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Coupled integral equations for bound states of two spin-0 bosons are derived variationally from
scalar quantum electrodynamics, using an ansatz which incorporates the transverse photon degrees
of freedom of the electromagnetic field. The equations are decoupled approximately and then

solved perturbatively as well as numerically. A perturbative eigenenergy formula for particles of ar-

bitrary masses, including all the corrections of order a, is obtained. A variational solution of the
wave equation is used to determine eigenvalues and eigenfunctions at arbitrary coupling for the 1s

and 2p states of the equal-mass and mz/m cases. Radial s-state excitations are calculated using

the basis-state expansion method. In the limit where one particle becomes infinite our equation
turns out to be the same as the weak-field limit of the Klein-Gordon-Coulomb equation.

I. INTRODUCTION

In a recent paper' (hereafter to be referred to as I),
Darewych and Horbatsch have discussed various relativ-
istic bound-state systems of two particles interacting elec-
tromagnetically using the variational method within the
Hamiltonian formalism of quantum field theory. Since
the approximate variational ansatz used in I is not sensi-
tive to the transverse photon degrees of freedom of the
electromagnetic field, the resulting equations do not con-
tain effects of transverse photon exchange. Those equa-
tions describe the relativistic bound-state systems of two
particles interacting via a pure Coulomb force. For real
physical systems their applicability is, thus, restricted.
For example, for positronium and high Z ions the incor-
poration of transverse photon effects is important and has
been discussed by Darewych and Horbatsch and
Dykshoorn and Koniuk for two-fermion systems.

As pointed out in paper I, one can incorporate, in prin-
ciple, all interaction effects by constructing systematically
improved ansatze. In this paper we use an ansatz with
the minimal modification that is necessary to sample the
transverse photon degrees of freedom, to obtain and solve
modified bound-state equations for systems of two scalars
(spin-0 bosons) interacting electromagnetically. Even
though no observations of electromagnetically bound
states of oppositely charged pions and kaons have been
reported so far, they are believed to be formed if sumcient
amounts of exotic matter are accumulated. The lifetimes
of free pions and kaons are 2.6X 10 and 1.2 X 10 sec.,
respectively, and give bounds on the lifetimes of such
bound states.

The plan of the paper is as follows. In Sec. II we derive
the coupled variational bound-state equations for systems
of two scalars. In Sec. III we approximately decouple
these equations and renormalize the particle masses.
%ithin this decoupling scheme, the nonrelativistic limit
and the limit where the mass of one particle becomes
infinite are compared with the Schrodinger and Klein-

Gordon equations, respectively. Perturbative and numer-
ical solutions of the decoupled equations are presented in
Secs. IV and V. Conclusions are summarized in Sec. VI.

II. COUPLED BOUND-STATE EQUATIONS

where
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with

(2.2)

(2.3)

(2.4)

p(x) =ie, (P'tr, ttpn~)+ie~(Q—'n ~ Qtr~), —(2.5)

and %&(x) takes the same form as &&(x) but with e, and
Mo replaced by e2 and mo. In Eqs. (2.2) and (2.5), n.

&
and

n, are the conjugate momenta of t)) and P*, respectively.
The Hamiltonian density for the system of a scalar parti-
cle and its antiparticle is given by

%(x)=%&(x)+A.,(P'P) +% (x)+Ac(x), (2.6)

We derive variational bound-state equations for two
different systems of two scalars: one system consists of
two distinct scalars and the other of a scalar and its an-
tiparticle. As in paper I, the Hamiltonians are construct-
ed by the canonical prescription from the covariant La-
grangians. In the radiation gauge V A=O, the Hamil-
tonian density for the system of two distinct scalars of
masses M and rn, and charges (absolute values) e, and e2,
takes the form

A(x) =%&(x)+%'&(x)+A,'P'Pf'P+, %r(x)+Ac(x),
(2.1)
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where %&(x), A (x), and %c(x) are all as before but

with

p(x) =ie, (P*vr, P—n.~) . (2.7)

k, and A.,' are coupling constants for the contact interac-
tion that arises in scalar QED. '

