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The diffusion Monte Carlo algorithm with and without importance sampling is analyzed in terms
of the algorithm's underlying transfer matrix. The crucial role played by the Langevin algorithm in

the importance-sampling process is made explicit and emphasized. The failure of existing second-
order algorithms to converge quadratically for atomic many-body problems is shown to be caused

by nonperturbative convergence errors due to the intrinsic inability of the Langevin algorithm to
sample Slater orbitals. This failure can be simply circumvented by enforcing attractive cusp condi-
tions on the trial function. Various new second-order diffusion Monte Carlo algorithms are sys-

tematically derived and their quadratic convergence numerically verified in cases of He and H&.

I. INTRODUCTION

In the past decade, Monte Carlo methods for solving
the many-body Schrodinger equation' have been wide-
ly applied to the study of quantum systems as diverse as
liquid and solid helium, electron gas, small mole-
cules, " few-nucleon bound states, ' ' model nuclear
systems, ' ' and Hamiltonian lattice gauge theory. '

With the advent of supercomputers, this trend will un-
doubtedly continue and fundamental improvements in
Monte Carlo algorithms can significantly impact many
areas of research simultaneously. Currently, there are
two basic ensemble algorithms for solving the many-body
Schrodinger equation. The first is Kalos's Green's-
function Monte Carlo (GFMC) method, ' which samples
the exact ground state by iterating the resolvent operator
(E z) l(H —z).—(Here, E and z are just some convenient
constants. ) Computationally, this algorithm is complicat-
ed in that one can only sample the exact resolvent opera-
tor by a further iteration on a simpler, approximate resol-
vent. In effect, "a Monte Carlo sampling within a Monte
Carlo sampling" must be performed. The other method
is the diffusion Monte Carlo (DMC) algorithm
which projects out the exact ground state by iterating the
imaginary-time evolution operator e " '. In this
case, one can easily sample an approximate evolution
operator which is exact in the limit of At ~0. The disad-
vantage here is that current DMC algorithms with im-
portance sampling "' ' ' only converge linearly
in ht and one must repeat the calculation several times
using rather small values of At to extrapolate to the
At=0 limit. Previous attempts of applying second-
order DMC algorithms to atomic problems were met
with failures; theoretically second-order algorithms were
found to converge only linearly in practice. On the other
hand, DMC algorithms without step-size error' " re-
quires intermediate iterations to sample the exact density
matrix, which is not unlike that of GFMC in spirit and in
complexity.

In this paper, I show how the underlying transfer ma-
trix of the DMC algorithm can be analyzed perturbative-
ly to yield second-order algorithms systematically. I

made explicit the crucial connection between the
importance-sampling process and the Langevin algo-
rithm. The failure of second-order DMC algorithms to
converge quadratically is shown to be caused by nonper-
turbative convergent errors due to the intrinsic inability
of the Langevin algorithm to sample Slater orbitals, and
has nothing to do with overshooting. I further show
that, when computing the energy, this convergence
failure can be averted by enforcing all attractive cusp
conditions on the trial function. That this avoidance pro-
cedure works as proposed is numerically demonstrated in
the case of the helium atom and the hydrogen molecule.

The paper is organized as follows. The perturbative
analysis of the transfer matrix is outlined in Sec. II. In
Sec. III, second-order Langevin algorithms are systemati-
cally derived. These are then used in Sec. IV to generate
corresponding DMC algorithms. In Sec. V, the failure of
second-order DMC algorithms to converge quadratically
is traced to the convergence failure of their underlying
Langevin algorithms. After enforcing cusp conditions,
quadratic convergences of the ground-state energies of
He and H2 are demonstrated. In Sec. VI, the conver-
gence behavior of the Langevin algorithm is studied in
detail by Monte Carlo methods and by directly iterating
the algorithms' integral equation. The fundamental
mismatch between the Gaussian character of the algo-
rithm and the exponential nature of the Slater orbital is
shown to result in fractional power convergence errors
that degrade the algorithm. Conclusions are summarized
in Sec. VII.

The present DMC calculations confirm the expectation
that larger step sizes can be used with second-order algo-
rithms. Moreover, they suggest the possibility that calcu-
lations can be carried out at a reasonably large step size
without the need of extrapolation. The efficiency of these
new algorithms has been further verified in model nu-
clei ' and helium droplets calculations. Obviously,
these second-order DMC algorithms have important im-
plications for atomic calculations as well.

II. PERTURBATIVE ANALYSIS
In order to ana1yze the systematic errors due to the

finite step size ht, it is useful to view Monte Carlo

42 6991 1990 The American Physical Society



6992 SIU A. CHIN 42

Tt —ktK —b, t( V —E) (2)

can be iterated by evolving an ensemble, or population, of
configurations Ix"I according to its matrix element (C is
an irrelevant normalization constant)

( 'l T'lx ) —C e
—(x' —x) l(2ht) ht(v(—x) —E)

by replicating (or branching) each configuration x" on the
—5t V(x ) —Eaverage e ~' '" ' ~ times and random walk each

configuration via x "=x,"+&Et g, , where g; are in-

dependent Gaussian random variables with zero mean
and unit variance. At each time step, the population will—b, t(EO —E)
change by a factor A. =e ' and can be stabilized
by choosing E =E0. This way of directly determining E0
defines the growth or normalization energy.

A key point in my analysis is the recognition that, by
virtue of the Campbell-Baker-Hausdorff (CBH) formula

e "e =expI 2+B+—,'[A, B]
+ —,', [( A B),[ A, B]—]+

the approximate transfer matrix T' can be reconstituted
in the form T'=e " ' with approximate Hamiltoni-
an

methods for solving the many-body Schrodinger equation
as stochastic means of iterating a transfer matrix T such
that for n sufficiently large, T" converges as T"~const.
A."lp), where lp) is its largest right eigenstate and A, is its
largest eigenvalue. To illustrate this basic point of view,
consider

T e
—ht(H —E)

7

where H =K+ V is the 3X-dimensional many-body Ham-
iltonian with kinetic energy K =

—,'p and potential energy
V= V(x). The iteration of T will converge to its largest
eigenstate

l %o), which is the ground state of H. Its cor-
—lLt( Eo —E )

responding largest eigenvalue is A. =e ', from
which the ground-state energy E0 of H can be extracted.
If one were able to sample T directly, then the iteration
will project out the ground state l+0) irrespective of the
value of ht. In practice, one can only iterate an approxi-
mate transfer matrix T'. For example, the approximate
matrix

E,=E,+ ,', at' &e—,laHle, &—
40 (po

(9)

where bH=—[(2H —V), [H, V]]. I have verified the va-
lidity of (5), (6), and (9) both analytically and numerically
in the case of the one-dimensional harmonic oscillator.

