 2) to the
two-hill system does not alter the essential character of
the scattering process. This has been verified numerically
and also follows from the hyperbolicity of the periodic
orbit rr, Nevert. heless, some changes in both the surface
of section and the scattering functions do take place.
Most noticeable among them is the appearance of ripples
in the stable and unstable manifolds on the surface of sec-
tion caused by the presence of the sharp edge of the mid-
dle hill at (x —x2} +(y —yz} =a&. An important effect
of these ripples can be seen with reference to Fig. 7. In
particular, the image of the initial condition interval can
intersect the stable manifold of m

&
at more than one point

(e.g., three points). Each such intersection corresponds
to a singularity of the scattering function.

III. CHAOS INDUCED BY HOMOCLINIC
AND HETEROCLINIC INTERSECTIONS

In this section we discuss qualitative changes in the
scattering behavior as the control parameter Vz (the
height of the rniddle hill} is increased. To perform our
numerical experiments we choose the following set of pa-
rameters for the potential and for the scattering particle:
x] x3 6, y& =y3 =0, x2=0, y2 =2.2; a, =a3 =3,
aq=2; Vi V3=10 V2)0, and Ep=l.

A. Saddle-center bifurcation and the onset of chaos

The first significant event that occurs, as the parameter
Vz is increased, is a saddle-center bifurcation at V2 = V„
( V =0.187}. This bifurcation results in the creation of a
pair of periodic orbits traveling between hills 1 and 3
through hill 2. Figures 8 illustrate the system evolution
around this saddle-center bifurcation in the physical
space. For V2 & V„, the system has only one periodic or-
bit rr, and the scattering is regular [Fig. 8(a}]. As V2

passes through V, the saddle and the center, which ini-

FIG. 8. (a) The only periodic orbit ml for V, & V„; (b) the
newborn saddle m3 and center n.

2 coincide with each other at
V2 = V„; (c) m2 and m3 move apart from each other for V& & V„.

tially coincide when they are created at V„, move apart
from each other [Figs. 8(b) and 8(c)]. The upper orbit in
Fig. 8(c), which we henceforth denote as n&, is a reg.ular
saddle (both eigenvalues of the Poincare surface of sec-
tion map are real and positive); while the middle orbit in
Fig. 8(c) (denoted by rr2) is a center (both eigenvalues are
complex and lie on the unit circle in the complex plane).
As soon as the saddle and center move apart, in generic
situations, the saddle ~3 will immediately have its stable
and unstable manifolds intersect each other transversely,
According to Smale's theory, such homoclinic intersec-
tions imply the existence of chaotic-invariant set. There-
fore the saddle-center bifurcation signifies the onset of
chaotic scattering. Figures 9 illustrate schematically the
corresponding evolution pattern on the surface of section
around V2 = V„. Figure 9(a) shows the unstable periodic
orbit m

&
and its stable and unstable manifolds for

V2 (V„. Figure 9(b) shows the newborn saddle center at
V2= V„ together with its invariant manifolds. Figure
9(c) displays the saddle n.

&
and the center m.

z after they
move apart from each other and the homoclinic tangle
formed by the stable and unstable manifolds of n.3. No-
tice that surrounding the center m2 is an "island region"
consisting of a nested family of KAM tori between which
are periodic orbits, chaotic components, and higher-order
island chains. The numerically computed island accom-
panying the center m.

2 for V2 =0.195 is shown in Fig. 10.
Such islands in Hamiltonian dynamics can exert strong
inliuence on the particle decay process (cf. the second nu-
merical experiment described in Sec. II). As we increase
V2 further, the center m.

2 undergoes a period-doubling bi-
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(b) V2= Vsc FIG. 11. The new center of period two and its associated is-
land structure after 772 underwent period-doubling bifurcation
( V =0.207).

(c) V~) Vsc

FIG. 9. (a) ~1 and its invariant manifolds for V2 ( V„; (b) the
newborn saddle center at V2= V„; (c) homoclinic intersections
between the stable and unstable manifolds of m.