We Fourier decompose the field operators at time
t=O. For the scalar fields we have

tions. The nonvanishing ones are

[ AM (p» AM(q)1= [8~(p»BM (q) l =~'(p —q),

[ A (p), A (q)]=[8 (p), 8 (q)]=5'(p —q),

[a (k, A, ), a (k', A.')]=5 (k —k')5ii, ,

(2.10a)

(2.10b)

(2.11)

P(x)= fd q[(2ir) 2Q&]
' [AM(q)e' '"

+BM(q)e 'q "], (2.8a)

P"(x)=f d q[( 2~) 2Q~] ' [Asr(q)e

+8 (q)e'q "], (2.8b}

' ]/2

m (x)=i f d q [AM(q)e
2(2n )

(q)e'q "], (2.8c)

0,( )x=. i d—q
2(2m )

' ]/2

[AM(q)e'q"

—BM(q)e 'q "], (2.8d)

where Q =(p +M )'~ . Similar decoinpositions hold
for 1{(x),ir&(x), etc., but with M and Q replaced by m

and ai~ [co~ =(p +m )' ]. For the electromagnetic field

we have

l2) = f d'pF(p)BM( —p) A (p)l0)
2

+ g f d p, d p2G(p„p2, A)Kr(p2. )A~(p, )

Xa (
—p, —p, A, }l0), (2.12)

while all other commutators vanish.
Since we are not interested in the vacuum energy prob-

lem, we normal order the Hamiltonian operator
H= J d x&(x) after having expressed it in terms of A,

8, a, etc. The operators A and A (8 and 8) are
identified with the creation and annihilation operators of
positively (negatively) charged free scalar particles, and
a and a with these operators for free transverse pho-
tons. At this stage m and M in the Fourier expansions
of scalar fields are still adjustable parameters, and mo and

Mo in the Hamiltonian density are the "bare" masses. In
Sec. III we renormalize the masses and identify m and M
with the physical particle masses.

For the system of two distinct scalar particles, the im-
proved two-particle ansatz is taken to be'

2

A(x) = g f1 ke(k, A, )[(2ir } 2 kl ]

X[a(k, A)e'"'"+a (k, k)e '""],

2

A(x)= i g f d —ke(k, A),
2(2~}

X [a(k, A.
)e'"'"—a (k, k)e '" "],

(2.9a)

(2.9b)

where F and G are variational coefficients to be deter-
mined from the variational principle. l0) is the trial
vacuum state, which has the defining property
a(p, k, )l0) =0, and similarly for the A and 8 annihilation
operators. For the system of a scalar particle and its an-
tiparticle A is replaced by AM in Eq. (2.12).

In the case of two distinct scalars, the variational prin-
ciple

(2.13)

where the transverse polarization vectors, e(k, A, )

(A, = 1,2), satisfy e(k, A. } k =0. The momentum-space
operators, A, B, a, etc., obey the usual commutation rela-

and functional differentiations with respect to F and G
lead to the following coupled integral eigenvalue equa-
tions corresponding to the eigenenergy E:

mo —m Mo —M eie2
3 F(q) (Q&+Q~)(&@~+co~)—(A. ', /e&e2)(q —p)

co +Q + + EF(p)= —d'q2' 2Q (2~)3 lq
—pl2 4(Q Q co co )'~

&)
e(q —p, &).(p+q)

(4~)'" = ( iq —pl)'"

(4~)'" i =,
' '

(~,~, lp —ql )'"d qG(q, —p, A. ) (2.14)

and
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g f d'qG(q, p„l')
(4~„~,Ip1+pzllpz+ql)'"

)(Q +Q, )
—(k,'/e, ez)(p, —p', )

p~

4(cop co, Q~ Q, )'
p) p) pp pq

(2.15)

2

d qF(q)
(2m ) 12Qp Q

(2.16)

For the scalar particle-antiparticle system, we note that
the two coupled equations are the same as above but con-
tain an additional term in each equation. The additional
terms are

III. APPROXIMATE DECOUPLING
AND MASS RENORMALIZATION

The coupled equations obtained above are, evidently,
not easy to solve. We can, however, use the following ap-
proximate method to simplify them: in Eq. (2.15), to the
lowest approximation, i.e., 0 (a ), where a =e, ez/4n, we

may take
and

2

3 f d p1d p ~25 (p1+pz p1 pz)