A detailed calculation of the ground states of (3) and
(8), corresponding to a special case of the Langevin algo-
rithm discussed in Sec. VI, is given in the Appendix.

III. IMPORTANCE SAMPLING
AND THE LANGEVIN ALGORITHM

In most physical applications, the rapidly varying po-
tential V precludes the use of naive algorithms (2) and (7).
As first shown by Kalos and collaborators, importance
sampling with a trial function is essential for practical
Monte Carlo calculations. As noted elsewhere, ' im-
portance sampling can be understood in terms of the
transfer matrix as follows: Instead of the original T, one
considers an alternative transfer matrix T "similarly
transformed" by a trial function 40,

Hence, whereas the trial energy

ET= (H(I'ol(po& l(@ol+0&

converges only linearly via

(e,l[H, v]le, &

ET Eo+ 26 t
( l )

y (6)
0 0

the normalization energy always converges quadratically
from below according to (5). By noting the correction
term in the CBH formula, second-order algorithms can
be obtained by taking the product of operators at half the
step size with one set of operators in reverse order. A
well-known example is

—ht V/2 —htK/2 —htK/2 —ht V/2e e
—ht V/2 —htK —b, t V/2e

with approximate Hamiltonian

H'=H+ ,', bt [(2—H V), [H—, V]]+ ' ' ' . (8)

In this case, the normalization energy converges identi-
cally as (5) and the trial energy now converges quadrati-
cally as

H'=H ,'b, t[H, V]+ ,', b,—t —[(H—2V), —[H,V]]+ .

where

~ e
—ht(H —E)@—1 —ht(H —E)

0
—e (10)

Thus the convergence of T' is governed by H', which in
term, can be analyzed by simple perturbation theory. In
the present case, the iteration of (2) will converge to the
ground state of H' given by

le,') = le, &+-,'atvlq, &+ (4)

E,'=E, —
—,', St'&e, l[V, [H, V]]le,)+ (5)

which deviates systematically from the exact ground state
by a term linear in ht. Note, however, that since the
first-order term in (3) vanishes between eigenstates, the ei-
genvalues themselves converge quadratically; in particu-
lar,

H:—@OH@0 '= ,'p +i p G+E—t(x).
is the transformed Hamiltonian, Et (x) =—40 '(x)H@0(x)
is the local energy, G„(x)= —V„S(x), and
+0(x)=e '"'. Although 0 is no longer Hermitian, it is
simple to see that its left and right eigenstates are, respec-
tively, ((p„ l+0 ' and 40l(p„) with unchanged real eigen-
values E„. Thus with importance sampling, the iteration
will converge to the product state @Ol%'o).

Iterating T is advantageous in that the bare potential
V(x) is replaced by a generally smoother local energy
EL(x). More importantly, the simple Gaussian random
walk associated with the diffusion evolution operator
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—b, t(
& p +i p.G)1

e ' is replaced by e ' —=e ', which one
recognizes as the evolution operator for the Fokker-
Planck equation

——4(x, t ) = —
—,
' V' qI( x, t ) +V', [ G; ( x)'P( x, t )],a

(12)

with stationary distribution 4O(x). The associated ran-
dom walks are now described by the Langevin algorithm.
Since the diffusion operator e '

by itself will simply
converge to a uniform distribution, heuristically, one may
view naive algorithms (2) and (7) as trying to generate 40
primarily through branching. In contrast, with impor-
tance sampling, the Fokker-Planck evolution operator
e '

by itself will converge to 4o and branching is only
required to supply the remaining factor 4o/4o. As 4o
varies from 1 to %0, the primary burden for generating %0
shifts from branching to random walks. In the limit that
the trial function becomes the exact ground state, %'o is
entirely generated by Langevin random walks and
branching only produces an overall constant. In this
case, it is clear that the order of conuergence of the impor
tance sampled DMC algorithm is dictated by that of the
associated I.angeUin algorithm. In any case, unless this
embedded Langevin algorithm is correctly simulated to
second order, no overall second-order DMC algorithm is
possible.

As pointed out elsewhere, ' Langevin algorithms for
evolving the Fokker-Planck equation can also be derived
by regarding TL =e ' as a transfer matrix. A first-
order approximation is obviously

If one regards 4' as a particle density function, then one
can naturally interpret this as a continuity equation with
current density J=GqI and velocity field v(x)=G(x).
The trajectory of the particles are therefore determined
by

dx(t)
dt

(15)

and the Green's function given by

&x'le ' lx&=5(x' —x(bt)),
where x(t) is the solution to (15) with x(0)=x. Thus the
matrix element

& x'l TL lx &
= C exp — [x' —x(b, t ) ]'1

2ht

can be sampled by setting

x,'=x, (bt)+ v'At g, . (17)

x =x, +htG, (x)+&6,t g, .

The decomposition (13), and hence (17), has the virtue of
separating out the stochastic part, which is the Gaussian
random walk, from the deterministic part (15), which
represents the bias of the trial function. Since (13) is only
correct to first order, it is sufficient to solve (15} to the
same order:

—A&K —b, lD
L

—e (13)
A second-order Langevin algorithm is produced by the

decomposition

where D = ip G. The matrix element of e ' is the
Green's function of the evolution equation —htD /2 —AlK —b, tD /2

L
—e

O(x, t)=V,—[G, (x)%(x,t)] . (14)
with matrix element

&x'17t'. Ix&= fdy&x'le " "ly&&yle "e " "lx&

= fdy5(x' y( ,'ht ) }C—exp—— [y x( ,'b, t)]-—
2ht (20)

The above structure naturally suggests a two-stage sam-
pling procedure:

y, =x, ( 2ht)+&At g, , . —

x =y, ( —,'At) .
(21)

Thus with (15) solved correctly to second order, one ob-
tains a two-stage random walk:

y, =x, + ,'ls. tG, (x+ ,'btG(x—))+&At g-, ,

x,'=y, + ,'btG, (y+ —,'btG(y)) —.
(23)

This algorithm requires four evaluations of G(x) per up-
dating step, which is computationally very expensive.

A second algorithm can be devised according to the al-
ternate decomposition

y, =x,. +—,'btG, (x)+—'( —'bt) G (x)V G, (x)+v'At g, , .

x,'=y, + ,'btG, (y)+ ,'( ,'4t ) G, (y)V, G;(y) —.——(22) —b, fK /2 —b ID —b, tK /2 (24)

To avoid evaluating derivatives, this can be interpreted as Similar manipulations as before yield
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y; =x;+&6,t/2$;,

x,'=y, +htG, [y+ ,'b—tG(y)]+&bt/2(,', (25)

—2.85
~ =DMC1 + =DMC2a & =DMC2b + =DMC2c

which requires two independent Gaussian vectors per up-
dating step but only two evaluations of G(x). These two
Langevin algorithms, (23) and (25), are canonical in the
sense that they correspond to obvious ways of decompos-
ing the original transfer matrix to second order.

