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A two-dimensional vesicle of N monomers of diameter a (or a closed, planar, self-avoiding walk of
N links) subject to an internal pressure increment hp ~0 is analyzed. In the large-inflation scaling

limit x ~ gapa N '/kz T &&1, the mean area and mean-square radius of gyration vary as hp '"N '
with co=(1—v)/(2v —1)= —,

' and v =v/(2v —1)= —,, where v=
4 is the self-avoiding-walk size ex-

ponent. The results are related to Pincus's expression for the size of a stretched polymer chain.
Monte Carlo simulations confirm the behavior and yield the corresponding scaling functions.

I. INTRODUCTION

A vesicle is a closed membrane typified, in the real
world, by red blood cells which, as temperature, solution
pH, etc. , change, exhibit a variety of characteristic but
fluctuating shapes. The statistical mechanics of vesicles
is of interest as one aspect of the general theoretical study
of interfaces, random surfaces, membranes, and their in-
teractions. ' One would like to understand how the mean
sizes and shapes of vesicles in thermal equilibrium de-
pend (i) on the size of the enveloping membrane, mea-
sured by N, the number of constitutive units (e.g., lipid
molecules) in the surface, each of characteristic linear di-
mensions a; (ii) on the osmotic pressure difference, say,

~p =p;.—p..
measured between interior and exterior; and (iii) on
specific membrane properties such as the rigidity ~.

Real vesicles exist in (d =3)-dimensional space and
have (d'—:d —1=2)-dimensional surfaces. It is instruc-
tive, however, to study initially the simpler case of
(d=2)-dimensional vesicles enclosed by (d'=1)-
dimensional surfaces. Such a program was broached by
Leibler, Singh, and Fisher, ' (LSF) who performed
Monte Carlo simulations of two-dimensional vesicles
modeled by closed chains of N "hard", self-avoiding
beads (or disks) of diameter a linked together by loose

x =DpN with p =Apa /k~T, (1.2)

where D is a nonuniversal metrical factor specified below,
and v is the size (or "correlation length" ) exponent for
self-avoiding random walks. For d=2 dimensions one
may accept as exact the value

v= —,
' (d=2).

Then as N ~ ao with x fixed one has ' '

(1.3)

tethers of maximum extension lo & 2a between centers of
adjacent beads. (In the simulation of LSF, which we ex-
tend somewhat here, the value lo =—', a was adopted. ) For
zero pressure increment hp =0, this model simply
represents a two-dimensional "pearl necklace" of the sort
traditionally used to model polymeric molecules. [Of
course, bp now denotes a (d=2)-dimensional pressure. ]
Also discussed by LSF was a bending energy of magni-
tude fixed by the rigidity ~ and in a form proportional to
the square of the local radius of curvature of the vesicle
surface (or perimeter) as determined by the relative posi-
tions of three adjacent beads. However, for our present
considerations, which are restricted to Ap 0, the rigidi-
ty ~ will play no special role (and may be taken as vanish-
ing or as fixed but not large relative to Naks T).

It was concluded by LSF that the mean vesicle area
(3 ) and the radius of gyration (RG) obey scaling laws
in terms of the scaling variable
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( A } = AON 'Y(x),

(RG }v =RON 'X(x),

where the normalization equations

(1.4)

(1.5)

Y(0)=X(0)=1, Y, —=
d1'
dx

(1.6)

prove convenient and serve to specify Ao, R 0, and D for
any particular model. Note that these laws embody the
natural scalings: 3 —R, Ap —A ' —R, and, by
definition, R -X'.