E —
cop +QpPl

o ad M Mo

(3.1a)

(3.1b)

G( i ~) (Q —Q )(Q, —Q, )
2

and omit the terms that involve integrals of the function
G. Therefore, we have

(2. 17)

for the right-hand sides of Eqs (2.14) and (2.15), respec-
tively, and A.'„m, and e2 are to be replaced by 4X„M,
and e1 ~ The two additional terms represent the interac-
tion effects from virtual particle-antiparticle pair annihi-
lation into a Coulomb photon without and with the pres-
ence of a transverse photon, respectively.

1 e( —
P

—
Pz ~)'(P —

P )

3/2
I I

3/2(41r ) ~P1+ P2

e1F(p1) ezF( —pz)
X + . (3.2)

(Q Q )' ' (cd co )' '
Pl Pg Pl Pg

Substituting Eq. (3.2) into Eq. (2.14), we obtain a single
decoupled bound-state equation:

mo —m Mo —M2 2 2 2

F(p) (co +Q F.)+ +-
2ct)

p
20

1 f 3 ~ [&(p—q, k) p]
2 2
1 + 2

20P 0
q 2cop coq

where

K p, q, 3.3a
(2') p —q

2

K(p, q)=
(co +co )(Q +Q )—A.,'(p —q) +4 g [e(p —q, A, ) p]'

A, =1

4(copco Q Q )'
(3.3b)

This approximate decoupling procedure is justifiable to
order e from the perturbative point of view. The fact
that we have used a limited Fock-space ansatz [Eq. (2.12)]
means that we cannot reproduce perturbative results ex-

I

actly beyond a", irrespective of whether Eqs. (2.14) and
(2.15) are solved exactly or approximately [as is done
below in Eq. (3.3)]. To obtain the correct higher-order
terms would require the inclusion of additional Fock-
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space states in the ansatz (2.12).
We note that the left-hand side of Eq. (3.3a) does not

have the expected rest-plus-kinetic-energy form,
(p +M )' +(p +m )', unless we choose the adjust-
able parameter M such that

0(~q~ ~A). Any physically observable quantities that
are derived must, of course, be independent of the cutoff
and indeed of the renormalization procedure.

We also note that the same renormalization conditions
are obtained if a variational one-particle ansatz analogous
to the two-particle ansatz (2.12) is considered. With

Mo —M =
[p —q['Q,

X [~(p —q~) p]'
el p 3 A. =1

(2n. }
q (3.4)

~1)=ca' (p) ~o)

2

+ g f d'qg(p, q, A, )B~(q)a (p —q, i)~0), (3.5)

and similarly for m and mo. These are just the mass re-
normalization conditions that arise from the transverse
photon degrees of freedom. Their imposition reduces
(3.3a) to a form in which m and M can be identified with
the physical particle masses. We should mention that the
formally divergent integral in (3.4) is controlled by a
cutoff procedure (for example, in the finite domain

I

the variational principle

(3.6)

yields the coupled eigenvalue equations for the variation-
al coeScients C and g and corresponding eigenergy E„
v1z. s

and

Mo —M
(F. —Q )C=C

2n
e(p —q, i. ) (p+q)

(4 )'" [Q Q ~p
—q~]'" (3.7a)
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2
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(2m. ) i =i [4Q Q .~p

—
q~~p

—q'~]'~2
(3.7b)

Making the lowest-order approximation in Eq. (3.7b), we
have

K(p, q)=Ec(p, q)+ET(p, q) .

Here,

(3.12)

e(p —q, k) (p+q)
(4 )''[QQ

~

— ~']''

Substituting (3.8) into Eq. (3.7a) yields

(3.8) (Q +Q )(co~+coq) —(k,'/e, e~)(p —q)
&c(p q) = ' '

i/24(Q Q co coq)

(3.13}

M —M
E —0 =

2n
P

d3~ [~(P—q ~) P]
2(2m. )' q=i ~p

—q~'Q~Q,

(3.9)

and

&r(p q)= p' —[p (p —q)]'~(p —q}'
(Q~Qqco~co )'~ (3.14)

This procedure is justifiable perturbatively, just like the
approximate decoupling of the two-particle equations.