A noncanonical second-order algorithm can be ob-
tained by directly substituting in the intermediate step y;
in (23) and retaining terms up to second order in b t:

x,'=x, +btG, (x)+&bt g;+ ,'bt&b—tg V G;(x)

+ ,'bt~G (x—}VG;(x)+ ,'bt g)gk—VJVkG;(x) .

This in turn can be reinterpreted as

y;=x;+btG, (x)+&At g, ,

x,'=y, + —,'At[6, (y) —G, (x)],

(26)

(27}

IV. SECOND-ORDER DMC ALGORITHMS

Algorithms for iterating T can now be devised and ana-
lyzed identically as in Sec. II. Analysis of the step-size
error is more tedious. However, for the purpose of con-
structing second-order algorithms, it is unnecessary to
know these errors explicitly. To obtain a first-order
DMC algorithm one can approximate T via

which one recognizes as a second-order Runge-Kutta
Langevin algorithm. This algorithm was also in-
dependently derived in Ref. 24, but in a rather opaque
manner. Since this algorithm only requires one Gaussian
vector and two evaluations of G(x) per update, it is clear-
ly faster than (23}and (25}. However, as noted in Ref. 31,
and will be further demonstrated below, the range of
quadratic convergence of this algorithm is usually much
shorter than the two canonical algorithms. Following
Ref. 31, we will refer to algorithms (18), (23), (25), (27) as
LGV1, LGV2a, LGV2b, and LGV2c, respectively, where
LGV is short for Langevin, and 1, 2a, 2b, and 2c mean
first-order and three second-order algorithms, respective-
ly.

One other second-order Langevin algorithm can be de-
rived by evaluating e ' directly to second order via
normal ordering, however, the resulting algorithm,
which requires the evaluation of higher derivatives of
G;(x) and the sampling of multivariate Gaussian distribu-
tions, does not appear to be competitive with algorithms
outlined above.

It should be noted that these algorithms are derived on
the basis of perturbative analysis, i.e., on the assumption
that the convergence error can be expanded in integral
powers of ht. Unfortunately, this is not the complete pic-
ture. As will be demonstrated in Sec. VI, depending on
the specific form of G, (x), there can exist nonperturba-
tive, nonintegral power convergence errors due to the in-
trinsic limitation of the Langevin algorithm. These
nonintegral power errors can be of lower order than that
of the algorithm and can therefore degrade the algorithm
to lower order.

—2.95-

E

—3.05-

—3.1$ 0.1 0.2 0.3 0.4 0.5

FIG. 1. The trial ground-state energy of helium as a function
of ht as computed by four DMC algorithms. The statistical er-
rors are at most half the size of the plotting symbols. The hor-
izontal line indicates the exact ground-state energy. The trial
function used is (31) with (=2, a =0.5, b =0.2.

tL,
—At( EL —E)T'=e e (28)

and sample e ' to first order according to algorithm
LGV1 (18). This algorithm will be designated corre-
spondingly as DMC1. For a first-order algorithm, the
computation of position-dependent Gaussian random
walks ' is unnecessary. If e ' in (28) were sam-

pled to second order using either LGV2a, LGV2b, or
LGV2c, then, as discussed in Sec. II, the normalization
energy would converge quadratically, despite that fact
that the ground state of (28} only converges linearly.
Genuine second-order algorithms can be obtained via

—ht(EL E)/2 gtL ht(EL E)/27'=e (29)

H= —,P&+ —,P2 +2 2 1

P'] I"
2 7 I2

The trial function used is of the form

Co=exp( gr& )exp( gr2)exp[ar&2/(1—+br&z)]—.

(30)

(31)

Figure l shows the trial energy obtained using various
DMC algorithms with trial function /=2, a =0.5, and
b=0.2. This trial function satisfies all the cusp condi-
tions and yields a variational energy of E, = —2.878(2).
For each algorithm, the time-step iteration is preceded by
a variational calculation with configurations sampled

with e ' sampled by second-order Langevin algorithms
LGV2a, LGV2b, or LGV2c. These three DMC algo-
rithms will be designated as DMC2a, DMC2b, and
DMC2c, respectively. If, however, e ' is sampled only
to first order, then (29) can only converge linearly, ir-
respective of whether branching is symmetric, as in (29),
or asymmetric, as in (28).

Again, in discussing the order of these algorithms, one
should keep in mind the last paragraph of Sec. III.

V. APPLICATIONS TO He AND Hz

Because of continued interest in ab initio atomic calcu-
lations, " I first test these second-order algorithms on
the nonrelativistic helium atom with Hamiltonian
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FIG. 2. Same as Fig. 1 but with (=2, a =0.0, b=0.0.

from 40 using the Metropolis method. The normaliza-
tion energy is adjusted after each time step to maintain a
population of about 200 configurations for Et=0.05,
0.10, and 100 configurations for Et=0. 15, 0.20, 0.25,
0.30, and 0.40. At each value of ht, after discarding the
initial 1000—4000 generations, expectation values were
computed using 100 block averages of 100 consecutive
generations. The ratio of time used is roughly 1:2:1.7:1.5
for DMC1:DMC2a:DMC2b:DMC2c, with DMC1 con-
suming about 1.4 VAX2000 work-station hours per value
of ht with a population of 100 configurations. The linear
convergence of DMC1 and the quadratic convergence of
DMC2a and DMC2b are obvious. For DMC2c, its ap-
parent rapid convergence at step size as large as ht =0.3
is remarkable but deceiving. It actually overshoots the
exact energy and seems to converge from above at
ht &0.2.

The performance of these second-order algorithms as
compared to the first-order one is even more striking
when the trial function is poor. Figure 2 shows the iden-
tical calculation with trial function (=2 and a =b =0.0.
This simple product of two hydrogenic orbitals has
E, = —2.75 and does not satisfy the repulsive electron-
electron cusp condition. It is clear from these two figures
that the convergent behaviors of second-order algorithms
are quadratic, and they are distinct from those of the first
order.

The numerical values for the trial and normalization
energy obtained by all four algorithms at the smallest
time step size Et=0.05 are compared in Table I. For
both trial functions, all second-order results have essen-
tially converged to the exact ground-state energy to
within statistical error. This is to be contrasted with

first-order results, where the systematic step-size error
remains sizable. Moreover, as a corollary, second-order
results at small ht are less sensitive to the quality of the
trial function.