The scaling laws (1.4) and (1.5) were checked by LSF
via Monte Carlo simulations using values of X up to 96
and found to be well verified. For large negative bp, cor-
responding to deflated vesicles, the scaling functions
X(x) and Y(x) approach asymptotic power-law behav-
ior. The observed exponents were successfully interpret-
ed in terms of a collapse of the vesicles into the form of
branched polymers. '

As observed by LSF, definite asymptotic power laws
should also be observed for hp &0, which describes
inflated Uesicles For. large Ap it is intuitively clear that
the vesicles should approach circular shape so that
RG —A; thus we may write

X(x)=X+x ", Y(x)= Y+x " (1.7)

as x ~~. Furthermore, if the picture of a circular vesi-
cle is correct, one should, with the normalizations
(1.4) —(1.6), have

(A } AOX+
77=

2
—+ =7T as X~ ~

(RG } ROY+
(1.8)

The checking of these relations and, in particular, the
evaluation of the exponent co are the principal objectives
of this paper. The results prove of significance for fur-
ther studies of planar vesicles. '

The investigation of these issues by LSF was only ex-
ploratory since they felt that computer limitations
prevented attainment of the proper asymptotic regime.
Nevertheless, they remarked on an analogy with the
problem of an open chain subject to a tensile force f ap-
plied to its ends. This situation had been studied much
earlier in an important seminal paper by Pincus. He
concluded that the mean projection ( Z~ } of the end-to-
end vector onto the axis parallel to f should obey the
scaling law

(Zz }=ZoN W(z),

where

erally. For d=2 one has y= —,
' and LSF confirmed this

prediction for open, planar tethered chains. [Webman,
Lebowitz, and Kalos' had checked the behavior for
stretched (d =3)-dimensional chains. ]

As regards vesicles, on the other hand, LSF stated, for
reasons explained later, that ( A }-N p ~ should be ex-
pected in the inflated regime; this would correspond to
co =

—,
' in (1.7). (The LSF simulations for Ap )0, however,

actually suggested that ( A } increases more rapidly than
N )W.e shall see below that the LSF expectation is actu-
ally incorrect. Rather one should find ( A }-N p corre-
sponding to ~= —,'; indeed this is well borne out by our
more extensive Monte Carlo simulations described below;
see Fig. 1.

In Sec. II we present a systematic derivation of the
value of ~ based on a result of Fisher" for the decay of
the scaling function describing the distribution of end-
to-end distances Rz of general self-avoiding walks. In
Sec. III we revisit Pincus's theory of a stretched open
chain (which also utilized Fisher's work) and rederive the
vesicle result from that perspective. Some other aspects,
including the "blob" picture are discussed in Sec. IV.

b, V~
= —bpA~ = —mbpR (2.1)

The opposing term represents the stretching free ener-

gy of the closed self-avoiding walk constituting the vesi-
cle perimeter. In the highly inflated regime this may be
regarded as composed of m almost linear and more-or-
less independent segments of M =N /m beads and
stretched length

RM =2mR /m . (2.2)

One may consider, for example, m=12. Now the proba-
bility distribution P(RM ) for the end-to-end vector RM
of a self-avoiding chain of M beads obeys the scaling

11,12

II. INFLATED VESICLE REGIME

In order to estimate the size of a vesicle in the highly
inflated regime we will accept the extremely plausible
conclusion that the limiting shape closely approximates a
circle of radius R, circumference 2mR, and area
Az =n.R . This is, in fact, confirmed by simulations:
see below. (However, an approach to any other fixed
geometric shape will yield the same value for co.) We
then aim to construct a constrained free-energy function
V(R;N, hp) whose minimization on R will yield the
desired mean value R(N, bp). Since the Boltzmann fac-
tor associated with a vesicle of area A is
exp(hp A /ks T), one term contributing to V is simply

(1.10) P(RM ) =M " P (RM /aM ) (2.3)

Pincus further argued that in the stretched regime of large
z one should have

1
W(z) = W+z~ with X=——1,

V

in which case one obtains ( Zz }—Nf ~. Although
Pincus focused on d=3, his conclusion applies more gen-

P(y) —exp( —c„y ) with 5=1/(1 —v), (2.4)

where cd is a constant. Note that there are power-law

where I' (y) is a scaling function which is universal if ap-
propriately normalized while a =O(a) is a nonuniversal
metrical factor. For large arguments, Fisher" demon-
strated that this scaling function decays as
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(and, possibly, other) prefactors omitted here but they are
logarithrnically negligible for y ))1. When v= —,

' the rela-

tion (24) reduces to the usual Gaussian law.
Renormalization-group calculations' also confirm (2.4).
If the end-to-end vector RM is fixed, the result corre-
sponds to a stretching free energy

9~(RM ) =cgks TRM /a M ' . (2.5)

b, PJv=m9~=cdks TR /a N ', (2.6)

This nonlinear spring free energy applies, of course, only
for y =RM/M")) 1.

