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(Received 10 October 1989)

It is shown that the conjecture proposed in a recent communication [Chhajlany, Mal'nev, and

Kumar, Phys. Rev. A 39, 5082 (1989)] regarding energy eigenvalues of the Coulomb-diamagnetic
problem in two dimensions is not correct because it leads to non-normalizable solutions. Their re-

sults (i) disagree with an exact solution of the problem that exists for a specific relation between the
associated coupling constants, (ii) disagree with the eigenvalues calculated by the method of Hill
determinants for arbitrary values of these couplings, and (iii) violate strict variational upper bounds.
We are able to verify numerically that the energy levels of the system calculated by the method of
Hill determinants do indeed show a 3%co,/2 spacing near the zero-Geld ionization threshold.

y=4E/(fico, ) —2m, a =16%/(fico, ) .

Writing the radial wave function as

(2)

R (g) =g' ~exp( —
g l2) exp( —Pg) g a„g", aoWO (3)

CMK reduce Eq. (1) to the following four-term recursion
relation:

n (n +p —1)a„+[a—P(p +2n —2)]a„

+(S+P' 2n+4) „—a, +P2„a,= 0, (4)

where p =2~m~+ I and 5=y —p —l. At this stage, they
propose a conjecture whose physical basis is never
clarified and claim that on requiring the multipliers of ak
and azk to vanish in (4) above, the energy spectrum of the
problem is given by the simple expression

Recently Chhajlany, Mal'nev, and Kumar' (CMK)
have reported what they conjecture to be the exact ener-

gy eigenvalues of the Coulomb-diamagnetic problem in
two dimensions. We wish to point out that their conjec-
ture, although elegant, is not correct. For convenience
we shall adopt the same notation as CMK and the reader
is referred to that paper for an explanation of the sym-
bols.

Working with two-dimensional cylindrical coordinates,
CMK consider the radial equation

R "+(I/g)R'+[y —m /g +a/g g]R =0—
in terms of the dimensionless radial variable g, the other
dimensionless variables being related to the energy E, the
Rydberg constant R, and the cyclotron frequency co, by

Ek =(iiico, /2)(2k+m + ~m ~+ I)
—A/(k + ~m~+ I/2) (5)

lim (a„/a„, ) —(2/n)'
fl —+ oo

(6)

This implies that the series g„a„g" behaves asymptoti-
cally as exp(g ) which renders the radial wave function
non-normalizable for arbitrary values of the energy —as
indeed should be the case. The two conditions imposed
by CMK [that the multipliers of a„and ai„ in (4) vanish
for some finite k] do not alter the asymptotic behavior of
the coefficients a„. Hence the solutions of the differential
equation (1) associated with the energies (5) for general
co, and A will also be non-normalizable.

For a more explicit demonstration that the energy ei-

The validity of the conjecture seems to hinge on the fact
that the energy spectrum (5) coincides with the Coulomb
spectrum in the limit co, ~O and with the Landau spec-
trum in the limit %~0, in addition to displaying equal
spacing in the limit of large n near the zero-field ioniza-
tion threshold (for which fact there seems to be some ex-
perimental evidence ). That the expression for the energy
given by Eq. (5) agrees with the expected result in the
limits stated above unfortunately cannot ensure that it is
correct for all values of co, and %. While the solutions
reported by CMK are indeed mathematical solutions of
the differential equation (1), in order to assert that they
are eigensolutions, we must be able to demonstrate the
normalizability of the associated wave functions.

From the recursion relation (4) it is clear that the dom-
inant asymptotic behavior of the ratio of the coefficients
1s
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genvalues of the system are not given by (4), one can con-
struct, for specific relations between the couplings, solu-
tions in which the series g„a„g in the wave function ter-
minates for n equal to some X, so that there can be no
doubt about the normalizability of such solutions. For
this we require a&+,(a, 5,P) =0 and the terms multiply-
ing the coefficients a~, and az 2 in (4) for n =%+2 to
vanish. This implies that 5=2%,P=O and ensures that
a&+, and all higher coefficients are zero. One can con-
struct an infinite number of such solutions, but for our
purposes the simplest will suffice. Thus for N=1 we
have a2=0 and 5=2 with P=O. This yields
A/(A'co, ) = (2l m

l
+ 1)/8 for which

R, (g)= Il —4[%/(A'co, )]' g/(2lml+1

X exp( —
g /2)

and

e, =(m + lm l+2)irido, /2 .

Notice that the solutions carry the subscripts 1 as they
possess one node since the wave functions R, (g) vanish

at g=(2lm l+1)(A'co, /%)' /4. One can verify by direct
substitution that (7) and (8) are indeed solutions of (1).
The corresponding CMK energies for R/(%co, )

=(2lm l+1)/8 are given by

E~ =[(lml+m +3)—(2 ml+1)/(21m +3) ]fico, /2 .

