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The nature of the critical behavior in the triplet annihilation model—which exhibits a new kind
of nonequilibrium phase diagram—is elucidated through scaling analysis of time-dependent Monte
Carlo simulations. The results support the hypothesis that nonequilibrium critical points in single-
component reaction diffusion systems are generically in the directed-percolation or Reggeon-field-

theory class.

I. INTRODUCTION

Nonequilibrium phase transitions are currently under
intensive study in physics and biology.""? Some examples
of interest in condensed-matter physics are surface reac-
tion models,** which describe the poisoning of a catalyst,
and the driven lattice gas, pertinent to ionic conductors.’
While nonequilibrium critical points are a largely unex-
plored domain, they exhibit many features associated
with equilibrium critical phenomena: long-range correla-
tions, a well-defined order parameter, and singularities
characterized by critical exponents.

The present work is part of an effort to delineate
universality classes for nonequilibrium critical behavior.
This issue has been examined recently for reaction-
diffusion systems, i.e., stochastic models in which parti-
cles are created autocatalytically, disappear spontaneous-
ly, and diffuse. Since there is no spontaneous creation of
particles, the zero-particle state or vacuum is absorbing.
It may also be possible (in the infinite-volume limit) to
sustain an “active” steady state. The critical point marks
the disappearance of the active state. The order parame-
ter is the steady-state particle density, which scales
asymptotically as g (A—A,)?, where A, is the critical
creation rate. A simple example is Schldgl’s first model.®
Its lattice analog, the contact process,7’8 exhibits critical
behavior in the directed percolation or Reggeon field-
theory (RFT) class.” 12 Studies of a variety of related
models, employing simulations,'* ! field-theoretic argu-
ments,'®121318720 a5d series expansions,'"'*2! all sup-

port the conjecture!? that RFT is the generic critical be-
havior for systems with a scalar order parameter and a
single absorbing state. This universality class is charac-
terized by the order-parameter exponent S=0.277 (Refs.
11 and 21) in d =1+1 (one space and one time dimen-
sion), and B=0.585 for d =2+1."

The subject of this paper is the “triplet annihilation
model,” which is of the sort described above, but with the
new feature that diffusion inhibits annihilation.'* The
model possesses a surprising phase diagram, including a
critical line marking the extinction of a population that
reproduces foo rapidly. The main purpose of the present
work is to present simulation results that clarify the na-
ture of the critical behavior in this model. In the follow-
ing section I define the model. Section III describes the
simulation method and scaling analysis. Results are de-
scribed in Sec. IV, followed by a discussion in Sec. V.

II. MODEL

The triplet annihilation model or “D3 model,”? is an
interacting-particle system incorporating diffusion, auto-
catalytic creation, and cluster annihilation among parti-
cles that occupy the sites of a lattice. The configuration
of the system is described by a set of occupation variables
o;; 0,=0 (1) if site i is vacant (occupied); multiple occu-
pancy is forbidden. The evolution is a Markov process,
consisting of a sequence of “moves,” each involving a sin-
gle elementary process at a randomly chosen site. The
elementary processes are diffusion (hopping), creation,
and annihilation; they occur with probabilities D,
(1—D)A/(1+A), and (1—D)/(1+1), respectively. The
parameters A (creation rate) and D (diffusion rate) deter-
mine the behavior of the model.??

The diffusion process consists in choosing a site i at
random, and interchanging o; and o, ,. For creation, a
site i and a nearest neighbor i +e are picked at random.
If o,=1 and o0, ;,=0, then the latter value is changed to
1 (i.e., the particle at / “creates” a new particle at the
neighboring site). In the annihilation process, particles at
a site i/ and its two neighbors are removed, if and only if
all three sites are occupied. The steady-state simulations
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FIG. 1. Phase diagram for the triplet annihilation model.
Within the shaded region, there is no active steady state. The
lines indicate the range of parameter values studied in cases (a),
(b), (c), and (d).

reported in Ref. 15 were performed on a one-dimensional
lattice of L sites (L =10000 or 20000), with periodic
boundary conditions. One time unit corresponds to L at-
tempted moves—one per site.