We require that the one-particle energy E, be of the
form

F. =Q =(p +M }' (3.10)

(co +Q —E)F(p)= J d qF(q)
It (p, q)

(2m) ~p
—

q~

where

(3.1 1)

where M is the. physical one-particle mass. Then from
(3.9) one obtains the same equation as (3.4), i.e., the mass
renormalization condition.

Using these mass renormalization conditions, we ob-
tain, from Eq. (3.3), the following bound-state equation
for the system of two distinct scalars:

Likewise, for the system of a scalar particle and its an-
tiparticle, we obtain, by using the above approximate
decoupling scheme,

2

(2Q —&}F(p)= fd'qF(q)
(2~)'

E(p, q) p q

ip —
qi 12Q Q

(3.15)

where It(p, q) takes the same form as above but with A,,'
replaced by 4A,

We note that Eqs. (3.11) and (3.15) are of the same
forms as those presented in paper I. Furthermore, setting
KT=O leads to the equations for the case of the purely
Coulombic interaction given in that paper. This shows
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that KT represents the transverse photon contribution to
the interaction energy.

In addition, in the nonrelativistic limit (where
II =M+p /2M and co =m+p /2m), expanding the
kernels in powers of p/m and p/M, we find that, in the
lowest-order approximation, both (3.11) and (3.15) reduce
to the momentum-space Schrodinger equation for a non-
relativistic system of two particles interacting via the
Coulomb potential, viz. ,

m +M+ ——+ p EF—(p)
1 1 1

2 m M

indicates that the transverse photon degrees of freedom
do not manifest themselves in this limit.

IV. PERTURBATIVE SOLUTIONS

Equation (3.16) has the known eigenenergies (fi=c = 1)

E =m+M ——1 pa
nlm( 2 2n

(4.1)

where Ju=mM/(M+m) is the reduced mass, a=e, e2/
4m and n, l, ml are the usual quantum numbers. The cor-
responding eigenfunctions ' are

Id l7 . (3.16)
(2n. ) ~p

—
q~

F.i.,
=f.i(p) YI., (~ q»

where

(4.2)

In the limit where the mass of one particle (say M) be-
comes infinite, Eq. (3.12) reduces to f„((p)=

' 1/2
2n (n —I —1)! 2zi+2I!rr~+5&2~

m(n+I)!

(co~ E, )F(p—)=,f d q 2(2n)' 2 ~ ~, p
—q'

(3.17)

where E, =E—M. We note that this equation happens
to be identical to the weak field limit of the Klein-
Gordon equation. The same equation is obtained in the
purely Coulombic case, i.e., setting G=O in (2.14) or,
equivalently, KT=O in (3.12) for the M~ ao limit. This

I

l 2 2l+i
2 2 I+2 " I i 2 2(p+r ) p+r

In the above, r =pa/n, C„'+I, are the Gegenbauer
functions, and Yl are the spherical harmonics.

(

Using the zeroth-order approximate wave function and
Eqs. (3.11) and (3.16), we obtain the lowest-order relativ-
istic correction to the nonrelativistic energy (cf. Ref. 1),
viz. ,

nlm nlm

1
F„l p co +0 — m+M+ pnlm( p p

2rM

d p
— JF„'& (p)F„I (q) '

2
d pd q

= —
—,'a p +4 4 1 1

3 M3
1

n (I+ —,')
3

4n4

3
1

4 3

+ ~oi-
4m Mm n

' Mm

3

21+ 1
+O(a ) .n' n4

(4.4)

The three terms in the last two lines of Eq. (4.4) are, re-
spectively, the o. contributions of the relativistic kinetic
energy, the Coulomb interaction, and the transverse pho-
ton exchange interaction.

Rearranging (4.4), we obtain

term on the right-hand side of Eq. (3.15) affects only p
states and contributes at order e and higher. This is not
difficult to understand, as this term represents particle-
antiparticle annihilation into a Coulomb photon.

