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Resonance fluorescence of a two-level atom in a two-mode squeezed vacuum
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The dynamics of a strongly driven two-level atom are examined for the case that the atom is cou-
pled to a "two-mode" squeezed vacuum. The source of squeezed light is taken to be a (frequency)
nondegenerate parametric oscillator. We consider the situation in which the Rabi sidebands pro-
duced by the coherent driving field coincide with the spectral peaks of the parametric oscillator.
Approximate analytical results are presented and checked against numerical simulations of the ex-

act equations. For a suitable choice of relative phase, all three spectral lines in the fluorescence trip-
let are found to exhibit subnatural linewidths. Significant modifications to the fluorescence spec-
trum are also possible with a nonzero laser-atom detuning.

I. INTRODUCTION

In a recent work examining resonance fluorescence of a
single strongly driven two-level atom coupled to a narrow
bandwidth squeezed vacuum, ' we found significant
departures from broadband (or white-noise) squeezed-
vacuum analyses. The white-noise formulation assumes
that the squeezed vacuum appears 5 correlated on the
time scale of the Rabi oscillations. This corresponds to a
squeezing bandwidth much larger than the Rabi frequen-
cy. Under these conditions the central peak in the
fluorescence triplet is found to exhibit a subnatural or su-
pernatural linewidth, depending on the relative phase be-
tween the driving field and the squeezed vacuum, while
the Rabi sidebands are broadened for all choices of the
relative phase.

A small-noise (linearized) analysis of the Bloch equa-
tions reveals that the Rabi frequency Ao provides a
means of controlling which reservoir spectral com-
ponents contribute to Bloch-vector damping. In partic-
ular, the decay rates of the Bloch-vector components are
determined by fluctuations in one quadrature phase of the
input field at frequency coo and in the other quadrature
phase at frequencies coo+Go, ' where coo is the frequency
of the coherent driving field (resonant with the transition
frequency). In the white-noise model, these observations
have little significance, as the level of fluctuations in both
quadratures is constant over the entire frequency space.

However, if the squeezing bandwidth is taken, as in
Ref. 1, to be much smaller than the Rabi frequency, then
the quadratures exhibit enhanced or reduced fluctuations
only in a relatively narrow frequency band about coo, out-
side of which ordinary vacuum fluctuations predominate.
Hence the narrow-bandwidth component of one quadra-
ture is efFectively decoupled from the atomic dynamics,
leading to dramatic changes from the white-noise theory.
The central fluorescence peak is now virtually unaffected
by the squeezed vacuum, retaining its normal-vacuum
profile independent of the choice of phase. However, the

width of the Rabi sidebands is strongly phase dependent
and can be significantly less than its normal-vacuum
width. Hence a finite-bandwidth squeezed vacuum offers
new possibilities for line narrowing in the fluorescence
spectrum.

An interesting variation on this theme, which we shall
pursue here, is a "two-mode" squeezed vacuum exhibit-
ing two (separated) spectral peaks centered on the fre-
quencies coo+GO. Once again it should be possible to
decouple the narrow-bandwidth component of one quad-
rature from the dynamics. This is not merely a construc-
tion of convenience either, since squeezing spectra with
this double-peaked form are found in the output of a
number of practical squeezing devices. The particular
source we shall employ in this work is the nondegenerate
parametric oscillator operating below threshold, ' but
similar spectra are also found, for example, in optical bi-
stability.

In Sec. II we formulate our description of the system
and of the squeezed light source. In Sec. III A we present
an approximate analytical treatment of the Bloch equa-
tions that highlights the basic features of the scheme.
This also provides a benchmark for the results we obtain
later in Sec. III B from direct stochastic simulation of the
exact equations. As we shall see, the present scheme
shows features characteristic of both the "single-mode"
white-noise and colored-noise results. It differs in a
significant way, however, in that it offers the possibility of
simultaneous narrowing of all three components of the
fluorescence triplet, a feature not found in any of the pre-
vious treatments.

II. MODEL

A. Quantum Langevin equations and the adjoint equation

Our approach to this problem begins with the quantum
Langevin equations for the familiar (two-level) atomic
system operators S+ and S,. This approach is outlined
in Ref. 7 and is the same as that used by us in Ref. 1. The
equations are

42 6873 1990 The American Physical Society



6874 A. S. PARKINS 42

S + =iso, S+—iQocos(coot —$0)S,

Q—y, &fun, [E;„(t),S,]+,

S,= —y, 2—i Qocos(coot —$0)(S+—S }

i—Qy, /Ace, [E;„(t),S+ —S ]+,

(2.1}

p (t)p= ,'Q—y,I —sin(p }[E,(t),p] +cos(p )[Ez(t},p]+ I

—= [—sin($0)pi(t)+cos($0)p2(t }]p,
(2.7)

p Y( t )S
= -,

' V'y. j cos( 4 0 )[Ei ( t ),i ]+ +»n( 4'0 )[E2( t } P ]+ ]