(9)

CMK results violate the strict variational upper bounds
and must therefore be unequivocally ruled out.

We choose as our trial functions

lt ~(g) =g' 'exp( —
g /2),

Pi(()=g' '+'exp( —
g /2),

and carry out a standard two-parameter linear variation
calculation for the energy levels. We obtain a quadratic
equation for the dimensionless variable y which for
m =0 is given by

(1 n/—4)y. (5 —
m

—&n—a/2)y

+6 ~ 2—&m—a+(n/2 1)a —=0 .

We choose m =0 in order to make contact with the Hill
determinant calculations reported above. The lower root
of this equation provides an upper bound to the ground-
state energy and the larger root an upper bound to the
first excited state energy of the system. These are also
plotted in Fig. 1 as dotted curves and it is evident that
both these bounds are violated by the CMK results,
demonstrating explicitly that the CMK results cannot be
correct. The HD results are always less than or equal to
the variational bounds. At co, = —", and % = —", , both the

variational and HD results for the first excited state agree
with the exact result —", given by (8) to 16 significant

places.
Thus the energy eigenvalues of the Coulomb-

Clearly the CMK conjecture does not agree with Eq. (8)
and must therefore be wrong.

For general values of R and co, there are, of course, a
number of numerical techniques for calculating eigenval-
ue spectra. In the present case we choose the method of
Hill determinants (HD). The normalizability of the solu-
tions generated by this method have recently been estab-
lished. The energies of the two of the lowest states cal-
culated by the HD method for m =0 and in units of
A=p=c =1 are shown in Fig. 1 as solid lines. The CMK
results are shown as dashed lines for comparison. The
energies have been plotted as functions of co, and A,
which for convenience have been constrained by the rela-
tion co, +A = 10. On comparison we notice that the HD
and CMK results agree with each other only in the limits
when either co, ~0 or %~0. Notice that whereas Eq. (4)
suggests a linear dependence of the energy on co, and %,
the HD results are curves which always lie below the
straight lines given by Eq. (5). However, numerical cal-
culations show that the CMK results come closer to the
HD values as we go to higher and higher values of the ex-
citation quantum number.

We have also checked that the exact solution for the
first excited state energy as given by (8) is e&o= —", for

co, = —", and % = —',o. The HD result agrees to 16
significant places. The corresponding CMK result, as
given by Eq. (9), is E,o= 'o~o.

To put the issue completely beyond doubt, we carry
out a variational calculation for the two lowest energy
levels for a given m. The purpose is to show that the
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FIG. 1. Energies of the two lowest states of the Coulomb-
diamagnetic problem as given (i) by CMK (shown as dashed
lines), (ii) by HD calculations (shown as solid curves), and (iii)

by variational calculations which provide strict upper bounds
(shown as dotted lines) are plotted (for rn =0 and in units of
R=p=c = 1) as function of co, (J7 being constrained by the rela-
tion cu, +J7 = 10). An exact solution has also been indicated.
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diamagnetic problem in two dimensions are clearly not
linear functions of the cyclotron frequency m, and the
Rydberg constant A as conjectured by CMK, although
the departure from linearity becomes progressively srnall-
er for increasing values of the principal quantum number.

Finally we address ourselves to the question of the
equal spacing of energy levels near the zero-field ioniza-
tion threshold. Here two findings are significant. Our
numerical calculations show that the levels calculated by
the HD method do indeed show equal separation of
3fico, /2 near zero energy in this limit. We have also

found that the CMK results approach more and more
closely the energy levels calculated by the HD method in
the limit of large n —the principal quantum number.
Thus the equal spacing of energy levels near the zero-field
ionization threshold that CMK demonstrate to be true
for their conjecture cannot be taken as evidence that their
results are correct, rather they are a consequence of the
fact that the CMK results approach the actual levels
more and more closely in the limit n —+ao. Details of
these calculations and a discussion of other features of
this system will be reported in a separate communication.

'S. C. Chhajlany, V. N. Mal'nev, and N. Kumar, Phys. Rev. A
39, 5082 (1989).

A. Holle, G. Wiebusch, J. Main, B. Hager, H. Rotte, and K. H.
Welge, Phys. Rev. Lett. 56, 2594 (1986); W. R. S. Garton and
F. S. Tomkins, Astrophys. J. 158, 839 (1969).

~R. P. Saxena and V. S. Varma, J. Phys. A 15, L221 (1982).

4S. N. Biswas, K. K, Datta, R. P. Saxena, P. K. Srivastava, and
V. S. Varma, Phys. Rev. D 4, 3617 (1971);J. Math. Phys. 14,
1190 (1973).

5M. Znojil, Phys. Rev. D 34, 1224 (1986); A. Hautot, ibid. 33,
437 (1986).

J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).