3 occur for
V, ) V„.
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FIG. 10. The island structure associated with the center ~2
( V2 =0.195).

furcation and becomes an unstable saddle (both eigenval-
ues of the Poincare map are real and negative; such an
orbit is sometimes called a twisted saddle}. Figure 11
shows the new centers (period two) and their surrounding
island structures just after the period-doubling bifurca-
tion at V2 =0.207. Numerical evidence indicates that the
period-doubling process continues ad inj7nitum. The ex-
istence of such an infinite cascade of period doubling in
our system is in agreement with a theory developed in
Ref. 10 concerning the origin of the occurrence of an
infinite number of periodic orbits in a chaotic set.

The appearance of the chaotic set after the saddle-
center bifurcation has strong impact on the observable

behavior of the system. Figures 12 show the scattering
function for the value of Vz =0.195 [corresponding to the
situation shown in Fig. 9(c)j. As we have already dis-
cussed in Sec. II, the peaks observed in the exit time plots
are the intersections of the stable manifolds of the invari-
ant set with the line of initial conditions y =6. The main
difference between this case where the invariant set is
chaotic and the case in Sec. II where the invariant set is
nonchaotic is that now the peaks apparently reside on a
Cantor set. Thus if we blow up a region about one of
these peaks we see more peaks and their heights increase
[compare Figs. 12(b) and 12(d)]. Another interesting
thing to note is that chaos can only be experienced by
particles exiting upward, i.e., ~8~ (m /2, as shown in Figs.
12(a) and 12(c). The scattering function for downward
exiting particles is still regular and governed essentially
by the original saddle m& and its stable and unstable mani-
folds. The reason why this is so can be understood in the
following way. Consider particles that experience chaotic
scattering, their first images on the surface of section lie
in the region where the intersection of the stable and un-
stable manifolds of n, occurs (c. f. the third experiment de-
scribed in Sec. II). As can be seen in Fig. 9(c), this region
is completely contained between the branch of the unsta-
ble manifold of ~, that extends from ~, to y =+ ~ and
the branch of the stable manifold of n& that also extends
from m, to y =+ ~. Note that these branches of the
stable and unstable manifolds form barriers which the
points on the surface of section cannot cross. In other
words, the region enclosed between the two branches of
the invariant manifolds of m, is invariant under the
scattering dynamics. Thus those particles that experi-
ence chaotic scattering must follow the upward branch of
the unstable manifold of m, to exit the potential region
(

~
8~ (n /2 }. On the other hand, if a particle exits down-

ward (i8i )m/2), its first image on the surface of section
must land on the other side of the stable manifold of ~&

where no chaotic set is present.

8. Heteroclinic intersections

and fully developed chaotic scattering

As we continue to increase V2 the two periodic orbits
created at the saddle-center bifurcation move further
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apart from one another. The stable and unstable mani-
folds of the saddle ~3 pull away from each other along
the U direction. Meanwhile, the stable and unstable
manifolds of the original saddle m.

, squeeze in toward
each other along the U, direction. This motion leads the
two sets of manifolds to form a heteroclinic tangency at
Vz= Vh, (Vh, =0.215). A schematic illustration of the
situation is given in Fig. 13. If Vz is increased slightly
past Vh&, then the stable and unstable manifolds of the
two saddles cross each other, giving rise to heteroclinic
intersections. The chaotic set, which used to involve the
manifolds of the saddle ~3 only, suddenly enlarges to in-
clude the stable and unstable manifolds of the original
saddle ~&. Figures 14 show the scattering functions for
Vp =0.25 & Vp &

and Fig. 1 5 shows the numerically com-
puted heteroclinic tangle for the same parameter value on
the surface of section. Note from Figs. 14 that, corre-
sponding to the fact that the chaos is no longer restricted
to the region between the upward branches of the invari-
ant manifolds of ~, , there is now chaotic motion for par-
ticles exiting both upward and downward. This is in con-
trast with the case Vz ( Vi„(cf. Figs. 12). Thus the oc-
currence of the heteroclinic tangency results in a clearly
observable sudden qualitative change in the character of
the 0 versus x0 plot.

As we increase V& further, the stable and unstable
manifolds of ~3 continue their relative motion in the U

direction, while the upward branches of the stable and
unstable manifolds of ~, continue to move towards each
other. Eventually, we come to the situation shown in
Fig. 16. For the potential specified at the beginning of
this section, we find numerically that Fig. 16 applies for
Vz in the range V. & Vz & V+ &E~, where V =0.265
and V+ =0.275. Figures 17 pictorially illustrate the sets
of stable and unstable manifolds of the two regular sad-
dles 7T] and 7T3 for five cases: V~= Vg], VI, ] & V~ & V

V&
= V, V & V, & V+, and Vz = V+.