2 4 2

E=m+M —",+n' 8n4

o4' 1p 1

Mm n3 4~a

o.4p 1

21+ 1

(4.5)

V. NUMERICAL SOLUTIONS

Letting F(p) =f (p) YI (O, y) and carrying out the an-

gular integration in (3.11) or (3.15), we obtain the radial
integral equation

We note that, except for the last one, all terms in this ex-
pression are the same as those given by an empirical for-
mula quoted by Itzykson and Zuber (Ref. 9, p. 84).

For the particle-antiparticle system, to order 0. the
perturbative energies are exactly the same as Eq. (4.5)
with k,' replaced by 4k, . This occurs because the second

f (p)(co +II E)=—I f (q) —K(p, q)dq, (5.1)

where the radial kernels K(p, q) for s and p states are
given in the Appendix. We note that the term with cou-
pling constant A. ', or A, , in K(p, q) only contributes to the
s-state radial kernel K(p, q). The second term in (3.15)
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r

X pp, Np p (5.2)

where po, N are variational parameters and f (p,po, N) are
generalizations of (4.3); for example,

1
for the 1s state,

(p 2+p 2)

f (p»po») =
z z ~ for the 2p state .

(P2+P2 )N

(5.3)

(5.4)

The variational wave-function parameters are determined
from

BE =0 and
BE
Bp

(5.5)

and the corresponding minimal value of E(po, N) is taken
as the approximate eigenenergy for each a.

Figure 1 is a plot of the eigenenergies as functions of a
for the 1s, 2s, 2p, and 3s states of the system of two dis-
tinct particles when A.,'=4~a. Two mass ratios are con-
sidered: the lower four curves are for M=m, while the
upper ones are for M= (rnid /m )m, where mx /m „
=3.53697, i.e., the mass ratio of I( to ~ mesons. The 1s
and 2p results were obtained using both the variational
and basis-state expansion (BSE) methods, but only the
variational results are shown on the graph for these
states. The BSE results agree to within plotting accuracy
with the variational ones, except near the critical cou-
pling, where they are slightly higher and extrapolation to
an infinite number of basis states is required (see Ref. 1).

only affects the p-state radial kernel. In fact, these
characteristics are already evident from the perturbative
energies.

Before solving (5.1) approximately, we note that for the
s-state case in the massless limit, viz, m =M=0,
Eq. (5.1) has the exact solution f (p)=1/p, E=O at
a0=8n. /(n +12)=1.149. . . [or a0=8~/(m +4)
=1.812. . . for the purely Coulombic case as pointed out
in paper I]. This is true only for A, ', =4m a (or A,, =n a for
the particle-antiparticle system), while for other values
of A, ', (or A,, ) and for 1%0 no analytic solutions of Eq. (5.1)
have been obtained.

Equation (5.1) can be solved approximately in different
ways. ' ' Using the variational method we have ob-
tained eigenvalues and eigenfunctions as functions of
a=e, ez/4m for ls and 2p states in various cases. For
comparison purposes we have also calculated some re-
sults for the radial excitations using the basis-state expan-
sion method, which has been discussed in paper I.

In the variational approach, Eq. (5.1) is replaced by

E(p oN)= f dp(co +0 )p f (p,po, N)
0

f f PdP 9dVf (P Po»)

Xf (q,po, N)K(p, q)

5.0
E/m

4.0

l
~ P

3.0

2.0 0 ~

1.0

0.0
0.0 0.5 1.0

a
1.5 2.0

One can observe that the energies for all states start
out at weak coupling from the nonrelativistic values and
exhibit the corresponding angular-momentum degenera-
cies. As the coupling increases, however, the energy
curves decrease rapidly and this degeneracy is broken.
The energies for the 1s states decrease rapidly towards
zero at a critical coupling a0=1.15, independently of the
mass ratio. Note, however, that another critical coupling
value, namely the one at which the system becomes un-
stable with respect to decay into a particle-antiparticle
pair of the lighter species (mass m), decreases slowly as
the mass ratio increases. This effect was studied in I for
the purely Coulombic case. The value of ao for the 1s
state, found here for the massive case, is quite close to the
analytic massless result of 8m/(m +12) discussed above.
The energies for the 2s and 3s states drop rapidly towards
zero at about a=1.3 and 1.5, respectively, while for the
2p states this behavior sets in at around a=1.8.

