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Building upon previous work, several new thermodynamic properties are found for classical elec-
tromagnetic random radiation in thermal equilibrium with classical electric dipole harmonic oscilla-
tors. Entropy is calculated as a function of temperature and as a function of the positions of the di-

pole oscillators. In the process, a new derivation is obtained for what is often called Wien s dis-

placement law. The original derivation of this law makes a number of implicit assumptions not
found in the present derivation, which prevents the original analysis from being sufficiently general
to address an important class of thermal radiation spectrum candidates: namely, those that are
nonzero at T=0. While leading up to the entropy calculation, a number of other thermodynamic
properties are deduced. For example, a natural development is presented for reformulating the
Stefan-Boltzmann law to correspond to experimental observations about changes in thermal radia-
tion energy. Also, the Rayleigh-Jeans spectrum is shown to conflict with basic concepts of thermo-

dynamic processes, and asymptotic limits are found for the spectrum of classical electromagnetic
thermal radiation. One asymptotic restriction arises from the demand of finite specific heat for
thermal radiation. This restriction is sufficient to ensure that the classical electrodynamic system of
dipole oscillators and thermal radiation must obey the third law of thermodynamics. The calcula-
tions described here include full nonperturbative evaluations of retarded van der Waals thermo-

dynarnic functions.

I. INTRODUCTION

Analysis is continued here from previous work on the
thermodynamic properties of a particular classical elec-
trodynamic system: namely, classical electromagnetic
random radiation in thermal equilibrium with classical
electric dipole simple harmonic oscillators. The initial
work was carried out in Ref. 1. There an isothermal re-
versible process was investigated that consisted of quasi-
static displacements of X such dipole oscillators. The fol-
lowing result was found: in order for no heat to be radi-
ated out of a large volume enclosing these particles dur-
ing this isothermal reversible process, the spectrum of the
classical electromagnetic radiation in thermal equilibrium
with the oscillators must be proportional to co . Aside
from the proportionality constant, this spectrum is pre-
cisely the spectrum of classical electromagnetic zero-
point (ZP) radiation (see Refs. 2—6 for reviews and
research papers that serve as good introductions). Since
the Row of no heat during a reversible isothermal process
is, by definition, the condition for a system to be at the
temperature of absolute zero, the conclusion follows that
aside from the proportionality constant, classical elec-
tromagnetic ZP radiation possesses the unique thermal
radiation spectrum that can form an equilibrium state
with the oscillators at T=O.

In the present article, the thermodynamic analysis car-
ried out in Ref. 1 will be extended by considering more
general thermodynamic processes for the system of dipole
oscillators. Instead of only isothermal quasistatic dis-
placement operations on the set of oscillators, we will
now also consider thermodynamic processes involving
changes in temperature. The change in entropy between

these different states will be calculated in Sec. VII. Dur-
ing the analysis leading up to this calculation, a number
of new results will be obtained that involve the thermo-
dynamic properties of this electrodynamic system.

In particular, as a consequence of the demand imposed
in Secs. II and III that the second law of thermodynamics
must hold for this system of classical dipole oscillators
and classical thermal radiation, we will obtain a new
derivation in Sec. IV for what is often referred to as
Wien's displacement law. However, as will be noted in
Sec. IV, a number of assumptions and steps were made in
the original derivation that are not in general valid.
These additional assumptions prevent the original deriva-
tion froID being sufficiently general to address the possible
existence of nonzero radiation being present at T=O (i.e.,
zero-point radiation). Since this property for classical
electromagnetic thermal radiation may be a fundamental-
ly important concept, and even a necessary one for the
appropriate thermodynamic analysis of certain classical
electrodynamic systems, ' ' then overcoming the limi-
tations imposed in the original derivation is clearly desir-
able. These limitations do not appear in the present
work, thereby making a contribution to the study of the
thermodynamics of classical electrodynamic systems.

From the "displacement law" found in Sec. IV, a "gen-
eralized Stefan-Boltzmann law" is obtained in Sec. V that
allows for ZP radiation and describes what is measured
experimentally: namely differences in thermal radiation
energy. In order for these differences in thermal energy
to be finite for a change in temperature, so that the
specific heat is not infinite, an asymptotic restriction must
be imposed on the thermal radiation spectrum. In Sec.
VI, Rayleigh-Jeans (RJ) radiation is shown to fail this re-
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striction, thereby resulting in singular behavior for typi-
cal thermodynamic processes. Section VI describes some
of the problems associated with RJ radiation and shows
that classical electromagnetic zero-point plus Planckian
(ZPP) radiation does not experience such problems.

In Sec. VII, the change in entropy is calculated for ar-
bitrary changes in temperature and changes in dipole os-
cillator positions. Some of the required calculations in
Sec. VII are placed in the Appendix. Here additional
asymptotic restrictions on the thermal spectrum are de-

duced, and two earlier assumptions in our work are prov-
en to be true: namely, that Eq. (66) in Ref. 1 must hold
for thermal radiation obeying certain physically imposed
restrictions, and likewise for the statement following Eq.
(54) in Sec. VII of the present article.

Having worked with the first and second laws of ther-
modynamics in obtaining the results up through the en-

tropy calculation in Sec. VII, the system of dipole oscilla-
tors and thermal radiation is then analyzed in Sec. VIII
from the standpoint of the third law of thermodynamics.
The surprising result is shown there that the demand of a
finite specific heat for classical electromagnetic thermal
radiation is sufhcient to prove that the Nernst-Simon
form of the third law of thermodynamics holds for this
system. Section VIII D makes the following observation
concerning the third law: at temperatures near T=O, the
third law acts as an effective barrier against energy reduc-
tion via heat extraction, which gives a new perspective on
the physical significance of the ZP energy for classical
systems.

Finally, Sec. IX makes some points about irreversible
versus reversible processes for our system of dipole oscil-
lators. Section X then contains some concluding re-
marks.

II. SETTING UP THE ANALYSIS
FOR FINDING dS„)

Undoubtedly, the use of traditional thermodynamic
ideas and principles may be first seem irreconcilable with
the concept of a classical system that possesses fluctuat-
ing motion at T=O (i.e., ZP energy). Nevertheless, as
will be seen here, these principles do apply quite natural-
ly. After all, at T=O the jhow of heat (i.e., the transfer of
average energy) from one point to another in space
should vanish during reversible processes; however, fluc-
tuating energy can still be present at any point in space.
To emphasize the compatibility of ZP energy with classi-
cal thermodynamics, much of the present section will
closely follow the general discussion in traditional ther-
modynamic textbooks" as we set up the base for calculat-
ing the change in entropy of a particular thermodynamic
system.

The specific classical thermodynamic system we will
analyze consists of N classical, electric dipole harmonic
oscillators in thermal equilibrium with classical elec-
tromagnetic random radiation. All energies of our sys-
tem, including electromagnetic and mechanical energies,
will be calculated within some large volume V enclosing
the dipole oscillators. Heat, in the form of electromag-
netic radiated energy, can fiow either into or out of V

A, =P(T)f (cr ), (2)

so that A, can be written as a product of two functions:
one that depends entirely on the temperature T, and one
that depends entirely on o. ' From Eqs. (1) and (2) fol-
lows the first equality below, where the quantity

f "f(cr)do canceled out between the numerator and
I

denominator; the arrow below then indicates how the ra-
tio of two Kelvin temperatures is defined:

Qz(between o, and cr» at T, ) P(T, )

Qz(between o., and a» at Tb) $(Tb)

T.
on a Kelvin scale . (3)

Tb

due to changes in the total energy within V and due to
any work done by external forces in displacing the dipole
oscillators.

In Ref. 1, the effect of the rest of the universe interact-
ing with the system of dipole particles was treated via the
incident electromagnetic field expressions in Eqs. (22) and

(23) in Ref. 1. The thermal radiation was assumed to be
held at a fixed temperature T, regardless of how the di-

pole particles were quasistatically displaced. Hence, in

Ref. 1, the radiation was treated as though it acted like a
heat reservoir at a fixed temperature T.

To accomplish the task of finding how the entropy as-
sociated with this thermodynamic system must change
with temperature, let us follow the prescription usually

given in thermodynamics for calculating changes in en-

tropy: namely, the temperature of a thermodynamic sys-

tem is changed quasistatically by imagining the system to
be placed in contact with an infinite series of heat reser-
voirs ranging in temperature from T, to T». ' Thus, to
quasistatically change the temperature of the system of
dipole particles, we should treat the temperature of our
effective heat reservoir, namely, the thermal radiation, as
though it changes at an infinitesimally slow rate. Indeed,
let us assume that this rate is sufficiently slow that at any
given moment the radiation field within the volume V
may be approximated by Eqs. (22) and (23) in Ref. 1, with
spectra like Eqs. (27) and (28) in Ref. 1 that are specified
by a single temperature. Likewise, let the change occur
slowly enough that at any instant of time, a good approx-
imation to the internal motion of the dipole particles is
given by the steady-state motion of Eqs. (42) and (44) in
Ref. 1.

Next, let us assume that the first and second laws of
thermodynamics are, indeed, obeyed by our particular
classical electrodynamic system. From the second law of
thermodynamics, an integrating factor must exist for the
heat fiow dQ into the system during any reversible pro-
cess. ' Thus

dQz

A,
=de

where the subscript R means a reversible process, I/I, is
the integrating factor of dQ„, and cr labels the reversible
adiabatic surfaces for the system.