Examining the situation in the middle of the interval
V & V~ & V+ we see no evidence of stable periodic or-
bits or KAM surfaces, and we observe that none of the
stable-unstable manifold intersections which we calculate

320
g

T 170—

3.8566
XU

FIG. 12. (a) and (c) exit angle vs the impact parameter; (b)

and (d) exit time vs the impact parameter; (c) and {d) enlarge-

ments of (a) and (b), respectively ( V& =0.195). FIG. 13. Heteroclinic tangency at V, = Vz, .
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are at small angles. Thus we believe that it is reasonable
to conclude that there is an interval V' ( V2 & V'+ in
which the invariant set is hyperbolic. This interval exists
within the interval V & V2 ( V+. The dynamics cannot
be hyperbolic in the full interval, V & V2 & V+, because
there must be an in6nite number of saddle-center bifurca-
tions in the neighborhood of any stable-unstable manifold
tangency" [in particular, at Vz= V and Vz= V+, see

(c) .:,'
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, ~
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3.87866
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3.87876
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li, !~i!!iJi

3.87876
Xp

FIG. 14. (a) and (b) exit angle vs the impact parameter; (b)
and (d) exit time vs the impact parameter; (c) and (d) enlarge-
ments of (a) and (d), respectively ( Vz =0.25 }.

FIG. 16. The stable and unstable manifolds of m.
&

and m3 for
V (V, &V. .



7034 DING, GREBOGI, O'I I, AND YORKE 42

(a)

Vh~& V2& V V &V2&V,

FIG. 17. Evolution patterns of the stable and unstable manifolds of m& and n.
3 for five cases: (a) V2 =

Vp& (b) VI, 1( V2 & V (c)
V, = V, (d) V & V, & V+, and (e) V2 = V+.

Figs. 17(c) and 17(e)].
For other parameter values corresponding to potentials

with hill radii relatively small compared to the distance
between the hills, the situation shown in Fig. 16 can be
extended up to the point where the height of the middle
potential hill Vz equals the particle energy E [i.e., there
is no value V+ &E such that Fig. 17(e) applies]. For
this case, we will show that an interesting bifurcation
occurs as Vz increases through E (see next subsection).
For the remainder of this subsection we discuss the dy-
namics associated with Fig. 16.

Consider the three hatched diamond-shaped areas in
Fig. 16 which we have denoted A&, A2, and A3 and
which are situated around the saddle orbits vr&, m2, and
7T3 Figure 18 shows the images of A &, A z, and A 3 under
the Poincare map P. The structure illustrated in Figs. 16

P (AB)

p (A,}

and 18 may be analyzed in the same manner as the classi-
cal Smale horseshoe example. To see more clearly the
analogy with the Smale horseshoe, we deform the picture
in Fig. 16 to obtain the topologically equivalent diagram
shown in Fig. 19. The rectangle shown in Fig. 19 maps
into the hatched S-shaped region which contains A &, A2,
and A 3. From the Smale horseshoe theory we know that
the invariant set which contains all the orbits that stay in
the original rectangle is a Cantor set and is completely
contained in the three cross-hatched areas A „A2, and
A 3 In addition, we can introduce a symbolic dynamics
to describe all the orbits in the invariant set in the follow-
ing way: for an orbit which travels between the three
cross-hatched areas we can assign a bi-infinite symbol se-
quence which specifies the order in which the three
cross-hatched areas are visited: 8'=. ..s 2s, sos, s2. ..,
where s =1, 2, or 3 corresponds to A „A2, or A 3, re-
spectively, and j=.. . , —2, —1,0, 1,2, ... . For a particle
traveling through A;, the corresponding leg of the trajec-
tory in the physical space lies in the vicinity of the
periodic orbit m; (cf. Fig. 1). Thus all the bounded orbits
can be coded by the three periodic orbits m&, m2, and m3,
and the dynamics on the invariant set is organized with
respect to the three periodic orbits. Given any word 8',

A3

FIG. 1S. The images of the three areas Al, A2, and A3
shown in Fig. 16 under the Poincare map I'.