The steady-state phase diagram of the triplet annihila-
tion model is shown in Fig. 1. The main features may be
summarized as follows. (Further details may be found in
Ref. 15). When D =0, there is a continuous transition at
A,=6.72, with $=0.28, indicating a RFT-type critical
point. This critical point shifts to smaller A values as D is
increased. (Such a shift is to be expected since, by break-
ing up clusters, diffusion suppresses annihilation and
enhances creation.) Remarkably, there is a critical
diffusion rate D*=0.58 above which A, is zero so that an
active steady state is possible for any creation rate. For
0<D <D*, there are in fact two distinct sets of creation
rate values which support an active steady state:
O<A<A_ and A>A,; for A_ <A <A, the only possible
steady state is the vacuum. The new active steady state
at very low creation rates (0 <A <A_) results from the
competition between diffusion and annihilation. A
mean-field description at the pair level'® yields a predic-
tion for the phase diagram which, while qualitatively
correct, is in poor agreement with simulations. A some-
what better phase boundary has been derived via a
mean-field renormalization-group calculation.?

The simulations reported in Ref. 15 demonstrate that
A is a line of RFT-type critical points, and that as A—0,
p < A!”2, indicating that (for D >0), A=0 is a mean-field-
like critical line. The present work focuses on the critical
behavior as A—A_, which could not be determined in
the steady-state simulations.

III. TIME-DEPENDENT
MONTE CARLO SIMULATIONS

Simulations of static nonequilibrium critical behavior
are often quite difficult. In addition to the usual prob-
lems of large fluctuations, critical slowing down, and
finite-size effects, simulations at the brink of an absorbing
state require particular care, as one is studying a long-
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lived, but intrinsically metastable state. In several cases
it has been possible to gain a more precise determination
of critical behavior by means of time-dependent simula-
tions.!>162425 The time-dependent approach consists in
studying the evolution of the system over a large number
N of independent realizations or “runs” which all begin
with the same initial configuration. (In each run the
(pseudo)random-number generator is initialized with a
different “seed.”) Each run proceeds until some fixed
maximum time ¢, (unless all of the particles disappear
before t,,). The lattice is sufficiently large that particles
never reach the boundary before ¢,,. The mean values
(over the set of N runs) of n;, (the number of particles in
run i, at time ?) and related quantities are computed as
functions of the parameters; their long-time behavior
yields information on the critical exponents.

Following Grassberger and de la Torre,’ I use the ini-
tial configuration o,=1, o; =0 for i50, and compute the
following: (1) n,, the mean of n; , over the runs; (2) P,, the
survival probability (i.e., the fraction of runs with
n;,>0); and (3) x?2, the mean-square distance of particles
from the origin. x? is computed only over runs which
have survived until time ¢, while n, includes as well those
runs which have reached the vacuum state.

The scaling hypothesis for the contact process and al-
lied models asserts that at the critical point, the quanti-
ties defined above are governed by power laws as t — o

P xt™% (1)
n, o<t (2)
xZect®, (3)

Away from the critical point, the evolution departs from
a pure power law. For example, in the subcritical regime
P, will approach an exponential decay once ¢ exceeds
some typical lifetime analogous to the longitudinal corre-
lation length &, in directed percolation,?® while in the su-
percritical regime P, approaches a nonzero limit. Thus a
graph of InP, versus Int will show positive (negative) cur-
vature in the supercritical (subcritical) regime. This per-
mits one to set limits on A.. Similar considerations apply
to n, and x?. The asymptotic slopes of the (critical)
graphs define the dynamic critical exponents 8, 7, and z.
In general, the asymptotic power-law behavior is
modified by corrections to scaling, so that (at the critical
point) P, is more accurately represented by

P,=t %1+at %+ ---), @)

where 8’ is the correction-to-scaling exponent, and the
subsequent terms fall off more rapidly than t~%. (Similar
expressions are expected to hold for n, and x2.) In order
to estimate the asymptotic slope, it is therefore very use-
ful to plot the local slope

5 ___ln(Pt/Pt/m)

t

(5)

Inm

against ¢~ '. (In the present study m =5.) In such a plot

the asymptotic slope § can be read from the y intercept.
The exponents derived from this analysis are to be com-
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pared with the known d =1+1 directed percolation or
RFT values:>!!