Also, the second law of thermodynamics yields the re-
sult
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Due to the Kelvin scale definition, at T=O no heat
transfer can occur during any reversible isothermal pro-
cess performed on the system (i.e., Qz =0 at T=O). This
condition was used in Ref. 1 to show that aside from a
proportionality constant, classical electromagnetic ZP ra-
diation is the only radiation spectrum that can be in
thermal equilibrium with the N electric dipole oscillators
at T=O.

From Eq. (3), we must have T =kg(T), where k is an
arbitrary constant. Hence, from above,

1 aU, „,
Z

3+XX-
T ()Z - (, . )

—
YAi dZ„,

where ~z is meant to indicate that all coordinates Z„; are
held fixed for all A and i, while ~(T z )

is meant to indi-
) Ai

cate that T and all coordinates Z&J, except Z„;, are held
fixed.

Qa 1

T k
=—f (o )do . (4) III. THE CONDITION THAT dS

IS AN EXACT DIFFERENTIAL

The right-hand side (rhs) is an exact differential. The
change in entropy dS„& of the system is then defined via

From Eq. (4), which follows from the second law of
thermodynamics, and from Eq. (5), dS„) in Eq. (8) must
be an exact differential. Hence

dga
dS„i—= (5) as„, 1 aU, „,

BT z T BT z
For a finite change in state,

/' fdg
Sealf Scali J T

R i

where the integration is over any reversible path connect-
ing the two states.

Using the results from Ref. 1, we can immediately
evaluate Eq. (6) for an isothermal process, since the 1/T
factor can be pulled out of the integral, and then Eq. (65)
or (67) from Ref. 1 can be used. Here, however, we will
evaluate Eq. (6) under the more general condition where
the temperature can change.

We can view the system of N fluctuating electric dipole
particles as possessing 1+6N thermodynamic coordi-
nates (the coordinates are not all independent of each
other, as will be discussed shortly): (i) the temperature T;
(ii) the 3N displacement coordinates Z„; that define the
locations of the N dipoles, where A =1, . . . , N and
i=1,2,3; and (iii) the 3N generalized forces Y„;, where
Y„; represents the ith component of the expectation
value of the external force F,„, „required to hold the
Ath dipole particle stationary.

From the first law of thermodynamics,

aS„, ~ aU, „,
BZg (Tz)~ ) T BZg (Tz)~ )

I

—Y .
Ai (10)

a'U, „,
T BTBZg(

BY„;
BT z

T BZg( (T,z ~, )

or

aYA- 1 aU 10= —— + YA;.T BT 7 BZ; (rz . ) 7
(12)

From Eqs. (61)—(63) in Ref. 1,

U0
Y

BZg( (T, Z ~ )

(13)

To guarantee that dS„) in Eq. (8) is an exact differential,
we must have'

a'S„, 1 a'U, „,
BZ„,BT T BZ. „,BT

N 3

dg=dU. ( gg Y~ dZ—~
A =1 i=1

[h;„(co,T)]
U0=m d~ Imlndet M co, Z

0 N
(14)

where U;„, represents the total mechanical and elec-
tromagnetic energy within the volume V.

However, Y„=(F,„,„), and from Eqs. (61)—(63) in
Ref. 1, (F,„,„)=Vz Uo can be expressed in terms of T
and Z„., A '=1, . . . , N. Thus we really only have 1+3'
independent thermodynamic coordinates. Hence Eqs.
(61)—(63) in Ref. 1 may be viewed as constituting 3N
equations of state that relate Y„ to Z„and T, for 3 and
A'=1, . . . , N.

Consequently, we can view T and Z„, A =1, . . . , N,
as being the 1+3N independent thermodynamic coordi-
nates that define the state of our N dipole particle system.
Hence

Here the arguments for M and h;„ in Eq. (14) have been
changed from Eq. (62) in Ref. 1, to explicitly indicate the
part of U0 that will depend upon the positions of the di-
pole oscillators, and the part that will depend upon tem-
perature. From Eq. (46) in Ref. 1, M„, .~- is a function of
frequency and of (Z„—Z~), so the notation M(co, Z) in
Eq. (14) is meant to indicate that M depends on co and
Z„, for A =1,2, . . . , N. Also, in Ref. 1 we did not ex-
plicitly indicate the temperature dependence of (h;„)
since the temperature was held fixed. However, since the
radiation's spectral electromagnetic energy density p;„
will depend upon the temperature characterizing the
thermal radiation, then (h;„) must also. More
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specifically, from Eqs. (22) and (23) in Ref. 1, one can
show that

Bp;„(co,T)0=-
/A BT

p;„(co,T) p;„(co, T)
+ '"

Bco

where

((E;„)+(B;„) ) = f deep;„(cu, T), (15) Bp;„(co,T) Bp;„(a),T)

BT, i3
+3p;„(co,T)

(21)
p,„(co,T)= [h;„(co,T)]

C
(16)

As for U;„, in Eq. (12), from Eqs. (11) and (58) in Ref.
1, plus Eqs. (15) and (16) above, .any change in U;„, can be
calculated by finding the change in the sum of the follow-
ing terms:

KE PE UEM
~
in UEM, in

Moreover, we can follow the analysis of Sec. VI C in Ref.
1, to argue that Eq. (21) must be satisfied.

Thus we arrive at the conclusion that for the thermo-
dynamic system we are investigating to obey the second
law of thermodynamics, the thermal radiation spectrum
must satisfy Eq. (21). We will make use of the above re-
sult in the following section.

~f dro[h;„(~, T)] ' Im ln det[M(co, Z)]

+3N Im ln C(co)

+Vf dpi, [h;„(co,T)]'
0

(17)

(where UK+ is the kinetic energy, UPE is the potential en-

ergy, and UEMI;„+ UEM;„ is the remaining electromag-
netic energy in the volume V).

Using Eq. (66) in Ref. 1, ' we can integrate, by parts,
the term above involving det(M ), and replace it by

a[[h,„(~,T)]']
+m f dc' Imlndet[M(co, Z)] .

0 Bco

Consequently, from Eqs. (13)—(17) we obtain the fol-
lowing partial derivatives that will be needed in Eq. (12):

c ~[P.(~ »]
dT z 0 ~ r}T BZg;

Uint

BZg (7;z, , )

X Im ln det[M(co, Z)],

, a p(~T) a
0 Bco ~, BZ~;

(18)

X Im ln det[M(co, Z)] . (19)

Substituting into Eq. (12) yields

0= f de [Im In det[M(co, Z)]
0 Ai

r

T ap,.(~ T)

Qj BT
p,„(co,T}

CO

(20}

The above equation must be satisfied for any number X
of the electric dipole oscillators, and for any positions
Z„, A =1, . . . , N. Only M in Eq. (20) depends on these
quantities. The following condition is then sufficient to
guarantee that Eq. (20) is satisfied under all these condi-
tions:

IV. SAME RESULT AS USUALLY OBTAINED
FROM WIEN'S DISPLACEMENT LAW
AND THE STKFAN-BOLTZMANN LAW

A. Overview

From Eq. (21}, we can deduce an important property
for p;„(co,T): namely, Eq. (27}below, which describes the
way in which co and T must combine together in the func-
tional form of p;„(co, T) for the second law of thermo-
dynamics to hold. Indeed Eq. (27} is usually described in
the physics literature' as resulting from a combination of
Wien's displacement law and the Stefan-Boltzmann law,
although in many cases it is simply referred to as being
Wien's displacement law. ' However, the usual deriva-
tions' of these two laws make some assumptions that do
not hold in the case of ZP radiation.

In particular, the usual derivations of these laws treat
the internal electromagnetic thermal energy of a cavity at
temperature T as being an extensive quantity that is pro-
portional to the volume of the cavity. This assumption is
not generally valid, as we know from the study of Casimir
forces. The electromagnetic energy within a cavity due
to the presence of electromagnetic ZP radiation is
infinite. Likewise, the same energy outside the cavity is
infinite. However, the change in total electromagnetic
energy due to a charge in volume of a cavity is finite.
Calculating this finite change in energy cannot be done by
treating the total electromagnetic energy within the cavi-
ty as being equal to the volume of the cavity times an
electromagnetic energy density that is independent of the
shape and size of the cavity. The traditional analysis, as
presented in Ref. 17, makes this assumption.

Several other quick ways exist for convincing oneself
that the usual derivation of Eq. (27) below is not
sufficiently general to account for the possible existence
of classical electromagnetic ZP radiation. For example,
the usual expression for the radiation pressure on the wall
of a cavity is p = ,

' f0"p;„(co—,T)de, which, as we will see,
is infinite if nonzero radiation is present at T=O or, more
precisely, if limr tp;„(co, T)%0. This infinity is not ad-
dressed in the usual derivation of the Stefan-Boltzmann
law, thereby again illustrating that the implicit assump-
tion is made that limz. tp;„(co, T)=0. Indeed, two lines
after Eq. (96) in Ref. 17, and in the subsequent para-
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B. Functional dependence of spectrum on T and w

In Eq. (21), let us make the substitution of variables
that T =cole. Clearly,

N
N,

ae
ap;„(co, T) aT

aT .ae „ (22}

Hence, from Eq. (22} we obtain for the first term in Eq.
(21)

ap;„(cu, T)

aT
Q„2

N
In

aQ"
(23)

graph, the explicit assumption is made that the thermal
spectrum vanishes at large frequencies, which is not the
case if ZP radiation is present. '

Since we saw in Ref. 1 that the possibility should not
be excluded a priori that the correct classical thermal
equilibrium radiation spectrum may be nonzero at T=O,
then clearly a more general analysis of these two thermo-
dynamic laws is highly desirable. Such an analysis can
indeed be carried out, but it involves accounting for the
thermodynamics of Casimir-like forces acting between
the walls of the cavity in Wien's analysis. Calculations of
Casimir forces typically deal with macroscopic boundary
conditions (i.e., the walls of the cavity are treated as mac-
roscopic quantities rather than as being composed of mi-
croscopic atomic systems). In contrast, the present arti-
cle derives the result of Eq. (27) below by analyzing the
microscopic physical behavior of electric dipole oscilla-
tars.