FIG. 19. The Smale horseshoe-type map obtained by deform-
ing topologically the configuration shown in Fig. 16.
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if we stipulate the direction of motion along any one orbit
leg (corresponding to some s, ), then 8'specifies the orbit
uniquely. (For example, for a chosen j value j=J, we

might have sJ =1. In that case we would specify whether

sJ =1 corresponds to an orbit leg traveling close to m. , in

the direction from hill 1 to hill 3, or, to an orbit leg trav-
eling in the direction from hill 3 to hill 1.) This one-time
specification of the orbit direction is necessary to remove
the ambiguity which occurs due to the fact that the word
IV is, by symmetry, also the word for the orbit with x(t )

and U„(t) replaced by x(—t) and v„(t—). If the symbol
sequence is periodic then the corresponding orbit is also
periodic; otherwise the corresponding orbit is aperiodic.
In fact, there are a countably infinite number of periodic
orbits and an uncountably infinite number of aperiodic
orbits.

C. Further evolution of the system

Now let us increase Vz beyond the value corresponding
to the picture shown in Fig. 16. As mentioned in the pre-
vious subsection there are two situations.

Case (1). For relatively large hill radii (e.g. , the param-
eter values specified at the beginning of this section) the
hyperbolic range is below Vz =E, i.e., V' & Vz
&V'+ &E.

Case (2). For relatively small hill radii compared to
the separation of the hills the dynamics remains hyper-
bolic as Vz E .

In each of these cases the evolution of the system with
increasing Vz follows a distinct route.

Case (I). In this case, as Vz increases from the value

corresponding to Fig. 16, we come to a point, V~= Vz~

(Vi, &=0.5), at which another heteroclinic tangency takes
place. This tangency is similar in nature to the one
occurring at Vz= Vi„(cf. Fig. 13 and Sec. III B) and is
schematically illustrated in Fig. 20. Essentially as Vz in-

creases through Vzz, the interaction between the saddles

m, and m3 comes to an end. Above Vzz the stable and un-

stable manifolds of m3 pull out of the tangle and leave the
stable and unstable manifolds of vr& still entangled in a
complex manner. This is shown schematically in Fig. 21

FIG. 20. Heteroclinic tangency at V& = Vz&.

FIG. 21. The stable and unstable rnanifolds of m& and m3 for

for Vz slightly larger than Vz~. Physically, the hetero-
clinic tangency at V&= V&z has strong implications for
the observable scattering functions. Suppose that
Vz & V&z and that we send in particles from above as we
did before for V& & Vzz. In this case, we find that the
scattering is regular and governed by the saddle m.

3 and
its associated invariant manifolds. This is because the
chaotic set is completely enclosed within the region
bounded by the downward-going branches of the stable
and unstable manifolds of n3(see F. ig. 21). Hence the
chaotic set is not accessible to orbits coming from above.
However, we can still observe chaotic scattering if we
send particles upward from below the potential. In that
case, for those particles exiting downward there is chaot-
ic behavior in the scattering functions. The situation is
very similar to the one observed before the first hetero-
clinic tangency at Vz= Vi„[cf. Fig. 9(c)]. In that case,
the chaotic scattering is manifested by particles being
sent from aboue the potential and exiting upward (cf.
Figs. 12). In the current situation the roles of "above"
and "below, " "upward" and "downward" are reversed,
and the roles of vr, and m3 are also reversed. Further as-

pects of the system evolution and the associated symbolic
dynamics for the potential system specified at the begin-

ning of this section are discussed in Appendices B and C.
Case (2). When the hill radii are relatively small, the

picture shown in Fig. 16 and the associated symbolic dy-
namics remain a valid description of the scattering pro-
cess throughout the interval V & V~ & Ep At Vz Ep a
new type of bifurcation which vastly alters the chaotic set
takes place. %e call this bifurcation a "massive bifurca-
tion. " The phenomenology of the massive bifurcation is
the following. In the physical space, as Vz~Ep from
below, the midpoint of the periodic orbit ~3 approaches
the center of hill 2 (x =0 and y =y~) [Figs. 22(a) and
22(b)] and the period of vr3 approaches infinity. At the
same time, in the surface of section, as Vz~Ep from
below, the area of A3 goes to zero. As Vz goes through
the bifurcation value E, the single periodic orbit m3 bi-
furcates into two distinct periodic orbits of finite period.
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One of these two bifurcated orbits travels back and forth
between hill 3 and hill 2, while the other travels back and
forth between hill 1 and 2 [Fig. 22(c)]. Due to the
reflection symmetry in the potential, these two orbits are
mirror images of each other. In what follows we collec-
tively denote these two orbits as m.3. Figures 22 summa-
rize the evolution of the orbit m.