Next, I apply these algorithms to compute the
ground-state energy of the hydrogen molecule with Ham-
iltonian

10——p&+ —p2
—1 2 1

1A

1 1 1

r)g rpA r2g rAg r

(32)

where r», r, ~, etc., are electron-nucleus separations and
rA~=1. 401 is the known equilibrium internuclei dis-
tance. The trial wave function is of the form

C p y(r] g r]e )y(r2g r2t] )exp[ar]2 ~( I +br]2 )]

with molecular orbital

(33)

P( r z, rt] ) =exp( gr z ) +—exp( gr& ) . —

The particular trial wave function used is

(34)

4t]=+p((=1.285;a =0.28, b =0.05), (35)

with variational energy E„=—1.149 80(35). The results

FIG. 3. The trial ground-state energy of H& as a function of
Lt as computed by four DMC algorithms. The statistical errors

are at most the size of the plotting symbols. The horizontal line

indicates the exact ground-state energy. The trial function used

is 40 of (35).

TABLE I. The trial (upper) and normalization (lower) energy for helium as computed by four DMC
algorithms at At =0.05 using two different trial functions of the form (31). The exact energy (Ref. 37) is
Ep

= —2.903 724. . . .

Trial function

(=2, a =0.5, b=0.2

/=2, a=0.0, b=0.0

DMC1

—2.922 4(7)
—2.922 3(17)
—2.981 7(16)
—2.967 8(25)

DMC2a

—2.903 5(8)
—2.903 1(20)
—2.906 6(17)
—2.904 6(29)

MC2b

—2.9060(9)
—2.902 8(19)
—2.9109{18)
—2.909 7(29)

DMC2c

—2.902 8(8)
—2.903 6(18)
—2.908 7(19)
—2.902 8(27)
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FIG. 4. Same as Fig. 3 but with trial function 4p' of (36). FIG. 5. Same as Fig. 3 but with trial function 4p" of (37).

are shown in Fig. 3. (In this and subsequent calculations,
I used symmetric branching even for DMC1. ) The en-
semble population was maintained at a target value of
200. Expectation values were computed using 100—300
block averages of 100 consecutive generations. Depen-
dent on ht, the total number of configurations sampled
ranges from 2 X 10 to 6 X 10 . The trial energy of all four
algorithms appears to have converged correctly to the ex-
act values of Eo= —1.17447. . . , but apparently with
only a linear slope. Moreover, the range of the linear
convergence is very small, with b, t ~0. 1. (For DMC1,
this range is in agreement with that of Ref. 8.) The
failure of algorithm DMC2c to converge quadratically in
the case of Hz was previously observed by Vrbik and
Rothstein, using the identical trial function 4O. In a
subsequent study by Rothstein et al. , other algorithms
similar (but not identical) to DMC2a and DMC2b were
found to suffer the same fate.

This failure of second-order algorithms to converge
quadratically in the case of Hz is rather surprising in view
of their success with He. In Ref. 25 Vrbik and Rothstein
suggested that the problem may be due to the discon-
tinuity of G(x) near each nucleus, which causes electrons
to incorrectly overshoot past each nucleus. The fact that
this cannot be the explanation is easily demonstrated by
the counterexample of He; overshooting in that case
clearly did not prevent the energy from converging qua-
dratically. In Ref. 26, Rothstein et al. suggested that,
somehow, the combination of branching and overshoot-
ing is to be blamed, but no details were given. In the next
section, I will show that this convergence failure of

second-order DMC algorithms is due to an intrinsic ina-
bility of their embedded Langevin algorithm to sample
Slater orbitals correctly, and has nothing to do with
overshooting. Fortunately, as will also be demonstrated,
when computing the energy of the system, this problem
can be simply circumvented by enforcing attractive cusp
conditions on the trial function.

The fact this avoidance procedure indeed works as
claimed is demonstrated in Fig. 4, where the same Hz
problem is solved with the trial function

4O'=CO(g= 1.189 032 767;a =0.50, b =0.40), (36)

where the value for g is determined by the cusp equation
~ AB(=l+e " . The corresponding variational energy is

F., = —1.14836(25). The improvement is quite evident.
The convergence behaviors of the first- and second-order
algorithms are now distinct. Even DMC1 is improved in
that its range of linear convergence now extends out to
ht =0.5, five times its previous range with trial function

The quadratic convergence of algorithm DMC2b is
particularly convincing. The convergence of the other
two is actually too good to tell, but as we shall see in the
next section, there is no reason to doubt.

To test the robustness of these algorithms, a further
calculation is performed with the trial function

4O" =Co((=1.189032 767;a =0 O, b =0.0), . (37)

which again ignores the electron-electron cusp condition
and their correlation. The variational energy is
E, = —1. 12868(52). The results are shown in Fig. 5.
The quadratic convergences of second-order algorithms

TABLE II. The trial (upper) and normalization (lower) energy for H& as computed by four DMC al-
gorithms at Et=0.05 using two different trial functions (36) and {37). The exact energy (Ref. 38} is

Ep = —1.174474. . . .

Trial function

q) I I
p

@III
p

DMC1

—1.168 3(4)
—1.166 8(9)
—1.172 7(6)
—1.171 5(12)

DMC2a

—1.174 6(5)
—1.172 0(11)
—1.174 3(6)
—1.173 3(13)

DMC2b

—1.174 2(5)
—1.173 6(11)
—1.174 5{6)
—1.174 6(12)

DMC2c

—1.174 6(4)
—1.175 0(11)
—1.173 9(6)
—1.174 5{13)
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FIG. 6. The H2 trial energy due to 40 as obtained by four

Langevin algorithms. At each value of ht, expectation values

are computed using 200-400 block averages of 5000
configurations. Horizontal lines bracket the variational energy

computed via the Metropolis algorithm.

FIG. 7. Same as Fig. 6, but for trial function 40' of (36).

remains evident. What is surprising is the fact that the
linear convergence of DMCl is improved by this sup-
posedly poorer trial function. The trial and normaliza-
tion energy at ht =0.05 for 40' and 40 are compared in
Table II. Again, all second-order results have essentially
converged to the exact ground-state energy to within sta-
tistical errors and are not particularly sensitive to the tri-
al function used.