0= in

ae

0 ~p
CO +-

BCO p N ()O

~Pin
+3Pin .

o

+ 3Pin

(26)

From Eq. (26), we deduce that for a fixed ratio of
8=colT, then p;„(co, T) will depend upon co by being pro-
portional to co . Hence

p;„(co,T)=a) f,„ (27)

C. Specific cases of RJ and ZPP radiation

This result is the same one as given at the bottom of p.
83 in Ref. 17. There the above result was deduced via the
traditional arguments of Wien's displacement law and en-

tropy as obtained from the Stefan-Boltzmann's law [see
Eqs. (99) and (100) in Ref. 17)]. However, our analysis
accounts for the case when nonzero radiation is present
at T=O. We derived Eq. (27) by analyzing quasistatic
displacements of the dipole oscillators in thermal radia-
tion and by demanding that the second law of thermo-
dynamics must hold.

In comparison, Ref. 17 deduced Eq. (27) by analyzing
quasistatic displacements of the wall of a cylinder, where
the cylinder contained thermal radiation and by also
demanding that the second law of thermodynamics must
hold. The implicit assumption was made that
lim„„p;„(co,T) =0. From Eq. (27), this assumption also
implies the assumption limr 0 p;„(co,T}=0.

As for the second term in Eq. (21), we can obtain the
desired relationship via considering

At this point it is interesting to see if RJ and ZPP radi-
ation fit the required property for thermal radiation that
we just obtained. From Eq. (16) here and Eqs. (27) and
(28) in Ref. 1,

N
~Pin N&

O

BN

ap;„(co, T)

aco

kBT
pRq(co, T)= kB—

CO

c n
(28)

CO ACO AN
pzpp(co, T)= coth2'

A cO
coth

2kB T
(29)

(24)

ap;„(co, T)

BCO T

CO

BPi CO,
CO

~Pin N~
O0+-

CO BO

Solving for the first term on the rhs and substituting Eq.
(23) in the second term on the rhs yields

co kB 1fRJ— 0,
T c ~ co/T T~O

(30)

Thus the spectrums of both RJ and ZPP radiation do
satisfy our thermodynamically imposed restriction of Eq.
(27). Below f„,and fzpp are listed, as well as their limit-

ing values, when T~O, since we will make use of these
properties later:

Using Eqs. (23) and (25) in Eq. (21), then results in

(25) co A A co 1fzpp coth
T c 2a 2kB T T-oc

(31)
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V. A GENERALIZATION
OF THE STEFAN-BOLTZMANN LAW

A. Usual result

=Vf d co co f;„

where

cr'= f "d88'f,„(8),

(32)

(33)

and the substitution was made that 8=co/T. This result
represents the usual form of the Stefan-Boltzmann law.

The Stefan-Boltzmann law deals with the temperature
dependence of the electromagnetic energy of thermal ra-
diation within a volume of space V. In this section, we
will easily obtain the way that this law is usually ex-
pressed by using our result of Eq. (27). In Sec. VB we
will then show how the usual expression of this law needs
to be generalized to allow for the possibility of nonzero
radiation being present at T =0.

Within a volume V of free space, the electromagnetic
energy due to incident thermal radiation is given by the
integral of Eq. (15) over V:

EM in Vf d& pi&(&& T)

large 8, it does not go to zero fast enough to prevent the
integral in Eq. (33) from being divergent. Specifically, if
we insert fRJ into Eq. (33), then the integrand will vary
as 8 . Consequently, we need to reexamine the analysis
leading to the Stefan-Boltzmann law.

C. Generalized result

Thermal measurements do not deal directly with

UEM;„. Instead they always involve changes in UEM;„.
Consequently, what we really need to determine is how
the internal electromagnetic energy within a volume V of
space will change if we make a change in the temperature
of the thermal radiation. Indeed, our expectation should
be that we may not be able to extract all of the internal
electromagnetic energy out of space; instead, when we
have lowered the temperature of a system to T=O, then
no more heat energy can be extracted, even though the
system may still contain a zero-point energy. Reference 1

gave a particular detailed example where precisely this
behavior took place; Sec. VIIID of the present article
discusses this point in more generality.

Consequently, the thermodynamic quantity of impor-
tance upon changing the temperature of the radiation
from T to T+hT is the change in internal energy arising
from the energy density spectrum changing from
p;„(co, T) to p;„(co,T+AT):

B. Restriction on f;„(~/T) from earlier analysis

As shown in Ref. 1, the electromagnetic radiation spec-
trum at T=O must be given by

b, UEM;„—=Vf dcu[p, „(co,T+hT) —p;„(co, T)] . (37)
0

If we slowly change the temperature of the radiation in
small increments bT, from O~ET~25T~ . ~T,
and we keep adding the above b, UEM;„energies, then we
will obtain

p;„(co,T=0)=co
c

(34)
UEM, „(T) UEM;„( T =0—}

where K is a constant. The analysis of Ref. 1 suggests
that a&0; indeed, experimental agreement with Casimir
forces is obtained if z=fi/2' .

Combining the two thermodynamic restrictions of Eqs.
(34) and (27) yields

(35)

=Vf dco[p;„(~, T) p;„(m, T =0)]—

Vf dcoco f
0

1 il

=a'T4V,

where

(38)

O f (8)=O
c

(36)

for large S. Hence Eq. (33) is divergent if ~%0. Indeed,
Eq. (33) can even be divergent if a =0, as in the case of RJ
radiation. Here, even though fRJ(8) goes to zero for

In the case of RJ and ZPP radiation, we can see from
Eqs. (30) and (31) that they obey Eq. (35), with aRJ=O
and Kzpp A/2m .

If we examine the integral in Eq. (33) in light of our re-
sult of Eq. (35},we see that the integrand will behave as

d88 8—
c

(39)

Equation (38) gives the energy that must be added to a
volume V in free space to change the temperature of
thermal radiation from 0 to T. The above result is a gen-
eralized Stefan-Boltzmann law for the dependence of the
thermal radiation's internal energy upon temperature and
volume, for a region in space without matter nearby.

Here we should note that another way to express the
change in energy from T,- to Tf is
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Bp;„(co,T)
UEM;„(TI) —UEM;„(T, )=Vf dT f den

df;„(co/T) rI „Bf,„=Vf dT f deuce'
'" =Vf dT T' —f d884

I I

=o'(T~ T;—)V, (40)

where we obtain another convenient form for cr',

ln0'= ——' d88
4

p ()8

In the case of ZPP radiation,

(41)

ozpp=, , f 188' coth 8 —1

c 2m 8

A'8
exp

B

2k 4
7T

c %15

(42)

which agrees with physical observation. However, in

the case of RJ radiation, 1~=0 in Eq. (39). Consequently,
we still obtain a divergent result for Eqs. (38) and (39).
This divergent result for RJ radiation will serve as the fo-
cal point for our discussion in the following section.

VI. UNACCEPTABILITY OF RJ RADIATION
FOR REALIZING USUAL TYPES

OF THERMODYNAMIC PROCESSES

A. General discussion
on thermal radiation spectrum candidates

Up until now, we have seen a number of thermo-
dynamic restrictions that are satisfied by both ZPP and
RJ radiation. Specifically, ZPP and RJ radiation fulfill
the condition that at T=O, no heat flow can take place
during the reversible isothermal process examined in Ref.
1. Also, both spectra satisfy the condition of Eq. (21) in
Sec. III, which is required for dS„~ to be an exact
diff'erential. Equation (21) enabled us to derive the dis-
placement law found here of Eq. (27), which ZPP and RJ
radiation follow via Eqs. (28) and (29).

However, ZPP radiation yields several other thermo-
dynamic related physical properties that we observe in
nature, but that are not obtained with RJ radiation. Here
we mention three such examples. First, as shown in Sec.
VII of Ref. 1, the Nernst-Simon form of the third law of
thermodynamics is satisfied if the system of electric di-
poles is in equilibrium with ZPP radiation rather than
with RJ radiation. Second, as discussed in Ref. 1, ZPP
radiation yields a thermal equilibrium state with classical
electric dipole oscillators such that the oscillators exist in
a fluctuating state at T=O. This property agrees with the
zero-point fluctuating motion we observe in nature for
physical systems, as opposed to the nonfluctuating state
predicted with RJ radiation. Third, ZPP radiation agrees

with quantum theory predictions for the behavior of the
Casimir force between parallel conducting plates at all
temperatures, as well as with existing experimental mea-
surements of this force, whereas RJ radiation only yields
agreement with quantum theory predictions for very high
temperatures.