5=0.162(4) ,
7=0.317(2) , 6)
z=1.272(7) .

(The numbers in parentheses indicate the uncertainty in
the last figure.)

The preceding discussion demonstrates the need to
determine quantities such as P, and n,, starting from a
single-particle initial configuration. While it is straight-
forward to implement the Markov process described in
Sec. II directly, the resulting simulation algorithm is very
inefficient when the density is low. (Most attempted
moves yield no change since a randomly chosen site is al-
most always vacant.) The efficiency of the simulation can
be improved by choosing site i —the location for the at-
tempted move—from a list of occupied sites, provided
one modifies the diffusion rate and the time increment ac-
cordingly. The creation and annihilation moves are as
before (but with o; surely equal to 1), but a diffusion
move now consists in choosing an occupied site i and a
nearest neighbor i +e at random, and moving the particle
from i to i +e, if 0, ,,=0. Let D’ be the fraction of at-
tempted diffusion moves in the new algorithm. The rates
for attempted diffusive and nondiffusive moves, for a
given particle, are in the ratio D'/(1—D'), whereas in
the original formulation this ratio is 2D /(1—D). (The
factor of 2 appears because a particle at i has two oppor-
tunities to diffuse—when either i or i —1 is chosen—in
the original algorithm.) Equating these ratios yields
D’'=2D /(1+D). In the new algorithm, creation and an-
nihilation moves occur with probabilities (1—D')A/
(14+A) and (1—D')/(1+A), respectively. The time in-
crement per move in the new algorithm is 1/n, where n is
the number of occupied sites just before the move: each
attempted move now represents, on average, L /n at-
tempts in the original algorithm. The choice of algo-
rithm is purely a matter of computational efficiency and
in no way affects the average steady-state or time-
dependent properties of the model. The symbols “D”
and “t” retain their original significance, given in Sec. II.

IV. SIMULATION RESULTS

The simulation method described above was used to
study the dynamics of the triplet annihilation model
along four trajectories in the A-D plane.

(a) D =0.5, with A varying between 0.725 and 0.717,
crossing the critical line A .

(b) A=0.1, with D varying between 0.6 and 0.58, cross-
ing the phase boundary at (A*,D*).

(c) D =0.55, with A varying between 0.017 and 0.022,
crossing the critical line A _.

(d D=0.3, with A varying between 0.0001 and
0.000 36, again crossing A _.

(See Fig. 1.) Case (a) serves as a check on the method
(RFT-type critical behavior along this line was estab-
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FIG. 2. Survival probability P, vs time from simulation of
the triplet annihilation model with A=0. 1, and various diffusion
rates. +, D =0.58; X, D =0.585; 0, D =0.59; &, D =0.60.

lished in Ref. 15), while cases (b)—(d) represent unknown
territory. In cases (a) and (b), the maximum duration of a
run t,, was 5000; ¢, =10000 in case (c). In case (d) the
creation rate is two orders of magnitude smaller than in
case (c), and the evolution is commensurately slower.
The maximum duration was therefore set at 500 000, and
a cluster of three particles was used as the initial
configuration. A lattice of 2000 sites sufficed to avoid
particles arriving at the boundary in cases (a)-(c); 6000
sites were used in case (d). Between 20000 and 50 000
runs were executed for each pair (A,D) of parameter
values studied in cases (a)—(c); considerations of comput-
er time limited the sample size to 8000 in case (d).