VI. THE CONVERGENCE FAILURE
AND ITS AVOIDANCE

Since the branching part of the DMC algorithm is
straightforward, there is little doubt that it is correctly
simulated. One must therefore scrutinize the Langevin
part of the DMC algorithm for clues to its failure. Fig-
ure 6 shows the resulting trial energy for 40 when
branching is suppressed. In this case, one is simply run-
ning the Langevin algorithm to sample (40) and there-
fore the trial energy should reproduce the variatiorial en-
ergy. This is indeed observed; however, as shown in Fig.
6, all four algorithms apparently only approach the varia-
tional energy linearly, and only when ht ~0. 1. By con-
trast, when the same calculation is carried out for 4O', as
shown in Fig. 7, quadratic convergences of second-order
Langevin algorithms are clearly evident. In particular,
the convergence range of LGV2a and LGV2c is so wide
that one is forced to extend the range of ht in order to see
their quadratic deviations. Thus failures of second-order
DMC algorithms to converge quadratically can all be
traced to failures of their embedded Langevin algorithms.

The failures of second-order Langevin algorithms to
converge quadratically has nothing to do with overshoot-
ing. A simple argument by referees of this paper is
suf5cient to illustrate the point. Consider the case of
sampling generic Slater atomic orbitals of the form
4O(r)=e ~", with velocity field G(r)= —

—,'Pr, which is
discontinuous at r=0. As noted previously by Vrbik and
Rothstein, electrons will overshoot past the nucleus. In

the limit of small b t, this overshooting is dominated by
the linear term. Hence, there is always a spherical region
centered around the origin with radius R = gb, t in which
the sampling is defective. However, in computing the en-

ergy, which is at most 1lr or less singular, this defective
hole in the wave function can at most contribute an error,

bE =402(0}f d'r ~b,t', —
0 r

(38)

which is second order in bt and therefore cannot explain
why the algorithm is apparently degraded to first order.

The real reason for the convergence failure is more
subtle and is due to the intrinsic inability of the Langevin
algorithm to sample exponential functions. This intrinsic
failure give rises to fractional power convergence errors
not accountable by the perturbative analysis of Sec. II.
In computing specific expectation values, these errors can
be of lower order than that of the algorithm and there-
fore can degrade the algorithm to lower order.

To investigate the detail convergence behavior of the
Langevin algorithm in sampling Slater orbitals of the
form po(r) =40(r) =Noe ~", (No =g /8m ), I directly
iterate its corresponding integral equation. The drift step
corresponding to applying the operator e ' is

p(r, t+bt )

=(I+brlr) p(r+br, t)+fi (r)f d rp(r, t),
0

(39)

where b, r = ~G~b, t = ,'gbt is the distance move—d in time
bt Regarding p(.r, t) as an evolving particle density dis-
tribution, the first term on the right-hand side (rhs) sim-
ply corresponds to

4n.r drp(r, t +b, t)=4m(r +b, r) drp(r+b, r, t),
rejecting the fact that particles now at r were originally
from r+Ar. The second term expresses the fact that all
particles that reach the origin in time ht stay at the ori-
gin. This is thus exact with no overshooting. The
random-walk step corresponding to applying e ' is
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1 1p(r', t+bt)= d rp(r, t)exp — (r' —r)
Z3 2ht

1 ~ r 1, & 1
dr , p(—r,t) exp — (r' r) ——exp — (r'+r)

Zi 0 r 2ht 2ht
(40)

where Z„=(2nbt)" . The integral equation is only one dimensional in the present case of spherical symmetry. Note
that after the random walk, the wave function is necessarily an even function of r, i.e., it is basically a Gaussian near
the origin.

Substituting (39) into (40) gives the first-order algorithm LGV1,

p(r', t+bt)= f d r(1+brlr) p(r+br, t)exp — (r' —r) + f d rp(r, t) exp — (r')
Z3 2ht . 0

'
. Z3 2ht

(41)

which can be directly solved by discretizing p(r) and
iterating. [In actual calculations, p(r) is discretized into
400—1400 points depending on b t.] Once (41) is solved,
results of other algorithms can be obtained without much
effort. For example, the related first-order algorithm cor-
responding to e ' e ' can be obtained by applying
e ' to the stationary solution of (41), LGV2a can be
obtained by applying e ', and LGV2b can be ob-
tained by applying e ' in place of the last application
of e

—htK

By binning the density of particles in Monte Carlo cal-
culations, one can compare the convergence of p(r) from
Monte Carlo sampling with that of directly iterating (41).
For LGV1, this shown in Fig. 8. The agreement between
the two is excellent. As discussed in Sec. II, the conver-
gence behavior of an algorithm can also be studied via its
underlying approximate Hamiltonian, which in the
present case is

H'=H ,'bt[K, D]+——,', bt [(K D), [K—,D]]—+

(42)

Plotted as a dashed line is the first-order perturbative
1.0

0.8.

ground state of H',

po ( r ) =N, exp gr ——(, ) gbt
(43)

(44)

This is plotted as a dotted line.
Figure 9 shows the same comparison for LGV2b.

Again, the agreement between Monte Carlo simulations
and direct iteration is excellent. There is no perturbative
wave-function comparison because there is no second-
order correction to the exact wave function for Slater or-
bitals (see the Appendix). The convergence of LGV2b is
obviously better than that of LGV1. Note, however, that

(For details, see the Appendix. ) This first-order wave
function is good at large r but fails catastrophically near
the origin. As we shall see, this is simply due to the fact
that, near the origin, the wave function in nonperturba-
tive in powers of At. However, in computing expectation
value of (r"), for n ) —1, the wave function is weighted
with r"+ and this failure is not very glaring. An even
better wave function at large r is given by the second-
order wave function (see the Appendix)

po (r)=Nzexp gr ——1

2r 2 2r

z 0.6'

0.4

1.0

0.8.

02-1
I,'

0.2 0 4 0.6 0.8 1.0

0.6-

0 4-

r
FIG. 8. The square of the wave function p(r) =4 (r) as sam-

pled by the first-order Langevin algorithm LGV1 at finite ht.
The topmost curve is the exact Slater orbital e ~'. Plotting
symbols are binned Monte Carlo results. Error bars are mostly
smaller than the size of the plotting symbols and are not shown.
Solid lines are results obtained by directly iterating the integral
equation corresponding to the algorithm. For comparison, the
first- and the second-order perturbative wave functions (43) and
(44) are drawn as dotted and dashed lines, respectively.

0.2-

0.$ 0.2 0.4 0.6 0.8 1.0

FIG. 9. Same as Fig. 8 for the second-order algorithm
LGV2b. In this case, however, there is no second-order pertur-
bative correction to the exact wave function (see the Appendix).



699942 ALGORITHMMONTE CARLoIFFUSIONQUADRATIC

1.0

0.8-0.8-

e

0.4-

0.2

LGV1

~ 0.6.

l-
0 4-

0.2

''II. O 1.0
2gtt

2.0 g.O
0 1.0

2gg

2.0 g.O

m LGV2b.0 fpr algorit™FIG. Same as F'g'Vl.at yxed r for( r) /No at
ected byC» c"'"'"

The con vergence o P
d are conntions an

ual
m Mpnte ar

m top to bo ttom are elstraight lines o g"
innction &o~ ~"softhewave udistance values o

h between thetal mismatch
aracter o

a ersis en,b'tal results in pexponentia
This is shown eof defect.