Thus the assumption of RJ radiation as classical elec-
tromagnetic thermal radiation yields a number of results
that conflict with what we observe in nature. However,
since classical physics is generally expected by most phy-
sicists to provide an inadequate description of quantum
phenomena, this disagreement with physical observation
undoubtedly comes as no surprise to most researchers.
After all, (i) the third law of thermodynamics, (ii) the ex-
istence of ffuctuating motion at T=O (ZP motion), and
(iii) the existence of Casimir and van der Waals forces are
all usually thought to arise from the discrete quantum-
mechanical behavior of physical systems. Thus, for ex-
ample, the failure of the third law for RJ radiation might
only be reffection of the fact that classical physics (i.e.,
Maxwell's equations plus the relativistic generalization of
Newton's second law) is not entirely applicable for physi-
cal systems. Indeed, the third law of thermodynamics is
generally considered as being fundamentally different in
origin than the first and second laws of thermodynamics:
these last two laws are expected to hold for systems obey-
ing either the laws of classical physics or of quantum
mechanics, while the third law is expected to hold only
for quantum-mechanical systems.

Of course, certainly here we must admit that it is in-
teresting and significant that classical electromagnetic
ZPP radiation yields some properties that were only ex-
pected to hold for quantum-mechanical systems. Un-
doubtedly, there has been some misunderstanding in the
past by physicists on what was fundamental about the
origin of these properties that are usually associated only
with quantum mechanics. For example, in Ref. 1 we saw
no fundamental thermodynamic reasons why nonzero
fluctuating motion cannot occur for classical systems at
T=0.

At this point, we should probably distinguish between
two sets of questions that interest us and that are related
to each other, but are, nevertheless, quite different from
one another. The first set of questions deals exclusively
with the deduction of the thermodynamic behavior of
physical systems, given the hypothetical assumption that
these systems obey purely classical laws of physics. In
particular, can classical electromagnetic radiation exist in
thermodynamic equilibrium with classical electrodynam-
ic systems, such as classical charged particles? If not,
why not? Are there restrictions on the types of classical
electrodynamic systems that can exist in thermal equilib-
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rium with classical electromagnetic radiation? If equilib-
riurn can exist, what is the statistical behavior of the radi-
ation and the particles? Finally, how do these properties
change due to typical reversible thermodynamic process-
es, or, more generally, what is the thermodynamic behav-
ior of the combined system of particles and radiation?

As for the second set of related, but distinctly different
questions, here we are interested in the following: if
thermal equilibrium can exist between classical elec-
trornagnetic radiation and classical electrodynamic sys-
tems, what is the relationship of the predicted thermal
equilibrium behavior with physical observations If the
predicted behavior does not agree with what we measure
experimentally, is the lack of agreement simply a result of
the fact that classical physics does not adequately de-
scribe the behavior of physical systems?

B. Fundamental problem for RJ radiation:
Infinite specific heat

Thus, for the properties mentioned up until now, we
cannot yet definitively state that RJ radiation must be
ruled out as constituting classical electromagnetic
thermal radiation. Indeed, given what we have investi-
gated so far, RJ radiation may still be the appropriate
classical thermal radiation spectrum, while the disagree-
ment with the third law of thermodynamics, etc. , may be
due to classical physics being an inadequate description
for physical systems.

Here we should also note that other work exists in the
physics literature that provides some support to the idea
that RJ radiation may constitute classical thermal radia-
tion. In particular, Refs. 32—36 show that RJ radiation
forms an equilibrium state with a classical charged parti-
cle oscillating in certain classes of nonlinear binding po-
tentials.

Nevertheless, the situation now changes. The general-
ized Stefan-Boltzmann law gives us a strong reason for
stating that RJ radiation fails, and fails quite badly, for
constituting the appropriate thermal radiation spectrum
in equilibrium with our system of electric dipole harmon-
ic oscillators, and that also possesses properties that en-
able basic, fundamental thermodynamic processes to
occur.

Specifically, we cannot make even an infinitesimal
change hT in temperature for RJ radiation in a finite
volume V of space without obtaining an infinite change
in the internal energy of the radiation. Thus, from Eq.
(2g),

~UEM, RJ Vf d-[PRJ(-~T+~T) PRJ(-&T)]
0

Vf dao[co(T+b, T) —a) T]
c m.

k~
Q„O2 4T3gT

4c m
(43)

[Equation (43) also follows from Eqs. (40) and (41).]
From the second line above, we can immediately see that
the divergence of UEM RJ does not drop out upon calcu-
lating a change in UEM RJ Dividing by AT on both sides

of Eq. (43) shows that the specific heat associated with RJ
radiation is infinite for any value of T. For the special
case of T=O, the second line of Eq. (43) shows that an
infinite specific heat is obtained here also.

The situation is much different for ZPP radiation. Of
course, as noted earlier, both UEM, zpp and UEM, RJ
divergent quantities, but changes in UFM zpp due to
changes in temperature result in finite changes in elec-
trornagnetic energy, unlike the case for RJ radiation. To
clearly see how this result arises, we obtain from Eq. (27)
that for an infinitesimal change in temperature, then

EUEM, in Vf deco f;„
0

COf-
in

(44)

The co factor in the integrand diverges as co~ ~, while
the other factor in the integrand behaves like

CO

T+aT
COf-in =0, (45)

1+2e 2o]
c 2' (46)

Hence fzpp decreases exponentially toward its limiting
value of A/c 2n', as co-oo and Tis held fixed.

We then arrive at the conclusion that to raise the tern-
perature of RJ radiation by just an infinitesimal amount
in a region in free space of volume V requires that an
infinite amount of energy be suppled to the region. Our
usual notions of thermodynamic processes involve finite
amounts of work being done, which would then not effect
the temperature of RJ radiation at all. Instead, only the
physically unacceptable concept of an infinite amount of
work being done will result in a change in temperature.

Also, situations involving, for example, two cavities of
radiation at infinitesimally different temperatures,
separated by an insulating wall, will result in the follow-
ing rather bizarre situation: when a pinhole is made in
the wall to allow the two cavities to come to one equilib-
rium temperature, a flow of infinite energy will occur be-
tween the two cavities.

Clearly, RJ radiation is in complete opposition to our
usual ideas on such therrnodynarnic operations.
Rayleigh-Jeans radiation may serve to form an equilibri-
um state with certain electrodynamic systems, such as
charged particles oscillating within certain classes of non-
linear binding forces that are not e1ectromagnetic in ori-
gin, as Refs. 38 and 39 imply. However, our usual con-
cepts of thermodynamics involve operations that can
change the temperature of the equilibrium system; such
changes result in physically impermissible consequences

due to Eq. (35). The overall product of the two factors in
the integrand in Eq. (44) is divergent for RJ radiation, as
can be clearly seen in the second line of Eq. (43). In con-
trast, for ZPP radiation the overall product goes to zero
as co~ tx), since for large 8,

eo+e o
3 2 8 —8(8)=

c2m e —e
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if RJ radiation is present.
In summary of our study of RJ radiation and its rela-

tionship to thermodynamic processes, we can make the
following conclusions: (i) RJ radiation yields results that
do not agree with physical observation. (ii) RJ radiation
may serve to form an equilibrium state with certain
classes of classical systems at some temperature T, as in
Refs. 32—36, although these classes have little to do with
electrodynamic systems appropriate for atomic and
molecular physics. ' (iii) The only reasonable thermo-
dynamic processes that we can perform on the electro-
dynamic systems just mentioned in RJ radiation are iso-
thermal processes, such as the operation analyzed in Ref.
1. Other thermodynamic processes result in absurd
consequences of changes in energy of infinite magnitude,
as well as flows of infinite energy. Also, infinite work is
required to be performed for adiabatic processes involv-
ing changes in temperature.

Hence RJ radiation provides us with an interesting ex-
ample of equilibrium for certain types of classical sys-
tems. However, simple changes to these equilibrium con-
ditions can result in singular behavior for these systems.

C. Ultraviolet catastrophe

The infinite specific heat of RJ radiation is related, but
not quite equivalent, to what is usually referred to as the
ultraviolet catastrophe for the RJ distribution. More
specifically, the ultraviolet catastrophy of the Rayleigh-
Jeans law is typically described as the prediction of an
". . . infinite energy density whereas experiment shows
that the energy density goes to zero at very high frequen-
cies." '

However, we know from working with the ZPP distri-
bution that an infinite electromagnetic energy density is
not what causes thermodynamic problems with the be-
havior of classical systems; rather, the important physical
quantity is the change in electromagnetic energy due to a
change in temperature, or due to work being performed
on the system. The ZPP spectral electromagnetic energy
density of Eq. (29) goes to infinity as co~~, just as
occurs for the RJ case of Eq. (28). Indeed, the ZPP spec-
trum goes to infinity as co, which increases more rapidly
with ~ than the RJ spectrum, which has an co depen-
dence. However, in the ZPP case, changes in tempera-
ture result in a finite change in energy due to a cancella-
tion of singularities; this cancellation does not occur in
the RJ case.