Finally, we can use (2.5) to estimate the total vesicle
stretching free energy as
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(2.8)

where cd is independent of m, a striking result. One actu-
ally finds cd =(2nala .

) cd, but should not be surprised if
this relation should actually be modified by some fixed
factor to allow for the circular topology. To complete
the work we take V(R)=b 2,„+b,V and minimize on R
to find

0 0.5 1.0 1.5 2.0 2.5
x=D77(N n+,)e"—

FIG. 1. Scaling plot of data for the area and square radius of
gyration of two-dimensional vesicles of N beads demonstrating
the asymptotically linear behavior of the scaling functions X(x)
and Y(y) for n(RG) and ( A ), respectively. Units of a2 have
been used for R z and A. Note that the plot for

y = ( ERG ) /(N no )"has—been shifted upwards by hy =
—,
' for

clarity. The asymptotically negligible N shifts no and no+ are
explained in the text. The dash-dotted lines correspond to the
estimated large-x asymptote; see Eq. (2.10).

p«N ' or x«N ' (2.9)

as equivalent necessary (but possibly not sufficient) cri-
teria for the validity of vesicle scaling when hp & 0.

Finally, it is clearly of interest to test the conclusion
( A ) —n(R ) -N~p for planar vesicles by simulation.
The Monte Carlo data presented in Fig. 1 were obtained
along previous lines ' ' taking, as before, appropriate

while a =(2n/5cd) a. For d=2 the value v= —,
' yields

v+=
—,
' and ~= —,', confirming the behavior quoted in

Sec. I.
More generally one may contemplate closed self-

avoiding walks in d ) 2 dimensions spanned by a minimal
surface of (two-dimensional) area A and subject to a cor-
responding pressure hp. The same scaling theory applies:
thus, under high infIation, a circular disk shape will be at-
tained of radius given by (2.7). For d=3 a recent esti-
mate is' v=0. 592+0.002' this yields v =3.22+0.06
and co =2.22+0.06.

When v~ —,
' (as d~4 —

) one sees that v and co

diverge. This rejects the fact that a Gaussian chain,
yielding a harmonic stretching force, cannot resist any
infiation (bp )0). A tethered chain would exhibit no
scaling regime but rather expand directly to a limit set by
the tethers.

By a similar token, it is clear that when Ap increases at
fixed N, the system must eventually leave the scaling re-
gime, within which (1.4) and (1.5) are valid. If we sup-
pose lo/a =O(l) or, more generally, that the intrinsic
nonlinear bonds which couple the beads have a scale
length lo=O(a), the limit on scaling will be reached
when 27rR =Na, if not before. On using (2.7) and (2.8)
this yields

precautions regarding equilibration. However, in the
well-inAated regime it is not necessary to wait for a full
rotational diffusion time in order to obtain good data
since the close-to-circular shape ensures su5cient sam-
pling of the phase space on much shorter time scales.

In essence Fig. 1 represents linear plots of the scaling
function X(x) and Y(x) for ERG and 2, respectively; but
note that for clarity the former has been shifted vertically
upwards by Ay = —,'. Data for which the criteria (2.9) are
clearly starting to be violated, so that they depart sharply
from the general trend (as in Fig. 1 of LSF), have not
been included in the plot. The line of reasoning used to
derive (2.9) readily provides the asymptotic estimate

y, „(n)=n(lo/2na)~N' for the maximum ordinate in

Fig. 1 at fixed N. This gives a feel for the breakaway
points which are found to occur roughly at y =0.6y,„.
More concretely one has y,„=-1.6, 1.8, 2.2, and 2.6 for
N=36, 48, 72, and 100, respectively. The "N shifts"
no=0. 5 and no =9 have been incorporated, following
detailed studies, ' to hasten convergence when N~ ~ at
fixed x. These parameters effectively allow for the lead-
ing corrections to scaling which, on general
renormalization-group-theory grounds, one knows must
be present. The value D =0.0175+0.0015 has been used
in the plot; it is based on a careful analysis of the behav-
ior near x=0.