'
n e

ve

lar region

'1 how the wav1

I

In Figs. 10 and 1, w

'
n converges as ao simu]ation

ence»
Monte Cark

'
the cpnvergen

f nction from
the «ig' '

the con-

u
f r. Away rom

ear the origin
function pf "

'
ear and qua

npr qua ra
adratic. Near

d tic. Since
prrectly line

'ther linear
r in Mpnte

c
is clearly ne

ensity is Ppp

vergence is
'

the central
a functipn o

or binning .
12, as a

direct ite~at~on.
'

analyfic estimathefo pported y
density is givenLGy1 central

r+br, t)expt = d r(1+brlr) p(rp(0, t+At d r r d rp(r, t)1

2ht Z, . o
(45)

ssian expx ect

2e tr)—p = ~ "((1+br'er) ep(0) =Noe

—(r)t, +=No 1 +2hr
r

in in thee can
'

the rhs by substitut g
'

d h' nPo
is a

(ation va ues
'

Gau

I

P
V2b, the corre12 is =1.

be compare
le

estimate is

y
'

r
'

r these exact co
nctio t rh

haussia
6characteristic ran

1/2

g~t'"+=No 1—

eneral functionto sampto pie a more generaIf one were to

(46) 1.0,.

0.8-

——(gr )"Po(r) =Noexp

a stimate wou gld ivea similar es

(47) 0.6-

C)
0.4-

n+1
I

1 — (2g'ht )""p(0) =No 1— +

0.2.

(48)

central density isnce of the centrg.f Sl.,".,'.,b„..1' to the case opecu iar

1.5 2.01.00.5
&/2(ht

e functiorthe wavee center o
Dot-

e con erge

rai ht inested lines are stra g
'

s



42A. CHIN

1.0ve function a
~ .

the stationary wav ftained. Approximating t e s a

1 r
p(r) =p(0)exp (49) 0.8-

and su s
' '

(45), yields, to leading order,and substituting it into

r —,—,(r2)~, +p(0) =p(0) 1+26,r (50)

0.6

0.4-

'
ion to hold, we muststationary condition toIn order for this s a

'

have

0.2-

'ao 0.2 0.4 0.6 0.8 1.0

4 br (llr)z,
' 1/2

3
(2b,t—

2

4

=1.37(g b2, t )'"
(51)

1 the range of the Gaussian only van-@ ''"gy
. For the more generaishes as At . or

tains

49)a roxitnate Gaussian functionP g PP o"
V1's evolving wave unc &

l
'

h l h

'
n functions wit s-

's in-

d
tions from directly itera

Time-step sizes corn, mg
, 'At =0.025, 0.05, 0.1, 0.2,tom,

22 3(2 2 2g bt)' " + (52)
n+1r

2
b Fig. 14; in the smalle st ht case, thepp y g

error range is cea yarl much sma er a
certainly account orr the

t LGV1 d LGV2b
ar ument can cer a'

How-serverved dift'erences between
that at extreme yely small values ofer, wee have not shown

ent cannot be app ie1' d to LGV1. Onthe same argument can
1 a eal to numerirical evidence. As

the
po o y pp

merical results be ow s
~ gt1/4

o r ~Et for
~At'/ for LGV1.

at near the origin, the1 sis suggests th
unction can e wristationary wave func

'

p(r)=po(r)+hp r (55)

ct function b,p(r) can bewhere the roug yhl triangular defect unc i
approximated by

r~r=[p(o)—
po (0)](1 r lr ), 0 r —r,

~P(")= =0, .o., (56)

0.8.

0.6-

0.2-

s ecial to Slater orbitals.
h

'
G

de endence is specia o
g o p

unc ', '
h exact resu ts romwave unc

'

d is ~s=1.30(41). Th g uing
r than the derive regte aa

11
'

ll f 1

,51), we use the exac
1 hta reement at sma r is exfor p(0). The ag

f LGV2b, one obtains
r

consiaere .'a d For the case o

2 1/4 (53)b2t)'"=1. 15(g bt)gs = — (n. t

e co
' 'tn h fit with the correspond-'m rovest e

isg
11shown in Fig. 14. gs ow

' ' . . Aain, t eagre

and 14 look rat er sim'11
'

il }1

( )e. Since the exact wave
hea-ine

tion is simp yproxima
f than estimate o e

F1 in that r, =s= t
th't th' ""' 't h"h th1

de artsfromt e nc-evo ving1
'

wave function ep
le to the range o t er h Gaussian. In the

1 hntral density is vew enh the evolving cen
and the Gaussian is ehemn1ed in by th

ht wave function, t e errosloping exac w
be

p(0) =No(1 (r, + )—, 0.2 0 4 0.6 0.8 1.0

1 —r + ), (54)b, t)' + . . ]=No(1 gr,+-No[1 —0.49 t

r, =0.495'
m LGV2b ands Fi . 13 but for algorithmFIG. 14. Same as Fig. 1 u

gs =1 OO(g 't t)'". -



QUADRATIC DIFFUSION MONTE CARLO ALGORITHMS FOR. . . 7001

—at'" r" +' (r") —1+—" 1+—r,

(57)

For our purpose, it is adequate to recall that
[p(0)—po(0)] ~ b —t ' . Denoting expectation values
with respect to po as ( )o, the convergence error in com-
puting ( r" ) can now be estimated as

f d r r "(po+bp) —(."),
f d r(po+bp)

= f d r r"t5.p (r"—)of d rhp

0.55

0.50-
A

C4

0.45.
V

0 40-

0.35-

0.3$
'

0.5

00

o: LGV1

1.5 2.0

For LGV1, this yields

5 "(r") b, t "+—""+(r") 1+—p 1+ n ht5/4 .
4

FIG. 16. Same as Fig. 15 but for ((gr) '). The additional
straight dotted line through LGV 1 data is a fit to demonstrate
the expected ht ' convergence.