3 for V2 &Ep V2 Ep,
and V2)E . For V2)E we can again construct a full
shift of three symbols to characterize the dynamics.
Specifically, for a bounded orbit, we assign a letter i to
the leg of its trajectory which lies in the vicinity of the
periodic orbit m;, and a corresponding bi-infinite symbol
sequence, 8'=. . .s zs, sps i sp ~ ~ . , where sj = 1, 2, or 3
for j=. . . ,

—2, —1,0, 1,2, . . . . (Note here that s =3
corresponds either to an orbit leg that goes from hill 1 to
hill 2 and back to hill 1 or from hill 3 to hill 2 and back
to hill 3). Again the following one-time stipulation makes
the correspondence between 8'and an orbit unique: For
any symbol s, of 8' we stipulate either the direction of
the motion along the leg, if s =1 or 2, or, if s, =3, we
stipulate to which of the two components of n 3 (the one
in x )0 or the one in x (0) the leg corresponds. Finally,
we note that the hatched areas of A& and Az in Fig. 16
remain finite throughout the bifurcation. Therefore, for
those bounded orbits described completely by m, and mz,

nothing changes at the bifurcation. This implies that we
have a full shift on two symbols even at V2 =E~.

From the above discussion we conclude that, when the
massive bifurcation occurs, an infinite number of bound-
ed orbits are destroyed and a new infinite class of bound-
ed orbits is created. The dynamics before and after the
bifurcation can be characterized by a full shift on three
symbols. In a forthcoming paper we plan to present

(b)

(c)

FIG. 22. The periodic orbit m.
3 for three cases: (a) V2 &E~,

(b) V =E, aild(c) V )E.

more detailed analysis on this bifurcation and discuss its
consequences. '

IV. CONCLUSIONS

The three main general contributions of this paper are
A. the demonstration of how chaotic scattering can

occur and evolve as a result of an initial saddle-center bi-
furcation; B. the observation that clear, sudden qualita-
tive changes in the scattering function (8 versus xo)
occur as a result of the onset of heteroclinic intersections
on the surface of section; and C. the observation of a new

type of bifurcation called a massive bifurcation which
leads to a radical change in the dynamics of the hyperbol-
ic chaotic set but preserves its symbolic dynamics (Sec.
III C).

We have established the above results via a detailed
study of a specific potential. Our study has also shown
the following.

1. The regular scattering process is characterized by
features observed in both the scattering functions and
particle decay plots. These features can be fully under-
stood in terms of the finite number of unstable periodic
orbits (e.g. , the single orbit n

&
for the case in Sec. II) and

their stable and unstable manifolds.
2. A transition from regular to chaotic scattering can

occur via a saddle-center bifurcation which results in the
creation of a pair of periodic orbits. One of them is a reg-
ular saddle and the other is a stable center surrounded by
an island which contains periodic, quasiperiodic, and
chaotic orbits.

3. The center undergoes period-doubling bifurcation
and becomes an unstable twisted saddle. In appears that
this period-doubling process carries on ad inJYniturn con-
verting the center into a chaotic set containing an infinite
number of periodic orbits.

4. After the saddle-center bifurcation, chaotic scatter-
ing behavior in the scattering function is observed. The
corresponding chaotic set is generated by the homoclinic
intersection of the stable and unstable manifolds of the
saddle created at the saddle-center bifurcation (orbit ~3).
Note that in this case the chaos can only be manifested
by particles exiting upward when incident from above.

5 ~ At V2 =
Vp ] the first heteroclinic tangency occurs.

Above V2= V&, the scattering process suddenly under-

goes a qualitative change by exhibiting chaotic behavior
for particles both exiting upward and downward. This
change is induced by the heteroclinic intersections be-
tween the two sets of stable and unstable manifolds of m,
and K3.

6. Fully developed chaos involving bounded orbits
traveling between ~, , ~2, and m3 in arbitrary order is
reached when tke configuration shown in Fig. 16 is real-
ized. Based on this configuration we can construct a
horseshoe-type map. The resulting chaotic set is com-
pletely hyperbolic and is characterized by a full shift of
three symbols.