At this point, perhaps it is worthwhile to comment on
what has been measured experimentally to lead people to
conclude that measurements show that ".. . the energy
density [of thermal radiation] goes to zero at very high
frequencies. " ' Clearly if this statement was indeed
correct, then we would also have to conclude that ZPP
radiation is in conflict with physical observation. How-
ever, as we will see, this statement is not quite accurate.

The spectral energy density of blackbody electromag-
netic radiation is typically inferred experimentally by
measuring the energy per unit time, per unit frequency

interval, and per unit area, that is emitted through a
pinhole in the wall of a blackbody cavity. Let us call this
spectral energy flux K(~, T). The assumption is then
generally made that

(47)

D. Restriction imposed by the demand

of finite specific heat

In connection with the above analysis, let us now find

the precise restriction placed upon the thermal spectrum

by the demand of a finite specific heat for classical elec-
tromagnetic thermal radiation. As will be seen, this re-
sult will be needed in Sec. VII when we calculate changes
in entropy associated with our system of electric dipole
oscillators.

From Eq. (40), the specific heat of thermal radiation in

a fixed volume V in free space is given by

Cv=4o'T V . (48)

For C& to be finite, o ' in Eq. (39} or (41) must be finite.

If o. ' is finite, we then see that C&~0 as T~O, which

follows the behavior of quantum-mechanical systems.
Now let us make the natural assumption that f,„(8)

monotonically approaches its limiting value of ~/c for
large 0 rather than, for example, approaching ~/c via
oscillating about this value with decreasing amplitude as
8~~. We then have from Eq. (39) that for large 8,
f (0}will behave like

f;„(8)=,+g(8),
c

(49)

where g(8) goes to zero faster than 1/8", x) 4, as

Since K (co, T) has been measured experimentally as going
to zero as ~~ ~, the conclusion is then usually deduced
that p;„(co, T) must also go to zero.

However, any measurement of the average energy flux

radiated through a pinhole of a blackbody cavity must
actually be a measurement of the difference in the energy
radiated out of the cavity, versus the energy radiated into
the cavity. This point is generally recognized, but the ad-
ditional assumption is also usually made that if the tem-

perature outside of the cavity is small, then we can ignore
the energy flux into the cavity, since it reduces to zero as
T~O. This assumption is not valid if ZP radiation is
present.

Indeed, the energy flux out of the cavity can be approx-
imated as being due to the superposition of electromag-
netic plane waves traveling in the direction out of the
cavity. This flux is then related to the electromagnetic
energy density inside the cavity. Likewise, the energy
flux into the cavity must be due to the superposition of
electromagnetic plane waves traveling toward the cavity
wall that originate from outside of the cavity, and so is
related to the energy density on the outside of the cavity.
The net flux is then due to the difference in the energy
densities inside and outside the cavity. The energy densi-

ty of ZP radiation will then enter into this difference if
the temperature outside the cavity is near T=O.
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In agreement with our previous discussion, we see from

Eq. (30) that RJ radiation does not satisfy the above con-
dition of a finite specific heat, while from Eq. (46), ZPP
radiation does satisfy this condition.

VII. DETERMINATION
QF THE ENTROPY FUNCTION

Our work up until now has been strongly based on Eq.
(27}, which in turn was based on the demand that the
infinitesimal change in entropy in Eq. (8) should be an ex-
act diff'erential. We will now integrate Eq. (8) to obtain
the general expression for the change in entropy upon
performing a reversible thermodynamic process from the
state T, and Z„, to any other state T„and Z„„,for
A = 1, . . . , N. Let us indicate these states by ( T&,Z, }
and (T„,z»}. The work of Sec. III guarantees us that

S„, will be a function of state, so that we are free to
choose any reversible process that proceeds from (T&,z&)
to ( T«, Z„). Consequently, let us calculate the change in

entropy by (i) changing the system from Z& to Z«via the
isothermal operation we have already investigated in Ref.
1, and then (ii) slowly change the temperature from T, to

T» while holding the coordinates Z„ fixed. This second
operation corresponds most closely to what is usually
called an isochoric process. For this process, d W=O, and

only U;„, will vary.
From Eqs. (16) and (27),

For the second part of our operation from (T&,Z&&) to
( T», z»), we have, from Eqs. (8) and (17),

&ri dT aU;.tS.d(Ttt z») —S-i(TI z«)=
T aI ZII

where

(53)

a U;„, „ah;„(co,T)
dN

aT zn 0 aT aco

X —
m Im ln det[M(co, Z» )]

Vco'
n3N I—m lnC (co ) +

3c
(54)

Let us first put Eq. (54) into a diff'erent form by integrat-
ing this expression by parts. As proven in the Appendix,
if the thermal radiation is to obey natural physical re-
quirements, such as a finite specific heat, we must have
that

ah;„(co, T} —~ Im ln det[M(co, Z, t)]

h;„(co,T)=c cof;„ (50)
Vco—m3N Im lnC(co)+
3G

Hence

ah;„h ~„
+

aco co
CCO f3

Ill T

=G T=' 'aTf (51)

goes to zero as co~0 and ao. Consequently,

aU, „, „ah;„(co,T)
dc'

aT z«0 acoaT

For the change in entropy in the isothermal operation
of (T„Z,} to (T& Z»), we obtain from Eq. (6) in Sec. II,
Eq. (67) in Ref. 1, and Eq. (51) above,

i(Tr Z»)

CO

EI1 TI

X m Im ln det[M(co, Z«)]

+a3N Im lnC(co)—
3c

The following identity can be verified:

(55)

—KC dco
0 T, aco

X I Im ln det[M(co, Z»)]
1 a co

TaaT f T
a co a co

=aT Ta.f (56)

—Im ln det[M(co, Zq)] I . (52) Consequently, from Eqs. (50), (53), (55), and (56),

S„,( T„,Z„)—S„,( T„Z„)
II () oo 3 Q) Q CO=f dT ' f dCO C f;„T QT 0 T ()co T

Vco
m Im ln det[M(co, z&&)]+m3N Im lnC(co)—

3c

=1TC f dCO f;„
0 T Bco Tip

co 0 N

T, a.f. T,
Vco

Im ln det[M(co, Z„)]+3N lnC(co)—
37TC

(57)
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Adding Eqs. (52) and (57) to find the total entropy change from states (T„Z,) to (T„,Z„},we see that the cross terms

involving coordinates ( Ti, Zii) cancel out, leaving the following difference between states of

S„,( Tn, Zn) —S„,( T„Z,)

c co 8 co

T a.f
Vco—Im ln det[M(co, Z)]—3N Im inC(oi)+
3&c

Tii, ZII

(5&)

Here, the first factor in brackets above can be convenient-
ly converted via Eq. (50) to other useful forms for calcu-
lating other thermodynamic functions. The above term
involving M(co, Z} represents the contribution to the en-

tropy due to the interaction between the fluctuating elec-
tric dipoles; this term depends on both temperature and
the positions of the oscillators. The terms involving
C (co) and V depend only upon temperature, and
represent the contribution to the entropy due to, respec-
tively, 3N independent fluctuating electric dipoles, and
thermal radiation in a volume V of free space.

Thus the entropy at a state (T,Z} is given by

VIII. DERIVATION
OF THK THIRD LAW OF THERMODYNAMICS

FROM THK DEMAND OF FINITE SPECIFIC HEAT

A. Restriction imposed on f;„(0)by the third law

lim
T~O

=0,

Our analysis to this point has involved the first and
second laws of thermodynamics. Now let us turn to see
what bearing the third law of thermodynamics has upon
our electrodynamic system.

From Eq. (77) of Ref. 1,

Bh;„(oi,T) h;„(oi, T)

(62)

X —Im ln det[M(co, Z)]

in order for the Nernst-Simon form of the third law of
thermodynamics to be satisfied for our system of electric
dipoles in equilibrium with thermal radiation. From Eq.
(51), Eq. (62) then becoines

Vo)'
3N Im inC—(co)+ +So,

37Tc
lim
T~O

CO

in

r}T
(63)

(59}

where So is an arbitrary constant. As was the case in our
discussions involving internal energy, the precise value of
Eq. (59) is not the iinportant thermodynamic quantity,
but rather the difference in Eq. (59) from one state to
another.

As a point of interest to connect with work by
Boltzmann, Planck, and others, on the entropy of
thermal radiation in a volume V of free space, let us ex-
amine the third term in Eq. (59),

Hence, in order to satisfy Eq. (63), then as T +0, f;„—
must approach a constant value faster than T, with
x) 1. Therefore, from Eq. (35), for large 8, f;„(8)must
behave as in Eq. (49), but with g (8) going to zero faster
than 1/8", x ) 1, as 8~ ~.

From Eq. (46), ZPP radiation satisfies this condition.
In contrast, from Eq. (30), RJ radiation barely misses this
criteria, since it follows the form of Eq. (49) with v=0
and x=1, rather than x) 1.

B. Restriction imposed on f;„(8)
by finite changes in energy

S i f (T)= doico f +So r„3T 0 Bco

(60)

wheie Sp r is an arbitrary part of So in Eq. (59). Again
letting 0=co/T, we obtain from Eq. (41)

S„,r„,(T)= 3o''T V+So r„, .— (61)

This result agrees with the usual one [see, for example,
Eq. (81) in Ref. 17] obtained via the conventional argu-
ments leading to the Stefan-Boltzmann law; again, how-
ever, these arguments do not account for the possibility
of ZP radiation.