(58)

For LGV2b, the convergence error must change from
that of 5(" to

5(2)( n) ~ gt(n+4)/2+ ( rn)r p 1+—At
4

(59)

0.52

0.50-
A

I

~ 0.48.
V

0.46-

o: LGV1

Note that for n &0, the first term is of lower order and is
negative; for n &0, the second term is of lower order and
is positive. Thus (58) and (59) immediately predict that
for n &0, the convergence is from below, whereas for
n &0 the convergence is from above. Also, these errors
are conspicuous only when they are of lower order than
that of the algorithm. In Figs. 15—18, we examine in de-

tail cases for n = —1, —2, 1, and 2. In each case, the
scaled, dimensionless expectation value ((gr )") is plotted
as a function of the dimensionless time-step parameter

Figure 15 shows the convergence of ((gr ) '), which is
of special importance for atomic calculations. LGV1 con-
verges linearly as expected, and is well described by the
first-order perturbative wave function (43). The second-
order wave function (44), which is a poorer wave function
at small r, does not describe data well at larger values of
b, t. Note that their common range of linear convergence
is rather narrow. According to (58), the nonperturbative
error is also linear in At. In this case, to the extent that
the observed error is well described by the perturbative
wave functions at small ht, the nonperturbative contribu-
tion of (58) does not appear to be itnportant. LGV2b
converges linearly for g t5,t= 1 —4, then converges as
At ~ for 0(b.t 51. (I have checked that, in the latter
case, the data definitely cannot be fitted with a quadratic
dependence. ) In the Appendix, I show that there is no
second-order perturbative corrections to the wave func-
tion, hence this behavior is inexplicable in terms of per-
turbative analysis but is in precise agreement with (58)

3 4

0.44.

0.4$ 1.0 2.0 3.0

3.3-
A

3.2-
V

3.1.

o: LGV1

~: LGV2b

FIG. 15. The convergence of ((gr) '). Dots and circles are
expectation values obtained from directly iterating the
algorithm's integral equation. Crosses are corresponding Monte
Carlo results. The dashed and solid lines through LGV1 data
are expectation values computed with the first- and second-
order perturbative wave functions (43) and (44), respectively.
The solid straight line and the dotted curve through LGV2b
data are simple fits to demonstrate the At and the At' conver-
gence behaviors, respectively.

3 0 —-----

5.0 1.0 2.0 3.0

FIG. 17. Same as Fig. 15 but for (gr ). There is only one
dotted curve through LGV2b data to indicate the expected
quadratic convergence. See text for details.
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FIG. 18. Same as Fig. 17 but for ((gr )').

and (59). The b, t convergence is easily missed if one is
not looking for it or if ht is not small enough. More seri-
ously, an incorrect result is obtained if one naively extra-
polates just its linear dependence. (Even more deceiving
is that fact that the wrong answer is only slightly in-
correct. ) This explains why second-order DMC algo-
rithms which do not obey the cusp condition apparently
only converge linearly. It is probable that they also con-
verge as ht for small enough ht.

Figure 16 shows the convergence of ((gr) 2). This is
a crucial check on our nonperturbative analysis (58),
which predicts that not even a erst order algo-rithm can
converge linearly For the. ease of comparison, data are
plotted as a function of (ght) ~ . For LGV1, perturba-
tive corrections utterly fail to account for the observed
step-size error. The convergence is (gb, t) ~, in accor-
dance with (58), rather than linear. For LGV2b, one
again observes a clear crossover from that of ht to At,
as predicted by (58) and (59).

To demonstrate that these nonperturbative errors are
conspicuous only when they are of lower order than the
order of the algorithm, Fig. 17 shows the convergence of
( gr). For LGVI, since (58) predicts that 5"'=

—,
' & 1, the

convergence is dominated by perturbative effects and the
expectation value should converge linearly. This is
indeed observed, and data are well described by perturba-
tive wave functions, especially by pc' '(r). For LGV2,
since there is no second-order perturbative correction,
one can only ascribe the observed quadratic convergence
to (59). Unlike the previous two cases, over the same
range of ht, there is no abrupt change of convergence
from that of ht to ht . However, since this expecta-
tion is sensitive to the wave function at large r, the defect
function (56) may simply to too crude to describe this
crossover in detail. Similar remarks may also be applied
to results obtained for ((gr ) ), as shown in Fig. 18.

On the basis of (59), which is verified by Figs. 15—18,
one concludes that the expectation value ( 0 ) computed
via second-order Langevin algorithms can converge qua-
dratically, provided that the operator 0 contains no neg-
ative powers of r. Thus without fundamentally curing
the convergence failure of the algorithm, one can never-
theless circumvent it by avoiding operators that are sensi-

FIG. 19. Comparing the convergence of three ground-state

energy estimators ET, E&, and Ep associated with trial function

4O' as obtained by algorithm DMC2a. See text for details.

Ex = —(2K —K, ),
Ep= 1(2V —V,, ),

(60)

where K, and V, are the corresponding variational kinet-
ic and potential energies, respectively. Since Ez and Ez
are just linear transformations of K and V, the order

—0.9

—1.0-

DMC2b

K

0.1 0.2 0.3 Q 4 0.5

FIG. 20. Same as Fig. 19 but for algorithm DMC2b.

tive to the wave function near the origin. In the case of
atomic calculations, this means that one must choose tri-
al functions such that the local energy is free from I/r
singularities; i.e., one must enforce all attractive cusp
conditions. This explains why, in Sec. V, the trial energy
converges quadratically in the case of 40 and 40" but
not in the case of 40.

As a further check, one notes that even when the trial
function obeys all the cusp conditions and the local ener-

gy is nonsingular, the kinetic and the potential energies
individually contain 1/r singularities. Thus the above ex-
planation also predicts that, whereas the total energy
converges quadratically, the kinetic and the potential en-
ergies individually do not. This is easy to check and is
shown in Figs. 19-21 for the case of 40'. Instead of
directly plotting for each second-order algorithm the
mixed expectations K = ( 4c ~K ~4o ) /( +v ~@0) and
V =(0'o V~40)/(0'0~40), where ET=K + V, I plot-
ted
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FIG. 21. Same as Fig. 20 but for algorithm DMC2c.

of convergence is obviously not affected. However, since
20 —0, = ( 0'z

~
0

~ %0 ) /( 0'0~%'0 ) constitutes a perturba-
tive estimate of the exact ground-state expectation value, '

the virial theorem implies that both EK and Ez should
also converge toward the exact ground-state energy.
Their systematic derivations from Eo would then give us
another assessment of the quality of the trial function.
Figure 19-21 clearly confirm the expectation that Ez
and Ep are not converging quadratically. The conver-
gence appears to be linear, but a At dependence as
At~0 is expected. Moreover, the steep slopes in the
case of DMC2a imply that quadratic convergence is
achieved through large but precise cancellations.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, I have used the operator approach to
analyzing the diffusion Monte Carlo algorithm in terms
of its underlying transfer matrix. The key observation is
that by virtue of the Campell-Baker-Hausdorff formula,
any approximate transfer matrix can be reconstituted to
yield an approximate Hamiltonian. This approximate
Hamiltonian then determines the perturbative conver-
gence behavior of the corresponding algorithm and can
be used to systematically derive second-order algorithms.
I have also made explicit the essential connection be-
tween the importance-sampling process and the Langevin
algorithm. It is the convergence of the Langevin algo-
rithm that dictates the overall convergent behavior of the
DMC algorithm. As a practical matter, one should first
check the convergence of the embedded Langevin algo-
rithm before running the full DMC algorithm.