The good data collapse for different N values seen in
Fig. 1 evidently confirms the scaling law. The linear be-
havior, which sets in surprisingly soon as x increases,
validates the prediction 2co=1; the result v+=3 is then
implied via scaling. In fact, when the shift Ay =

—,
' is re-
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moved the two data sets coincide within the scatter for
x ~0.8 and indicate a common linear asymptote, thence
confirming (1.8), which is well described by

mR()X(x), Ao Y(x)=0.69x +0.26, (2.10)

when a separate analysis yields R 0 -—0. 1232+0.0015 and
Ao-—0.314+0.004. This estimate for the asymptote is
represented by the dash-dotted lines in Fig. 1. We may
note that further theoretical analysis shows that
~r(x)=(A)/(Ra) should approach its limit n (from
below) as 1/x . This is consistent with leading correction
terms in (2.10) of the form bx/x and br/x with bx & br
The approach of %. to m, observed in the simulations
serves, of course, to support the hypothesis that the high-

ly in6ated shape is circular.

III. STRETCHED OPEN CHAINS AND VESICLES

If, on the basis of the result (2.4), " we accept (2.5) for
the free energy of an open chain with fixed end points at
separation RM, we can address the problem of a chain
under a tension f simply by adding the term

bV/= —f RM (3.1)

For the mean projection of RM on f, minimization then
yields the result

Z —= ( Zb ) =a/N (fa /k& T)r =a&Nf r,
where y=v ' —1, as before, while

a/=a (a/a)'/"(5cd )

(3.2)

g/=kqT/f . (3.3)

It is then argued that the blobs become independent
when Z~ &&(&. If there are Mb =N/Nb monomers in a
blob, one expects

This is just the result found by Pincus; if the scaling an-
satz (1.9) is accepted, it implies the asymptotic behavior
(1.11) for the scaling function. This argument' appears
to us more direct and mathematically transparent than
the two original derivations of Pincus, which, however,
certainly merit further discussion.

In his first approach, Pincus accepts scaling with the
self-avoiding exponent v for low distortions as f~0.
Then he argues that "as the chain stretches, its average
monomer density decreases leading to a weakening of the
excluded volume effect. Thus for sumciently large forces,
we expect to eventually recover ideal behavior with
Z ~N rather than Z ~ N '" (where the last relation fol-
lows from scaling and the Hooke's law assumption Z ~f
for small f). The behavior Z-N for large f together
with scaling leads directly to (3.2) with &=v —l.

This argument is elaborated by de Gennes who en-
visages the chain breaking into a series of Nb weakly
stretched "blobs" of linear size Rb proportional to the
tensile length

then yields (3.2).
These arguments are appealing and, as we have seen,

their conclusions are surely correct. Nonetheless, on
reflection they give rise to various questions. The main
one concerns the "weakening" of the self-avoidance and
the "independence" of the blobs. Technically, in
renormalization-group terms, this amounts to the claim
that self-avoidance is irreleUant about the stretched chain
limit. For a highly stretched chain with Z=Na this is
reasonable (and can be argued more precisely in various
ways). However, the highly stretched limit lies beyond
the scaling regime. Although plausible, it is not obvious
that the irrelevance should be maintained in the stretched
scaling regime. The blobs, after all, are fuzzy and strong-
ly coupled to their neighbors. Said differently, there
might conceivably be a distinct, stretched self-avoiding
fixed point. ' Another potential pitfall connected with
the simple Pincus argument is that it makes it tempting
to suppose that the mean perimeter 2+R of an inflated
vesicle should, like Z, also become proportional to X.
This suPPosition leads to ( Ra ) —( A ) —N P r for vesi-

cles, as proposed by LSF; but, as we have seen this is

definitely not valid!
It is interesting, however, that the correct result for

vesicles can be obtained from the full Pincus result (3.2)
by a more careful argument. If an inflated vesicle in d di-
rnensions is regarded as a spherical bubble of radius R en-
closed in a surface of tension X, the standard arguments'
give

' v/( I —v)
a 2mR

a af
(3.6)

Combining this with (3.5) and solving for R yields pre-
cisely our original result (2.7).