Thus, in terms of our thermodynamic system, the
Nernst-Simon form of the third law deals with the rate at
which f,„(8) approaches its constant value of v/c as
8~ ao. However, from our work in Sec. VI D, we have
the interesting situation that for the specific heat of
thermal radiation to be finite, we actually obtain a
stronger condition on the asymptotic behavior of f;„(8)
than what the third law of thermodynamics demands.
For C& to be finite, then g (8) in Eq. (49) must go to zero
faster than 1/0", x) 4, as 8~ ~, while for the Nernst-
Simon form of the third law to be satisfied for our system,
the requirement is x & 1.

%hat makes this observation particularly interesting is
that, as remarked earlier, the third law of thermodynam-
ics has long been regarded as arising from a much



42 ENTROPY AND OTHER THERMODYNAMIC PROPERTIES OF. . . 7017

different basis than the first and second laws of thermo-
dynamics. Specifically, the third law is usually attributed
to the existence of a zero-point energy state for
quantum-mechanical systems and the density-of-energy
states near the zero-point energy of quantum-mechanical
systems.

For classical electromagnetic thermal radiation, we see
a situation that is somewhat analogous to the quantum-
mechanical case, but one that is also quite different. For
the specific heat of electromagnetic thermal energy to be
finite, we obtain a restriction on the behavior of f;„(&u/T)
for large co, which then also places a restriction on the
spectral energy density p;„(co/T)=co f;„(~/T) for small
T. The restriction is such that the Nernst-Simon form of
the third law of thermodynamics must be satisfied for
classical electric dipole oscillators interacting with classi-
cal electromagnetic thermal radiation, thereby providing
a derivation of the third law for this system.

Surprisingly, perhaps, but the possibility of thermal ra-
diation being nonzero at T=O did not actually enter into
this derivation. Instead, the consideration of ZP radia-
tion only helped to motivate us to examine the required
restriction on the thermal spectrum for C& to be finite.
The restriction we obtained on g (8) was independent of
the value of ~. Even for no radiation being present at
T=O, or ~=0, we still must have the stronger condition
of x)4 than the x) 1 condition required by the third
law. In hindsight, this result agrees with the usual view
in physics that the change in energy between two equilib-
rium states should be the important physical quantity
rather than the total energy at a particular state.

Our work here on the third law extends the earlier
work on this subject in Ref. 1. As we have already seen,
ZPP radiation possesses a finite specific heat. Hence we
immediately recover our earlier result that the system of
dipole oscillators will obey the third law if ZPP radiation
is present. The case of RJ radiation, which has an infinite
specific heat, must be examined separately, as was done at
the end of Sec. VIII A.

C. Observation about parallel to Nernst's analysis

This rather surprising deduction of the Nernst-Simon
form of the third law for our system of dipole oscillators,
starting from the physical demand of a finite specific
heat, has some similarities to Nernst's attempt at deriving
the third law for general systems. His analysis was based
only on the second law of thermodynamics and the as-
sumption that specific heats vanish at T =0. ' Like
Nernst's analysis, our derivation involved the second law
of thermodynamics, i.e., our derivation was based on Eq.
(27), which in turn was obtained from the second law.
Also, our derivation was based on an assumption about
the specific heat, i.e., that C& be finite. Consequently,
C&~0 as T~O [Eq. (48)], which is related to the as-
sumption made by Nernst. Of course, our derivation
holds only for a very specific system, whereas Nernst was
considering thermodynamic systems in general; neverthe-
less, it is interesting to see that a parallel does exist here.

Indeed, despite Einstein's objection, Nernst's argu-
ment represents an interesting physical observation.
Specifically, Nernst argued that if a Carnot engine could
be constructed with its lower isothermal at T =0, then a
perpetual motion machine of the second kind could be
constructed. Since the existence of such a machine
conflicts with the second law of thermodynamics, Nernst
concluded that one can never fully reach the absolute
zero temperature, which is essentially the unattainability
statement of the third law.

D. Observations about the physical significance
of the third law for classical systems

The unattainability statement is traditionally expressed
as follows: "By no finite series of processes is the abso-
lute zero attainable. " ' This form of the third law
reflects what experimentalists find to be true: ".. . the
fundamental feature of all cooling processes is that the
lower the temperature achieved, the more difficult it is to
go lower. " Thus a thermodynamic barrier exists to
prevent us from ever actually reaching the T=O state.
Consequently, the ZP state is really a very highly ideal-
ized state that cannot exist in nature, but that forms a
useful construct for us to think in terms.

This result will help us to understand the answers to
the following questions: if a classical system can have a
nonzero fluctuating motion at T=O, what prevents us
from being able to reduce these fluctuations and thereby
lower the average energy? Indeed, why can't we continue
to extract energy, or "heat, " and lower the energy con-
tent of a classical system until no fluctuating motion is
present? Here we should note that, in contrast, this prob-
lem does not arise with the traditional viewpoint that no
fluctuating motion and no fluctuating fields exist at T =0
for classical systems, since no energy is then available to
be extracted in the form of heat.

Nevertheless, the results we have obtained enable us to
recognize two important barriers to extracting heat ener-

gy from a classical system possessing fluctuating motion
at T =0. First, according to the definition of T =0, no
reversible, isothermal process can result in heat flow; i.e.,
b Q =0 at T =0. Reference 1 gave a particular instance
where nonzero fluctuating motion existed, but no rnatter
what isothermal, quasistatic displacement operations
were performed, no heat could be made to flow into or
out of the system. Second, the Nernst-Simon form of the
third law demands that limT Dbg/T=O (see Ref. 1, Sec.
VII), which places an even stronger constraint on the be-
havior of EQ as T~O, and which also gives rise to the
unattainability statement. Thus the third law acts as an
even stronger protector of the energy contained in the
T=0 state: namely, we cannot reduce the energy below
what is present in the T =0 state, because "by no finite
series of processes is the absolute zero attainable. "

Moreover, other important physical reasons exist for
suspecting that nonzero fluctuating motion at T =0 may
be a critical part of the equilibrium between charged par-
ticles and random radiation. Some of these suggestive
reasons were discussed in Ref. 1. In particular, for a clas-
sical atom consisting of electrons orbiting a pointlike nu-
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cleus, a nonfluctuating equilibrium state is not possible;
rather, the only equilibrium state possible is a fluctuating
one that arises from a balance, on the average, between
the energy picked up by the electrons from the thermal
radiation field and by the energy radiated by the elec-
trons.

At this point we cannot help but notice the following
significant distinction that exists between quantum and
classical systems. In the quantum case, the ground state
of a physical system is the state with the lowest possible
quantized energy level; also, the ground state is
equivalent to the state of the system at T =0, namely, the
ZP state (here we assume that the ground state of a sys-
tem is nondegenerate, which is the usual assumption
made). However, the thermodynamic significance of the
ground state in quantum mechanics plays a far less prom-
inent role in the development of quantum mechanics than
does the property of quantization. Indeed, the thermo-
dynamic role of the quantum-mechanical ground state is
usually deduced as almost an afterthought, once the
quantization of states is deduced, and the existence is es-
tablished of a lowest energy level for the bound states of a
system. Using statistical-mechanics notions, a thermal
equilibrium state of the system at some temperature T is
formed by taking an incoherent superposition of bound
states, where the weighting factor is exp( E, lkT) —for
each quantized energy level E;. As T~O, only the
ground state remains in this summation, so that the ZP
state is obtained. '

For classical systems, the ZP energy state is not quan-
tized; rather the energy of the system fluctuates in value
about some average amount. Hence we can certainly
conceive of the energy of the system being lowered by re-
ducing the fluctuations, whereas in the quantum case,
quantization effects prevent the energy from being
lowered. Nevertheless, roughly speaking, as T~O a clas-
sical system "resists" having the average of its fluctuating
energy reduced via heat extraction because (i) heat does
not fiow during reversible operations at T =0, and (ii) we
can never quite attain the T=O state. Thus, although
the energy of the system is not "quantized, " as we ap-
proach T =0 there can still exist a nonzero, lowest aver-
age energy for the fluctuating motion of a classical sys-
tem: i.e., the ZP energy.

IX. QUASISTATIC AND NONQUASISTATIC
PROCESSES

Before concluding this article, let us put into perspec-
tive the relationship of the quasistatic thermodynamic
processes we have examined for our system of dipole par-
ticles to more general nonquasistatic processes. After all,
a natural question to ask is how do we extend the ther-
modynamic analysis involving these fluctuating dipole os-
cillators so that we can describe the very important area
of nonquasistatic processes, which are, indeed, the only
processes that are actually physically realizable in nature.

In Ref. 1, the electric dipole oscillator particles were
assumed to have been separated at an infinitesimally slow
rate. %e were then able to simplify the calculation in
Ref. 1 for the expectation value of the work done in
displacing the fiuctuating electric dipole particles (i.e.,

("1V)). Specifically, the assumption of slowly moving the
particles apart allowed a quasistatic approximation to be
made in Eq. (64) in Ref. l.

If the particles are not quasistatically displaced, this
calculation of ('N) can become much more difficult.
Nevertheless, we can certainly recognize a few qualitative
points for such a situation.