The variational parameters po and N for the wave
functions (5.3) and (5.4) are plotted in Figs. 2 and 3, re-
spectively for the 1s and 2p states. We note that the
momentum scale parameter po, for each state, increases
rapidly from the nonrelativistic result pa/n, as a in-
creases towards ao. Both power parameters N decrease
monotonically from the nonrelativistic values 2+ l down
to 1+I/2 as a~ao. (Note that the wave functions are
not normalizable for N ~ 1+1/2. ) The variation of the
power parameter as a function of a is almost independent
of the mass ratio.

In Fig. 4 we compare the results for the equal mass,
M =m, 1s state in both the pure Coulomb and
Coulomb+ transverse photon approximations. These re-
sults are the same for the system of two distinct particles,
as well as for the particle-antiparticle system due to our
choice of k, =~a and k,'=4m-a. The energies corre-
sponding to the two cases begin to differ significantly
beyond a =0.5. The wave-function parameters, however,
and, in particular, the power parameter N, begin to

FIG. 1. Two-particle bound state energy E/m as a function
of the coupling constant a for the case M=m (lower set of
curves) and M =3.537m (kaon-to-pion mass ratio) when
A,,' =4ma. +, 1s; X, 2s; ~, 3s, 6, 2p.
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4.0
po/m

3.0

2.0

0 'I l l ~ I l / ~ f 0 I I ~ I I l $ I I I I I I f I l $ ~ I f I ~

I

/

~ 0 I l l ~ ~

20
E/m
Pg/IIl

N

1.5

1.0

~ ~

1.0 0,5

0.0
0.0 0.5 1.0

a
1.5 2.0

I I I I I I I I I I I I I I I I I I I I I I I I I 0.0:-
0.0 0.5 1.0

a
1.5 2.0

FIG. 2. Variational parameter pp/m as a function of the cou-
pling constant a for the 1s-states (+) and for the 2p states (6)
shown in Fig. 1. The M=m results are connected with solid
lines while the M& /m values are shown as dashed lines.

FIG. 4. Energy and variational wave-function parameters for
the 1s state in the M =m case. Solid line and solid symbols,
Coulomb+transverse photon exchange; dashed line and open
symbols, pure Coulomb case; crosses, E/m; circles, N; squares,
Po/m.

diverge at weaker coupling. This behavior might be ex-
pected, as first-order deviations in the wave function ap-
pear only in second order in the energy. Thus one should
expect that at weak coupling, effects of transverse photon
exchange will be more easily detected in quantities that
depend sensitively on the wave function (e.g. , decay
widths).

Figure 5 shows similar results as Fig. 4, but for the 2p
state of the particle-antiparticle system. The 2p state is
less relativistic than the 1s state and differences between
the pure Coulomb and Coulomb+ transverse photon ap-
proximations set in at stronger coupling: the energies be-
gin to deviate from each other beyond a = 1, but again, as
in the 1s case, the power parameter N behaves differently
in the two approximations for couplings as low as a =0.2.
Unlike for the other cases, the power parameter N does
not decrease down to I+I/2= —', as a~ao due to the ex-
tra annihilation contribution [see Eqs. (3.15) and (A4)].

Figures 4 and 5 show that the inclusion of transverse
photon exchange reduces significantly the values of the
coupling constant at which the energies turn towards
zero. This is not unexpected, as the transverse photon
exchange contribution is attractive and a similar effect
has been observed in the case of bound pairs of fermions.
A note of warning is, however, in order: the pure
Coulomb results are obtained in a variational approxima-
tion to the field theory without further approximations.
The results including transverse photon exchange, on the
other hand, were obtained by approximately decoupling
the variational equations. This way of decoupling the
equations suggests that the ao values derived from the re-
sulting single integral equation may be too low and that a
proper solution of the coupled equations (2.14) and (2.15)
will lead to higher ao values.
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FIG. 3. Same as in Fig. 2 but for the power parameter N.
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FIG. 5. Same as in Fig. 4 but for the 2p state of the particle-
antiparticle system. The energy eigenvalues are marked by tri-
angles.
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FIG. 6. Two-particle bound state energies E/m for the 2p
states of a pair of distinct particles of equal mass (open trian-
gles) and a pair of identical particles (solid triangles) in the pure
Coulomb case (dashed lines) and the Coulomb+transverse pho-
ton case (solid lines). Dotted line, Eq. (5.6).