7. Increasing V2 further from the value corresponding
to Fig. 16, the system can evolve following either one of
the two distinct routes depending on the configuration of
the potential. Along the first route, the two sets of stable
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Chaos

closer and closer to the stable manifold, the correspond-
ing trajectory experiences tangencies with the boundaries,
(x —x;) +(y —y;) =a, , of either of the two hills
(i =1,3) alternatively. At such a tangency the time T
jumps discontinuously. These jumps are clearly seen in
the exit time plots Figs. 4(b) and 4(d). Let L(I„)denote
the length of the interval I„of initial conditions corre-
sponding to orbits which bounce n times between the two
hills, and let L(I„+&) denote the length of the interval

I„+, of initial conditions corresponding to orbits which
bounce n+1 times between the two hills. For n )&1
these lengths scale as

Chaotic
& Not

Hyperbolic

Vsc-- Saddle-Center Bifurcation

Not Chaotic

&
mI is only
bounded
orbit

FIG. 23. Summary of the major phenomenological changes
in the dynamics as V& is increased from zero for the case where
the hill radii are relatively small compared to the distance be-
tween the hills.

and unstable manifolds of ~, and m.
3 detach from each

other and the scattering process experiences another
qualitative change, in which, if we send in particles from
above, no chaotic scattering can be observed; while if we
send in particles from below, such particles can exhibit
chaotic behavior. Along the second route, the system un-

dergoes a massive bifurcation in which an infinite number
of bounded orbits are destroyed and replaced by a new
infinite class of bounded orbits, and the symbolic dynam-
ics remains the same.

Figure 23 pictorially summarizes the major phenome-
nological changes in the dynamics as V2 is increased
from zero for the case where the hill radii are relatively
small compared to the distance between the hills (see Sec.
m c).
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APPENDIX A: DISCUSSION OF EQ. (4)

To understand the exponent p=ln(A. )/T in terms of
the properties of m „we need to analyze our second nu-

merical experiment discussed in Sec. II on the particle de-

cay process. As we have mentioned before, the closer an
initial condition is to the stable manifold, the longer it
takes to exit the potential region. Here "longer" also
means that the particle bounces more times between the
two hills. In the process of moving an initial condition

L (I„+,)/L (I„)-1/A, (Al)

where A, , is the eigenvalue at m, . Since the initial condi-
tions are spaced uniformly, the number of particles in the
subinterval I„scales with A, , as 1/A, ", .

Equation (Al) can be understood in the following way.
Consider the point q of the upward branch of the unsta-
ble manifold shown in Fig. 6 and its consecutive images
under the inversed Poincare map P ' [change the parti-
cle velocity from v to —v, then the surface of section
points of the resulting trajectory are P '(q ), P (q), .. . ,
etc]. The point q in Fig. 6 has been so chosen that the
forward trajectory from q experiences a tangency with ei-
ther of the two hills depending on the sign of v and then
leaves the potential region. The forward trajectories go-
ing through points in the interval from P '(q) to q on
the unstable manifold bounce once from either hill 1 or
hill 3 and then leave the potential region without ever re-
turning to it. The forward trajectories going through
points in the interval from P (q) to P '(q) experience
two bounces before heading off to infinity. In general, the
forward trajectories going through the interval from
P "(q) to P "+'(q) bounce n times between the two
hills. If we use D„ to denote the length of the interval
from P "(q) to P "+'(q) and D„+, to denote the length
of the interval from P '"+"(q) to P "(q), then they
scale as

D„+)/D„—1/&) . (A2)

The above argument and Eq. (A2) also apply to the
downward branch of the unstable manifold. Our third
experiment discussed in Sec. II shows that a segment on
the initial condition line y =6 containing the intersection
of the stable manifold with that line crosses the surface of
section (cf. Fig. 7). Forward iterations of the image of
the line segment under P move it along the stable mani-
fold toward m

&
and closer and closer to the unstable man-

ifold. For large enough iterations, the motion of the im-
age of the initial segment is approximately aligned along
the unstable manifold of vr, . Thus Eq. (Al) follows from
Eq. (A2).