In general, nonquasistatic displacements will constitute
irreversible thermodynamic operations since the motion
of the dipole particles will involve non-negligible ac-
celerations that will result in irrecoverable energy being
radiated off to infinity. Moreover, if the velocity of the
dipole particles is not kept nearly equal to zero, as in a
quasistatic operation, then for most incident radiation
spectra, the incident radiation acts via the Lorentz force
to oppose the motion of the dipole particles. This result-
ing force is a frictional dissipative one that must be over-
come by the external forces that move the dipole parti-
cles. For a dipole particle moving at a constant velocity,
the only nonzero radiation spectrum that will not result
in this dissipative force is one with (A;„) =ace, as occurs
for ZP radiation. ' ' In this case, the incident radiation
possesses Lorentz invariant stochastic properties, ' so
that the average force on an electric dipole simple har-
monic oscillator moving at any constant velocity through
ZP radiation can indeed be shown to equal zero [see Eq.
(9) in Ref. 54 or Eq. (51) in Ref. 9].

For a nonquasistatic motion of the dipole particles, our
calculation of AU;„, in Ref. 1 will still be valid, provided
we always ensure that t» in Eq. (1) of Ref. 1 is sufficiently
larger than the time when the displacements of the dipole
particles are stopped so that the internal motions of the
oscillators have lost their memory of the previous dis-
placements, and so that the electromagnetic fields in the
volume V are again only due to the incident fields and
the fields of the electric dipoles in their steady-state
motion. However, additional work than what we calcu-
lated in Sec. V in Ref. 1 will be required be external
forces to carry out the full process of starting, executing,
and stopping the dipole particles for nonquasistatic
motion. Consequently, via Eq. (1) in Ref. 1, additional
heat will be radiated out of the volume V for such an ir-
reversible thermodynamic process.

Clearly, an in depth analysis that goes beyond this
qualitative discussion on irreversible processes would be
very desirable, but also quite complicated. Consequently,
Ref. 1 and the present article concentrated exclusively on
calculations for quasistatic processes of the system of
fluctuating electric dipoles. However, we can easily justi-
fy this attention to quasistatic processes since this pro-
cedure is precisely what is done in the usual study of
thermodynamics. More specifically, as discussed in ther-
modynamic textbooks, reversible operations serve a fun-
damental role for analyzing changes, including irreversi-
ble ones, in the thermodynamic state of all systems.

X. CONCLUDING REMARKS

A number of thermodynamic properties have been
found here for classical electromagnetic thermal radia-
tion. As far as I know, the rather surprising situation ex-
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ists that such basic thermodynamic properties as changes
in internal energy and entropy have never before been ex-
plicitly calculated (e.g., as a function of temperature) for
a classical electrodynamic system involving both elec-
trornagnetic fields and a set of charged particles. Such
calculations were carried out here. A motivating factor
for pursuing this work was that thermodynamic equilibri-
um and thermodynamic processes of electrodynamic sys-
tems found in nature naturally involve the interaction of
both particles and fields.

Most of the results in this article were found by extend-
ing the work in Ref. 1 on the thermodynamic behavior of
a set of electric dipole simple harmonic oscillators in
equilibrium with classical electromagnetic thermal radia-
tion. The major advance here was the analysis of thermo-
dynamic reversible processes where the temperature can
vary. In this way, a general state of entropy was obtained
for the system of fluctuating dipoles. The calculation of
changes in entropy was based on the traditional thermo-
dynamic definition involving heat flow during a reversi-
ble, thermodynamic process. Here the heat appeared in
the form of stochastically fluctuating electromagnetic ra-
diation that flowed into or out of a large volume enclos-
ing the dipole oscillators.

In addition to entropy, other quantities calculated were
changes in internal energy and work done on the system.
With these quantities, changes in other thermodynamic
functions can readily be calculated as well.

An important point in this article has been that some
of the traditional views about the thermodynamic proper-
ties of classical systems are not in general valid, since we
should not a priori exclude the possibility of fluctuating
motion and fluctuating classical electromagnetic fields
from being present at T=0. Indeed, the laws of ther-
modynamics do not exclude this possibility.

The traditional expectation that fluctuating motion
should not exist for classical systems at T =0 is probably
due, at least in part, to the analysis of a classical "ideal
gas" of X particles. Here the internal energy due to ran-
dom motion is given by 3Nkz T/2, so at T =0, this ener-

gy vanishes and all particles are at rest with respect to
each other. However, as was clearly discussed in Ref. 10,
a classical ideal gas fails to account for the required elec-
tromagnetic interaction between electromagnetic thermal
radiation and the real electrodynamic atomic systems
found in nature.

The recognition of the thermodynamic possibility of
ZP motion for classical systems emphasizes that changes
in internal energy are the important thermodynamic
quantities rather than the net internal energy. W'e saw
that classical electromagnetic thermal radiation could
possess a finite specific heat if the thermal radiation spec-
trum obeyed a particular asymptotic restriction, which
was shown to be satisfied by ZPP radiation, but not by RJ
radiation. Indeed, satisfying this criterion also meant
that our system of dipoles would obey the third law of
thermodynamics. We saw that this law acts as an
effective barrier to prevent the average energy of a system
from being reduced below the average energy the system
would attain at T =0.

A second major point here has been that despite the

fact that traditional views on thermodynamic properties
change once a fluctuating ZP state is admitted, the basic
thermodynamic laws do not change. The first and second
laws still hold for classical systems, and entropy can still
be discussed in the traditional manner. Even the third
law can hold for our system.

Finally, a third important point here (see Sec. VIII D}
has been the contrast in the nature of a classical system at
T =0 and the ZP state of a system as described by quan-
tum mechanics. Thermodynamics plays the prominent
role in the classical case for understanding the ZP state,
whereas quantization plays the prominent role in quan-
tum mechanics.

We should now probably conclude by noting some of
the outstanding problems remaining with the present
analysis. First, some of the traditional ideas an applying
statistical mechanics to classical systems needs to be re-
visited in light of the present work. In some of Boyer's
early work, he already noted the inadequacy of many af
these statistical-mechanics notions for classical charged
particles interacting with radiation. ' Further
clarification of these ideas is desirable, but has not been
pursued in the present article. Instead, the entropy was
calculated via a "safe" way: namely, by explicitly
evaluating the heat flow due to radiation rather than by
introducing ad hoc assumptions on thermodynamic prob-
ability. Using this heat flow method, we were able to dis-
cuss the thermodynamic situations for both the RJ spec-
trum and the ZPP spectrum.

A second problem has to do with the spectrum of the
energy radiated by the dipole oscillators while they are
displaced. This problem was not analyzed in Ref. 1, nor
in the present article, but it does represent an important
factor that should be considered to ensure that thermal
equilibrium conditions are fully met between the dipole
oscillators and the radiation. In particular, this point is
critical when the oscillators are situated within a cavity,
with walls that are approximately adiabatic. This point
was mentioned in Sec. I in Ref. 1 (in particular, see foot-
note 39 in Ref. 1). I.et us now clarify this point further.

The net energy within each frequency interval that is
transferred to infinity does equal zero for a stationary
nonrelativistic simple harmonic oscillator. This fact is
true regardless of the spectral form of p;„(co,T}, as was
proved in Appendix B in Ref. 2. (Also see Sec. IV in Ref.
57. Using the method in Sec. III of Ref. 57, the proof can
be extended to an arbitrary number X of these dipole os-
cillators. )

However, the problem in the present article and in Ref.
1 involves oscillators that are slowly displaced from each
other. Other researchers have treated the spectral
decomposition of the net radiated energy for certain
classes of electrodynamic systems bathed in random radi-
ation (see Refs. 32—34 and 36},but only for systems that
can be described by a stationary stochastic process. Sys-
tems that are quasistatically displaced do not follow a sta-
tionary stochastic process. Hence the problem encoun-
tered here and in Ref. 1 is quite different from the one an-
alyzed by others. Indeed, as far as I am aware, the ther-
modynamics involved in displacement operations have
not been treated by other researchers for any of the sys-
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tems considered in Refs. 32—36.
Actually, in terms of thermal equilibrium conditions

being ensured, the emitted spectra during the displace-
ment does not really appear to be a critical problem for
the present situation, where the oscillators are situated in
free space, but bathed in thermal radiation. Indeed, after
completing the displacement, the emitted radiation has
no effect on the spectrum of the radiation in which the
oscillators are immersed, nor does it effect the behavior of
the oscillators. However, we can easily conceive of a hy-
pothetical situation where the emitted spectra will be
quite critical.

Suppose a slab of material exists that is composed of N
of these oscillators, where N may be quite large. Further-
more, suppose we insert this slab within a cavity, with
walls that are approximately adiabatic during the follow-
ing thermodynamic operation: namely, where we slowly
compress the slab. Here the emitted radiation of the os-
cillators will reflect back off the walls of the cavity, as will
all the radiation in the cavity, and in this way continually
interact with the N oscillators. Hence the emitted radia-
tion will be critically important in determining the spec-
tral form of the resulting radiation within the cavity, as
well as the behavior of the oscillators.

In general, we expect the temperature of the radiation
and the slab will change during the compression. An ex-
ception to this rule is when the compression is performed
at T=0, since here adiabatic and isothermal conditions
are equivalent. Nevertheless, regardless of what the tem-
perature becomes, we still expect the spectrum of the ra-
diation within the cavity to remain of a thermal spectral
form. Only under this condition will the net entropy of
the system be a function of state, as is demanded by the
second law of thermodynamics.