FIG. 7. Single-particle energy El /m (El =E—M) from the
M~ ~ limit. +, 1s; X, 2s; ~, 3s; k, 2p. Shown as solid lines
are the Klein-Gordon-Coulomb results for ls, 2s, 3s, and 2p.

(5.6)

where

=n —(I+ ' )+[(/+ '
)

—a ] (5.7)

In Fig. 6 we compare the 2p-state energies for pairs of
identical and distinct particles of equal mass and opposite
charge for KT=O and KTWO. Also provided is a plot of
an empirical formula given in the book of Itzykson and
Zuber. It can be seen that the energies for the cases of
identical and distinct particles disagree in the strong rela-
tivistic limit and that the discrepancy is evident already
in the pure Coulomb case. The formula provided by
Itzykson and Zuber,

value for the ls state does not go to zero. The BSE re-
sults, however, do extend towards zero, but show a very
slow convergence with respect to the number of basis
states. It is very difficult to obtain numerically accurate
results from either method in this regime.

For the 2p state our energies, in the M~~ limit,
agree closely with the Klein-Gordon results up to a =1.5,
which corresponds to a maximum value of the coupling
constant for all p states in the Klein-Gordon equation.
The situation is different for the radially excited s states.
The Klein-Gordon eigenvalues become complex beyond
a=0.5 independently of n. For n ) 2 the imaginary part
is initially small and the real part of the eigenvalue con-
tinues to fall in the vicinity of +=0.5. By contrast, the
BSE results for our integral equation show a distinct n

dependence in the variation of the eigenvalues beyond
a =0.5.

is based on the Klein-Gordon result, taking into account
the relative motion of the particles. In analogy with the
Klein-Gordon spectrum, the eigenvalues are real for a
given angular momentum value only up to some max-
imurn coupling constant. This maximum coupling con-
stant is even smaller than the critical coupling ao for our
ET%0 case. The situation is very similar in the case of s
states. We note that, in contrast to the empirical formula
(5.6), our critical coupling values ao are n-dependent.

We have also worked out the solutions of the integral
equations in the limit M ~ Oc . In this limit the transverse
photon contribution disappears, as can be seen from Eq.
(3.14). It turns out that our integral equation becomes
identical, in this limit, to the approximately decoupled
Klein-Gordon equation in momentum space [Eq. (2.58) in

Ref. 6]. The variational solutions to the equation for the
1s and 2p states follow the Klein-Gordon results quite
closely, as can be seen in Fig. 7. For o, )0.5, the Klein-
Gordon energy E„becomes complex. " Our variational
results indicate that at o:=0.515 the variational power
parameter cV reaches the boundary value at which the
wave function is no longer normalizable, while the energy

VI. CONCLUSIONS

We have used a limited Fock-space ansatz, in a varia-
tional formulation of scalar QED, to derive wave equa-
tions for systems of two bound scalars of arbitrary mass.
The coupled equations that are obtained by using a pure
two-scalar and two-scalar+transverse photon Fock state
ansatz were decoupled approximately resulting in a single
integral equation. This wave equation is shown to con-
tain all energy contributions up to order a, when com-
pared to the standard perturbative approach, as happens
also for the system of two bound fermions. '

In contrast to the two-fermion case, however, it is pos-
sible and indeed necessary' '" to include a scalar interac-
tion term [A.,(b*$)] (or A. ', P*Pg*g for the system of two
distinct scalars) in the Lagrangian. This then raises the
question of choices for the coupling constants A., and k,'.
Although for s states it is possible to choose them in such
a way that the resulting kernels become the same for
pairs of identical and distinct scalar particles, the choice
of proper values for A, and k,' eventually will be dictated
by experiment. In the present work we have made a
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choice of A., (or A, ', ), which ensures that the s-state in-

tegral equation possesses an analytic solution in the mass-
less limit. For states that carry angular momentum, this
scalar contact interaction term does not contribute.
There is, however, a difference in the p-state kernel for
pairs of identical versus distinct scalars of the same mass,
which is shown to be important in the strongly relativis-
tic regime.