Note that for n )) 1 in Eq. (Al), the following relation
holds: the length of an orbit bouncing n +1 times is ap-
proximately equal to the length of an orbit bouncing n

times plus one-half the period of ~, . Let T denote the
period of the periodic orbit m, . Suppose now that at time
T all particles with initial conditions in I, where i ~ n —1

have already left the potential, then at time T+ T /2 all
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and

T=T /2. (A4)

If we take the logarithm of the number of particles N(T)
still left in the region at time T and plot it against T, we

will get vertically equally spaced steps, and the width and
height of these steps are T =T /2 and ink, =1nk, , as
shown in Fig. 5(b).

APPENDIX B: SYMBOLIC DYNAMICS
OF TWO SYMBOLS AND THEIR ROLE

IN THE SYSTEM EVOLVTION

In this appendix we extend further our discussion on
the configuration shown in Fig. 16. For the purpose of
the following discussion it is useful to consider a subset of
the orbits previously defined on the three symbols A&,

A z, and A 3. Specifically, we note that to any sequence of
the two symbols A

&
and A 3 there is a corresponding or-

bit for Fig. 16 which visits the regions A, and A 3 in the

appropriate order.
In Fig. 24 we draw a more detailed picture of the

configuration shown in Fig. 16, emphasizing the struc-
tures of the stable and unstable manifolds near the two

saddles m, and m3. In Figs. 16 and 24, the vertices of the

diamond-shaped region A& are C,', ~„8', , and W,+,
and the vertices of A 3 are C3, ~3, 8'3, and 8'3 . Consid-

er the hatched diamond-shaped area in Fig. 24 denoted

by A, C A, . As can be seen in the figure, this area is

defined by the four points C &, n &, P( W& ), and P '( W &+ )

and the stable and unstable manifolds of m& and m3 coIl-

those particles in I„will also have left the potential.
Thus we can identify A, and T defined in Fig. 5(b) with

k, and T„/2. Hence we have

(A3)

necting these points, where P( W, ) is the forward itera-
tion of the heteroclinic point 8', under the Poincare
map P, and P '(W,+ ) is the backward iteration of the
heteroclinic point 8 &+ under P. Let us also consider the
hatched diamond-shaped area A3 C A3. This area is
defined by the four points C3, m&, P(W3 ), and
P '(W3+ ) and the stable and unstable manifolds con-
necting these points, where P( W3 ) is the forward itera-
tion of the heteroclinic point 8'3 under the Poincare
map P, and P '(W3+ ) is the backward iteration of the
heteroclinic point 8'3+, under P. It is not hard to argue
that a horseshoe-type dynamics is applicable to these two
hatched areas if we consider the third iteration of the
Poincare map P instead of P. Then for any bi-infinite se-
quence made of the two symbols A

&
and A 3, there will be

an orbit traveling between the two areas in the same or-
der under the map P . In Fig. 16 an orbit starting from
the surface of section only needs one bounce from either
hill 1 or hill 3 to hop from one of the hatches areas, A,
or A3, to the other; while an orbit with initial condition
in one of the smaller hatched areas, A, and A 3 shown in
Fig. 24, needs to bounce three times between hills 1 and 3
to go from one to the hatched areas, A

&
or A 3, to the

other. This interpretation agrees with our intuition that
a particle with smaller initial y velocity U takes longer
time to reach the same height vertically.

Generally, we can imagine even smaller diamond-
shaped areas A, "+' and A 3"+'

~ A &" +' is defined by the
four points Cz" ', m„P"(W& ), and P "(W&+ ) and the
stable and unstable manifolds of m.

&
and m3 connecting

these points; A 3"+' is defined by the four points C3"+',
m3, P "( W3 ), and P "( W3+ ) and the stable and unstable
manifolds of m& and m3 connecting these points. For the
two areas, A, "+' and A 3"+', an associated symbolic dy-
namics is also applicable if we consider the Poincare map
P "+', where n is any positive integer. Note that for
n )& 1 the area of A, "+ ' and the area of A, " ' scale as

(Bl)

where A, , is the unstable eigenvalue of P at ~&, and the
area of A &" + ' and the area of A 3" ' scale as

(B2)

FIG. 24. More detailed structure of the stable and unstable

manifolds of m l and m3 for the case shown in Fig. 16.

where X3 is the unstable eigenvalue of P at m3.