For experiments performed on real systems in nature,
the thermal spectral form is that found for blackbody ra-
diation. This observed spectrum agrees with the classical
case if ZPP radiation is the appropriate thermal equilibri-
um spectrum for classical electrodynamic systems.

Of course, we already know that RJ radiation, rather
than ZPP radiation, forms an equilibrium state with the
nonlinear electrodynamic oscillator systems studied in
Refs. 32—36, under the constraint that these oscillator
systems follow a stationary stochastic process in time.
Hence, before we even consider a displacement operation
for these oscillator systems, we already see that ZPP radi-
ation cannot form a thermal equilibrium state with them.
On the other hand, we also have the foilowing strange
problem observed in Sec. VI: RJ radiation results in
singular behavior for simple thermodynamic operations
like changes in temperature. Thus the thermodynamic
behavior of the electrodynamic systems studied in Refs.
32—36 is far different from the familiar thermodynamic
behavior of real, physical systems we find in nature.

Thus we return to the point made a number of times in
Refs. 1, 38, and 39. The classical electrodynamic systems
that have been studied in stochastic electrodynamics
need to reflect the physical character of real atomic sys-
tems if we expect to obtain truly meaningful comparisons
between the behavior of classical systems and the behav-
ior of systems found in nature. In the past, ' the

electromagnetic nature of the binding potential of real
atomic systems has not been adequately taken into ac-
count when deducing the emitted electromagnetic radia-
tion of classical oscillating systems of charged parti-
cles. ' This point needs to be corrected in future stud-
ies, and may be critical when comparing the emitted
spectra and the general behavior of classical systems with
corresponding properties of physical systems.

The present study is also subject to the same criti-
cism. ' Nevertheless, the analysis discussed here does
contribute to the understanding of the appropriate ther-
modynamic behavior of classical systems. Although ZP
energy for classical systems has been discussed in the
physics literature for over 30 years now, as far as I am
aware, calculations such as those in Ref. 1 had not been
carried out to specifically address appropriate thermo-
dynamic operations corresponding to the definition of ab-
solute zero temperature. The present article extended
this analysis to nonzero temperatures. Indeed, the ther-
modynamics of the retarded van der Waals forces were
treated, which has some general theoretical interest, since
all atomic systems interact with each other to some ex-
tent via van der Waals forces. More significant, however,
is that the calculations presented here for finding the
change in internal energy, work done, heat flow, and
change in entropy represent the type of analysis that is
essential in deducing the appropriate thermodynamic be-
havior of classical electrodynamic systems in general.

Consequently, when mathematical methods are
developed that enable the treatment of classical atomic
models that more realistically represent atomic systems
found in nature, then similar analyses involving heat flow
should be repeated for these systems. Such analyses
should not necessarily be restricted to quasistatic dis-
placement operations, since other quasistatic operations
are certainly possible, important, and perhaps closer to
the quasistatic operations that might be approximated by
experiment, such as when weak, applied electromagnetic
fields are slowly switched on.

APPENDIX: ASYMPTOTIC RESTRICTIONS
ON THERMAL SPECTRUM

A key point to much of our analysis in this article has
been the asymptotic limits on the thermal radiation spec-
trum. The "displacernent law" we deduced in Eq. (27)
provided the means to deduce the asymptotic limit of
co~ 00 for the thermal spectrum, via the following
method. First, from Ref. 1, we found the required T~O
spectral form for thermal radiation. Since co and T must
combine as in Eq. (27), then this T~0 limitation gave us
the appropriate co~~ restriction. Both limits are ex-
pressed in the single form of Eq. (35). Second, in Sec.
VI D we deduced the required asymptotic rate of change
of f;„(co/T ) as co /T~ ~, in order for changes in temper-
ature to yield finite changes in electromagnetic thermal
energy. This restriction was sufficient to show that RJ
radiation is unsuitable for certain fundamental thermo-
dynamic processes, like changes in temperature. We also
saw in Sec. VIIIB that this restriction was sufficient to
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deduce the Nernst-Simon form of the third law of ther-
modynamics for thermal radiation interacting with elec-
tric dipole oscillators.

Now we need to prove the statement following Eq.
(54). In the process, we will find the appropriate
co/T~O limiting spectral form for thermal radiation.
Also, we will be able to prove that Eq. (66) in Ref. 1 must
hold for classical electromagnetic thermal radiation. '

I.et us first deal with the co~ ao limit. From Eqs. (49)
and (50), we have that as (co/T) ~~, then

h;„(co,T)=zco+c cog
T (Al)

where g(8)~0 faster than 1/8, as 8~ ao. Hence, for
a fixed value of T, Bh;„(co,T)/dT must go to zero faster
than I /coi as co~ ao.

In Appendix B of Ref. 1, we saw that

small frequencies, which seems physically unreasonable.
However, a more definitive argument can be constructed
by noting from Eq. (50}that the co~0 limit is related to
the T—+ 00 limit, and by analyzing the energy dependence
on temperature of a single electric dipole oscillator
bathed in thermal radiation. As we will see, in order for
a three-dimensional oscillator to possess the usual energy
of 3(ksT) at large temperatures, then Ii;„(ru, T) must
reduce to the nondivergent result of ks T/n at small fre-
quencies.

Specifically, for X such electric dipole oscillators that
are separated infinitely far apart in space, the average of
the sum of the (i) kinetic, (ii) potential, and (iii) elec-
tromagnetic energies associated with these N oscillators
can be deduced from Eq. (58} of Ref. 1, and from the
paragraph immediately following Eq. (58). Thus

UN( T)= 3Nn—Jdc.oh;„(co, T) [Im lnC]

Im ln det(M ) = (A2) I'(3aioai —ai )
+3%m co;„cu,T 2

. A7
0 C

for large co, where 8 is a constant. Consequently, for any
fixed temperature value, electromagnetic thermal radia-
tion must satisfy

Dividing by N, and using the standard resonance argu-
ment on pp. 569 and 570 of Ref. 61, or pp. 1653 and 1654
of Ref. 28, then

and

lim [Ii;„(co,T)Im ln det(M )]=0
Ui(T)=3[&h2„(a)O, T)] .

From Eq. (Al) at T =0,
(A8)

lim
Bh;„(co,T)

Im ln det(M ) =0, (A4) Ui(T=O)=3m' x'coo, (A9}

which provides the co~ ao part of Eq. (66) in Ref. 1, and
the co~ ~ part of the erst term in the statement follow-
ing Eq. (54).

Turning to the second and third terms in the statement
following Eq. (54), since

which for ZPP radiation is the familiar 3(iiicoo/2) quanti-
ty for an oscillator with three spatial degrees of freedom.

At the other extreme, for large enough temperatures
we expect to find the usual result of 3k& T for the average
energy of the oscillator. Hence, from Eq. (A8), for large
T

C(co)= —co +F00—iI'co

then

(A5) k~T
h;„(cooT)= (A10)

Im lnC(co) = tan
—I co 3m

—
CO +CO2 2

0
(A6)

Since Bh;„(co,T)/dT must go to zero faster than I/co as
co~ao, we see that both the second and third terms in
the statement following Eq. (54) must vanish as co~ oo.

Turning now to the m~0 limit of the above quantities,
we should first note that from Appendix B of Ref. 1, as
co~0, Im 1 ln[det(M ) ] I ~0. From Eq. (A5),
Im[ln(C)] —+2m as co~0. If we assuine that h;„(co,T)
and Bh;„(co,T)/dT remain finite as co~0, then we see
that the co~0 limit of Eq. (66) in Ref. 1 and the co~0
limit of the statement following Eq. (54) inust both equal
zero.

%e can probably come up with several reasons for
making what appears to be a very natural assumption
that h;„(co,T) and Bh;„(co,T)/dT should not diverge as
~~0. Indeed, if they did diverge as co~0, the energy
per unit mode of the thermal radiation would diverge at

which is equivalent to the RJ spectrum via Eqs. (16) and
(28). As will be seen shortly, the RJ spectrum serves as
the natural limiting spectral form for the classical elec-
tromagnetic thermal radiation spectrum when
( co/T )~0.

We expect that the T=O energy of Eq. (A9) will be
much less than the energy of 3k~T, provided that T is
sufficiently large. More precisely, U, (T=O)((3ksT is
obtained provided that

77 KCOp «T . (A11)

If xXO, so that zero-point energy is present, the condi-
tion of Eq. (Al 1) can always be achieved if the ratio of
coo/T is taken to be small enough. Thus the low-
temperature energy limit in Eq. (A9) and the high-
temperature energy limit of 3k~ T are dictated not just by
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the value of T, but by the ratio of (coo/T). Consequently,
as co/T~O, the appropriate spectrum for classical elec-
tromagnetic thermal radiation should reduce to the RJ
spectrum, as shown in Eq. {A10). Indeed, from Eqs. (28)
and (29},we see that ZPP radiation does satisfy this prop-
erty, since coth(Are/2ktt T)~2ktt T/Are as to/T-+0.

Thus Eq. (A10) is the correct limiting form for
h;„(to, T) when T is held fixed and to~0. Consequently,

f;„(8)= (A12}

as 0~0.
Hence not only have we verified our assumption above

that h;„(to, T) and t)h;„{to,T)/dT should not diverge as
to~0, but we have also obtained the specific limiting
forms of ka T/6 and ktt /H for these quantities.
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