A second argument aims at an analytic derivation of
(3.2) for d=3 which starts with an intermediate result in
Fisher's argument, " namely, that the self-avoiding-walk
analog of the two-point correlation function at a bulk
critical point decays as e " ~/r for T & T, . ' In princi-
ple, this approach should yield the desired result; howev-
er, the necessary analysis is nontrivial and the develop-
ment in Ref. 9 seems incomplete. ' Using the full result
(2.4) as in our derivation above, ' obviates the need for
further detailed calculation.

IV. BLOB PICTURE

It is interesting to pursue the blob picture a little fur-
ther for vesicles. Indeed, the size of a blob Rb may be re-
garded as measuring the intrinsic thickness or width of
the vesicle wall. From (3.1)—(3.6) we find' explicitly for
vesicles

(3.5)

Now, for d=2, we may identify the surface tension with
the stretching tension f and take Z = 2m R so that, using
(3.2), we have

Rb —(RM ) =aoMb
b

(3.4) R„=ao/k' r(pN)" (4. 1)

with ao=0(a). Finally, one has Z —(N/Mb)Rb, which where k =2m.a/ao; here a is the amplitude entering in
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N =ki/(& —v)( /D)1/(2v —I) —N x2OX (4.2)

where, as before, x =DpN is the scaled pressure vari-
able and v= —,

' in the last equality.
Now the vesicle perimeter of mean length I. =2~R will

undergo transverse thermal wandering, ' of a magni-

tude u, ,= (kz TL /f )
'/ = (2n k~ T/b p) '/ . These

thermal fluctuations are responsible for the leading devia-
tion of the vesicle shape from a perfect circle. Relative
to the radius of the vesicle they have a magnitude

/R N
—v g

—1/2(2v —I) —I /2(2 —I)~ rms (4.3)

where for v= —,
' the final exponent is just —1. On the oth-

er hand, the ratio of the intrinsic width to the amplitude
of the wandering is found to be

Rb

~ rms

(a /2sra )

k 1/r( /D )
I /2( 2 v —I )

(4.4)

Surprisingly, this has precisely the same form as u, , /R,
decaying as I/x when v= —,'.

These considerations also apply to the model, men-
tioned after (2.8), of a self-avoiding loop in d dimensions
spanned by a minimal surface subject to a two-
dimensional pressure. The decay in (4.3) and (4.4) is then

the expression (2.7) for the mean radius R of an inflated
vesicle. Note that R& decreases as N increases, but be-

comes large when p ~0. The number of blobs making up
the perimeter can similarly be written

approximately like I/x2 7 for d =3.
Finally, by employing the estimate (2.10) for the varia-

tion of R at large inflations we find a/a =0.062O. Here
we have used the value of D quoted above Eq. (2.10). If,
in (3.4), we identify Rb in terms of the root-mean-square
end-to-end distance of an open chain, we find

ac=ro ——0.86sa. Thence the constant in (4.2) is found to
be No =132. For x =0.6—1.3, which, as seen in Fig. 1, is
where the inflated region is established, this means the
number of blobs lies in the range 50-220. Since our typi-
cal simulation entailed only N =60-150 beads (or mono-
mers) the conclusion is that the blobs consist of at most
two or three beads. In these circumstances the picture of
blobs is hardly realistic. Its success must rather be inter-
preted as a convenient way of envisaging in concrete
terms the basic scaling properties. Evidently, as happens
not infrequently, the asymptotic behavior sets in sooner
than might be anticipated.
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