The failure of the second-order DMC algorithm to
converge quadratically is now understood quantitatively
in terms of nonperturbative convergence errors due to
the intrinsic failure of the Langevin algorithm in sam-
pling Slater orbitals. Fortunately, when computing the
energy, the effect of these errors can be neutralized by en-
forcing cusp conditions. When this is done, I show that
the ground-state energy of He and H2 do in fact converge
quadratically. In this work, the existence of nonpertur-
bative errors is partly based on numerical evidence, e.g. ,
the b, t '~ convergence of p(0), the At '~ and b, t ' depen-

dence of r„ the form of the defect function bp(r), etc.
This is not completely satisfactory; a more direct, analyti-
cal demonstration of these effects would be valuable.
Moreover, it would be very important to find out whether
alternative DMC algorithms can be devised such that
these nonperturbative errors are fundamentally eliminat-
ed rather than just avoided.

The calculation of He and H& clearly shows that
second-order DMC algorithms are superior to the first-
order algorithm. This is amply demonstrated in Figs. 1

and 2 and in Figs. 4 and 5. With good trial functions, as
shown in Figs. 1 and 4, and in Tables I and II, it appears
that these second-order algorithms can directly compute
the ground-state energy at a reasonably large value of At
without extrapolation. For He and H2, I have shown
that At can be as large as 0.05. The efficiency of these
new algorithms has been further verified by calculations
done on model nuclei ' and helium droplets. In view
of the simplicity of these algorithms as compared to the
GFMC algorithm, it is of interest to test them further on
problems of greater complexity, such as many-fermion
problems and boson problems with spin correlations.
Some works in these areas are in progress.

Of the three second-order algorithms, the fastest is
DMC2c. However, its sometimes erratic convergent be-
havior is disconcerting. In the case of Fig. 1, one is sure
that it actually overshoots the exact result by a small
amount and converges from above. This peculiar behav-
ior is traceable to its corresponding Langevin algorithm
LGV2c and is known to occur also in lattice gauge calcu-
lations. ' Thus when one is using DMC2c, one must be
careful in deciding whether the algorithm has actually
converged at a seemingly large value of ht. A more-
detailed analysis of the step-size error of LGV2c would
be very valuable. (Since it is noncanonical, it cannot be
analyzed by the transfer matrix method advocated here. )

By contrast, in all cases considered, the canonical algo-
rithms DMC2a and DMC2b converge monotonically.
However, DMC2a is very slow, usually =50% slower
than DMC2c. Moreover, since LGV2b ends with a ran-
dom walk, DMC2b's wave function is always nonsingu-
lar. There is no such guarantee for DMC2a. In fact, for
cases considered in Sec. VI, the wave function generated
by LGV2a contains explicit Ilr and I/r singularities.
We thus find that DMC2b is a good compromise between
speed and reliability.
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APPENDIX: PKRTURBATIVK
CONVERGENCE ERRORS

As discussed in Sec. II, the convergence behavior of an
algorithm can be studied via its reconstituted Hamiltoni-
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an H'. For LGV1, where the transfer matrix is
Tl =e ' e ', the latter is given by

The second-order ground state of H' is determined by

(H+btHi+bt H2)p(') '(r)=0,
H'=H+AtH]+Et H2 (Al) (A7)

where H=K+D, H& = —
—,'[K,D], and H2= —,', [(K

D—), [K,D]). In solving for the ground state of H' per-
turbatively, one obtains a wave function expanded in in-
tegral powers of ht. We shall refer to these ht-dependent
terms as perturbative convergence errors, distinct from
those discussed in Sec. VI, which are trial-function
specific and can involve nonintegral powers of At.

For the special case of sampling the Slater orbital
po(r)=40(r)=e ~", with G(r)= —

—,'Pr, the effect of H,
on a spherical symmetric function p(r) is

H, p= ,'[D,K—jp

V; —
—,
' V; —

—,'gr, + ,'gb, t—2—
r

2 rt a+ 'gb—,t —g —224 3
iver

p(2)(r)0

Writing po '(r) =e '"', the above implies that

S'(r) = —
g 1 —

—,
' b, t'

r r
ht1+—,'g

Keeping terms only up to second order in At and in-
tegrating gives

=—„'V,[—G, V p+V, VJ(G,p)]
'2

po (r) =%&exp —gr- gbt 1 gbt
2r 2 2r

(A8)

2, 1=lv; lP; p"+ „p' —v—
, „Pp+ ,

'—0p'-

Similarly, the effect of H2 is

H2 =
—,', [(K D), [K,D—]]p

=
—,'[H „(K D)jp—

=
—,'. V; 0 , (0p 2—p')—

r

(A2)

(A3)

Again, we compute the normalization constant N2 by nu-
merically integrating po '(r).

For algorithm LGV2b, whose transfer matrix is
T=e ~' 2e ~' e ~'+, its reconstituted Hamiltonian
is

H'=H+ —,', bt [(D+H), [D,K]]+ (A9)

In this case, the effect of the second-order Hamiltonian is

H2p= —,', [(D+H ), [D,K ]]p
=

—,', [D+H, Hi]p

In deriving these results, we have repeatedly used the
identity

fi=
—,', v; 0—,(0p+p')

r
(A 10)

1Vr =—(5 rr ), —
J &J I J

and have consistently ignored 5 functions arising from
V (1/r ) = —4m5 (r).

The first-order zero-energy ground state of H' is deter-
mined by

(H+ At'H, )po"(r) =0,
(A 1 1)

—'v, —
—,'p, . +,', gQt g+ po (r)=0.

r(H+atH, )p,"l(r ) =0,
(A5)

(A4) The corresponding second-order ground state 1s deter-s ~

mined by

rt
V, , V, , gr—,+ ,'g—~t ', p',-"(r)=—0,

r

which can be readily integrated to give

po '(r) =N, exp gr——(ii (A6)

Again, if po( '(r) =e '"', then

S'(r) = —
g 1 —

—,', g r
At

1 1

(A12)

The normalization constant N, is expressible in terms of
modified Bessel functions K„[(2g ht)' ]. However, in
practice, we find it simpler to compute it by directly in-
tegrating po '(r).

Thus surprisingly, there are no second-order corrections.
Since LGV2b is even in ht, this second-order cancellation
implies that the perturbative error in sampling
po(r) =e '"must be at least fourth order in ht
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