Typical results are shown in Figs. 2—4, which depict
P, n,, and x,z, respectively, for case (b). (The other cases
show a similar scaling behavior.) The corresponding lo-
cal slopes—3§,, defined in Eq. (5), and 7, and z, (defined
analogously) —are plotted versus ¢ ! in Figs. 5-7. From
these plots it is clear that P,, n,, and x? exhibit an asymp-
totic power-law behavior. The curvature of the P, and n,
plots for off-critical parameter values is also quite dis-
tinct. [In cases (a) and (c) this curvature is less evident,
and the critical creation rate A, can be estimated from
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FIG. 3. Mean particle number n, vs . Symbols as in Fig. 2.
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FIG. 4. Mean-square displacement of particles x? vs t. Sym- n | : ;
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the 8, and 7, graphs: distinct curvature as ¢ — o marks P
an off-critical value.] Once the critical parameters have Vud 1
been bracketed, the critical exponents can be estimated »
from the asymptotic behavior of the local-slope graphs. 1
The estimates for the location of the phase boundary and
the critical exponents are given in Table I. The phase- ]
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FIG. 6. (a) Local slope 7, associated with the growth in the
] particle number vs ¢ ~'. (b) Long-time behavior of 7,.
-0l2 . boundary estimates are in good agreement with the
steady-state simulation results.!> The critical exponent
(@) estimates for cases (a)-(d) are all in agreement with the
standard RFT values.
While the ultimate power-law behavior is the same in
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FIG. 5. (a) Local slope 8, associated with the decay of the
survival probability vs ¢ ~!. Symbols as in Fig. 2. (b) Long-time
behavior of §,.

FIG. 7. Local slope z, associated with the mean-square dis-
placement vs ¢ ~!. Symbols as in Fig. 2.
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TABLE 1. Critical parameters and exponents from time-dependent simulations of the triplet annihi-
lation model. Numbers in parentheses denote the uncertainty in the last figure(s).

Case A D, ) 7 z
(a) 0.721(2) 0.5 0.156(2) 0.32(1) 1.27(2)
(b) 0.1 0.587(4) 0.160(5) 0.34(3) 1.27(2)
(c) 0.0205(15) 0.55 0.160(5) 0.35(3) 1.28(2)
(d) 0.000 24(5) 0.3 0.154(8) 0.33(2) 1.24(3)
RFT (standard values®) 0.162(4) 0.317(2) 1.272(7)

*From Refs. 9 and 11.

mal” situation of extinction due to insufficiently rapid
creation, shows a linear trend in the local slopes. This is
consistent with a correction-to-scaling exponent 6'=1, as
expected for directed percolation in d =1+ 1.27 Cases (b)
and (c), which are diffusion dominated, have linear local-
slope plots only at very late times. In these cases the P,
plot is initially flat, reflecting the fact that annihilation is
unlikely at early times, since triplets are rare. In the ab-
sence of significant annihilation, the initial growth in n, is
exponential, albeit at a slow rate. This is seen in Fig. 3,
which also shows a crossing effect: the plot with the larg-
est population n, at short times has the smallest popula-
tion at long times. It is also worth noting that the
diffusive behavior is generally insensitive to variations in
A and D. Thus plots of x? and z, yield the exponent z,
but are of no assistance in locating the critical point. In
cases (c) and (d), diffusion is essentially normal (z,=1) in
the early phase of the dynamics, and then approaches
RFT-type behavior somewhat abruptly. The late and
nonuniform approach to scaling behavior in cases (c) and
(d) presumably reflects a crossover to RFT behavior at
late times, following an early stage which is dominated by
a different critical behavior associated with A—0 and
D —0. (The latter has not been studied in simulations.)
The slow approach to scaling is likely connected with the
difficulties encountered (in the steady-state simulations of
Ref. 15) in determining the exponent 3 on the critical line
A_.

V. DISCUSSION

The central conclusion to be drawn from the simula-
tions is that the triplet annihilation model exhibits

directed-percolation or RFT-type critical behavior at the
four representative points investigated. It seems quite
reasonable to extend this conclusion to the entire phase
boundary of the model. This result once again under-
scores the high degree of universality in the critical be-
havior of reaction-diffusion and related models: all tran-
sitions to a unique absorbing state have been found to be-
long to the RFT class.

The present result of uniform behavior along the phase
boundary of the triplet annihilation model is the simplest
outcome one could expect. Understanding the phase dia-
gram still poses a serious challenge, however. In particu-
lar, it is not clear, in a field-theoretic description, how an
increasing creation rate causes the disappearance of the
active state, nor how the diffusion rate, which ordinarily
merely sets the scale for a ‘“temperaturelike” variable,
can change the phase diagram qualitatively. The bare pa-
rameters A and D somehow form renormalized creation
and diffusion rates which govern the evolution over long
times and distances, but the details have not been worked
out. An important open question is how a field-theoretic
description of nonequilibrium processes should reflect lo-
cal kinetic rules.!*?
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