Thus we find the following sequence of events leading
to the situation shown in Fig. 16. At Vz= Vz, (cf. Fig.
13), all the diamond-shaped areas A „A&, . . . ,

A, "+', . . . are formed close to the saddle ~&, but none of
the A3"+' are formed. When Vz slightly exceeds VI, &,

only the small, higher n diamond-shaped areas A 3"+' ly-

ing close to the saddle m3 have been formed. As Vz in-

creases, successively more, lower n areas A3"+' form.
Figure 25 shows the situation where the A 3, A 3, . . . dia-
monds have come into existence, while A3 and A3 have
not yet formed. Increasing Vz above the value corre-
sponding to Fig. 25, we see that the pair of cross-hatched
areas, one between W3 and P(W3 ) and the other be-

tween W3 and P '(W3+ ) move in toward each other
and then intersect each other. This intersection implies
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FIG. 25. The diamond-forming process in the vicinity of ~3 ~

the formation of A 3. If we increase V2 further, the other
pair of the cross-hatched areas will also come in toward
each other and make intersections. In this case, A3 has
formed, and we reach the configuration shown in Fig. 16.

We note that the process from Fig. 16 to the hetero-
clinic tangency ( V2 =

Vt, 2) shown in Fig. 20 following the
evolution route discussed in Case (1) of Sec. III C is simi-
lar to that described above. In particular, to utilize that
discussion consider the reversed evolution from Fig. 20 to
Fig. 16. As we decrease the value V2 from V&z to that
corresponding to Fig. 16, we observe a forming process of
increasing V2, except that the roles of the two saddles m. ,
and m3 are switched. Thus for V2) V+ we lose the larg-
est diamond-shaped area situated near m, and its associat-
ed symbolic dynamics of three symbols. Increasing Vz

further the smaller diamond-shaped areas and their cor-
responding symbolic dynamics of two symbols disappear
in ascending order.

APPENDIX C: ANOTHER PARAMETER VARIATION

Now we examine how the system evolution we have
observed in Sec. III for increasing Vz is altered if other

system parameters are changed. More specifically, we fix
the inner edges of hills 1 and 3 (i.e., the points x =x, —a,
and x=x, +a3) and let their radii ai=a2=R vary. We
then examine the sequence of events for fixed R as Vz is
increased, and we ask how this sequence is changed if we
change R. In the case R = ~, we obtain a system consist-
ing of one potential hill (hill 2) sandwiched between two
planar potentials. No chaos can occur in such a system
because the only orbit which interacts with hill 2 forever
is the one bouncing between the planes (along the x axis)
and passing directly through the center of the hill 2.
(Here we assumed Vz & E where E is the particle ener-

gy. For V2)E there are two periodic orbits, one in
x )0 and one in x &0. ) Since the limiting system de-
scribed above can be gradually reached from the one
shown in Fig. 1, we can ask how the chaos created in Sec.
III disappears. For fixed a, =a, =RWae, we find that
the saddle-center bifurcation always occurs as V2 is in-
creased. This implies that chaotic scattering can be ob-
served. However, the scenario of the system evolution we
have established in Sec. III undergoes alterations if we
examine the system behavior with increasing V2 for
different values of R. Imagine a particle lying close to the
saddle m„and assume it has a small but positive initial y
velocity. Then the larger is R, the more bounces are
needed for the particles to reach a given vertical height,
say, the place where the saddle m3 is located. The reason
is that the particle acquires only a small upward velocity
from each deflection from hills 1 or 3 because their sur-
faces are almost Hat. This implies that we can find a
value of R, say R „such that, for any fixed R )R, , we no
longer observe the horseshoe-type map corresponding to
P (i.e., Fig. 16) with increasing Vz. We can further find

another value of R, say R3 )R, , such that for any fixed

R )R3, the horseshoe-type map corresponding to P
vanishes from the sequence of events of the system evolu-
tion with increasing V2. In general, we can find R2„+, so
that, for any fixed R )R2„+&, the horseshoe-type map
corresponding to P "+' disappears from the pattern of
the system evolution with increasing V2. Eventually, the
limiting case of R = ac is reached, where no saddle-center
bifurcation (therefore no chaotic scattering) can occur.
We have numerically examined this scenario and verified
it up to R3. (In particular, for the numerical system
defined in Sec. III, a, =a3=R =12 is in the interval

[R, , R3]. )
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