Numerical solutions were provided for the 1s and 2p
states using a variational method (thereby giving insight
into the form of the wave functions) and a basis-state ex-
pansion method for radial s-state excitations. It is shown
that the inclusion of the transverse photon degrees of
freedom reduces the values of the critical coupling con-
stant ao near which the bound-state energy drops rapidly.
Differences between the wave functions for the pure
Coulomb and Coulomb+transverse photon cases show
up even for intermediate coupling.

Future work should address the question of solving the
coupled integral equations without approximately decou-
pling and of further improving the Fock-space ansatz.
Future experimental work on bound-pion and -kaon spec-
troscopy will eventually provide a test of the present re-
sults.

ACKNOWLEDGMENTS

The financial support by the Natural Sciences and En-
gineering Research Council of Canada is gratefully ac-
knowledged.

APPENDIX

where

J, (p, q)=(Q 0 to +co )' (A2b)

and

J~(p, q)=(Q +II )(co +co ) . (A2c)

For the particle-antiparticle system, the s-state radial ker-
nel takes the same form but with A, ', replaced by 4A,

(2) For p states of two distinct scalars,

K(p, q)=
J2(p, q)(p +q )+3(p +q )+2p qz

2pq

X ln —J~(p, q)
p+q
p

—3(p +q ) 4J, (p, q) (A3)

1 p q
» n'n'

p q

(A4)

In addition, for the purely Coulombic case, i.e., setting
G=O in (2.12) or, equivalently, setting KT =0 in (3.11) or
(3.15), we have the following:

(1) For s states of two distinct scalars,

and for the particle-antiparticle system, the p-state kernel
is given by (A3) plus the additional term

Carrying out the angular integration in Eqs. (3.11) or
(3.15) we obtain a radial equation of the following form:

f (p)(co~+A~ E)=—f —f (q) K(p, q)dq, —(Al)
K(p, q)=

2J, (p, q)

J,(p, q)
ln

2pq p —
q 4m'

(A5)

K(p, q)=
2J, (p, q)

J2(p, q)+2(p +q )
ln

2pq

where the radial kernels K(p, q) are diff'erent for states of
different angular-momentum quantum number l.

The radial kernels for s and p states are given as fol-
lows:

(1) For s-states of two distinct scalars,
2pq p +q

1
p+qJ ( ) 2 2

4J, (p, q) 2pq p —
q

(A6)

where J, (p, q) and Jz(p, q) are the same as above, and the
s-state kernel of the particle-antiparticle system is given
by (A5) with A. ', replaced by 4A,

(2) For p states of two distinct scalars,

+2
4m'

(A2a)
and the p-state kernel of the particle-antiparticle system
is given by (A6) plus (A4).

J. W. Darewych and M. Horbatsch, J. Phys. B 22, 973 (1989).
J. W. Darewych and M. Horbatsch, J. Phys. B 23, 337 (1990).

3W. Dykshoorn and R. Koniuk, Phys. Rev. A 41, 64 {1990).
~J. D. Bjorken and S. D. Drell, Relatiuistic Quantum Fields

(McGraw-Hill, New York, 1965), p. 90.
5J. Finger, D. Horn, and J. E. Mandula, Phys. Rev. D 20, 3253

(1979).
H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958).

7H. Bethe and E. Salpeter, Quantum Mechanics of One and-
Tuo-Electron Atoms {Plenum, New York, 1977).

8B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).
9C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-

Hill, New York, 1980).
' G. Hardekopf and J. Sucher, Phys. Rev. A 30, 703 (1984); 31,

2020 {1985).
''W. Greiner, B. Miiller, and J. Rafelski, Quantum Electro

dynamics of Strong Fieids (Springer, Berlin, 1985).
' S. D. Joglekar and A. Misra, Phys. Rev. D 38, 2546 (1988);40,

4111 (1989).
' F. Rohrlich, Phys. Rev. 80, 666 (1950).