—= [cos($0)pi(t)+ sin($0)p2( t) ]p .

where co, is the atomic transition frequency, r, is the
natural linewidth of the transition, and Qo and $0 are the
Rabi frequency and phase, respectively, of the coherent
driving field. The incoming electric-field operator E;„(t)
(representing the incoherent portion of the field) is evalu-
ated at the position of the atom and may be expressed in
terms of quadrature phase operators as

E;„(t}=Qirtcoo[a;„(t)e ' +a ~„(t}e '
]

= QRcoo[Ei(t)cos(coot)+E2(t)sin(coot)], (2.2)

where coo is the frequency of the coherent driving field.
We move to a frame rotating at frequency ruo and

define polarization quadratures that are in-phase and
out-of-phase with the coherent driving field:

S„=S exp( —i coot +i/0)+S exp(i coot i /0)—,
(2.3)

S = i [S—exp( ia)ot+—i/0) Sexp(—itoot —i/0)] .

We make the rotating wave approximation to produce
equations of motion in the form

where 6, =co, —coo. At this point we introduce the ad-
joint equation. This equation (whose derivation from the
quantum Langevin equation is given in Ref. 7) describes
the time evolution of a quantity p(t) which is a 2 X 2 ma-
trix functional of the incoming electric-field operator
E;„(t). We define

S, (t) =Tr,„,[S,p(t)], (2.5)

as the atomic average of the spin operators, and the equa-
tions that follow have the form

S„=—b,,Sy P~(t)S, , —

S„=—h, S +—,'Qy, [E,(t)sin(go) —Ez(t)cos($0), S,]+,

S =h, S„—QOS, —
—,'Qy, [E,(t)cos($0}

+E2(t)sin($0), S,]+, (2.4)

S,= —y, +QQS + —,'Qy, [E,(t)cos($0)

+Ez(t)sin(go), S~ ]+

—
—,
' Qy, [E,(t)sin($0) —E2(t)cos($0),S„]+,

The point in making these definitions is that we now have
a commuting form of quantum noise; that is, the opera-
tors px(t) and pr(t) satisfy

[p~(t),p~(t')]= [p) (t},pr(t')]
= [P~(t),Pr(t')] =0, (2.8)

for all t, t'. This implies that the equations can be treated
as classical c-number equations, amenable to solution by
ordinary stochastic methods. Hence we need only specify
the statistics of px(t) and p„(t), as determined by the ini-
tial quantum state of the incoming electric field (the
bath).

exp( ,'e,
I
t-—

2rc 2 c

X cos[5,(t —t') ],
(a;„(t)a;„(t'))= —

—,
' , eeyx( p——,'y, ~t t'~)—(2.9)

exp(-,' e, ~
t t '

~

)—
1Trc 2 Cc

B. Two-mode squeezing: The nondegenerate
parametric oscillator

Our source of squeezed light is taken to be a nondegen-
erate parametric amplifier operating (below threshold) in
a single-ended cavity. In this configuration, a pump
beam at frequency 2~0 is coupled, via a nonlinear medi-

um, to two cavity modes at frequencies top+5 Ny. The
two modes excited in this way may become highly corre-
lated, leading to squeezed-frequency components in two
(separated) spectral peaks, centered, respectively, at the
mode frequencies m+ and ~

The correlation functions for the output-mode opera-
tors of the nondegenerate parametric oscillator operating
below threshold (with a classical pump) have been given

by Collett, Loudon, and Gardiner. We consider, of
course, the case in which the signal and idler components
are combined in a single beam. With a particular choice
of phase that makes the parametric driving rate e, real
[8=0 in Eqs. (A18} and (A19} of Ref. 4], these correla-
tion functions have the form (in a frame rotating at fre-
quency too)

(a~„(t)a;„(t')) =-,'e, ,yex( p—,'y, ~t t'~)——

S =h, S„—QQS, —Pr(t)S, ,

S,= —y. +Qg, +P~(t)S„+P,(t)S, ,

where Pz(t) and Pr(t) are defined by

(2.6)
exp( —

—,
' e, ~

t t '
~

)—
2rC 2

X cos[5,(t —t')],
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where y, /2 is the cavity-mode decay rate (the same for
both modes), and the results are derived with the assump-
tion that co+ —cu =25, &&y, . Note that we have re-
moved a factor of —,

' from e, as defined in Ref. 4. In the
limit of perfect squeezing, e, ~y, . No loss of generality
occurs by fixing the phase of the input squeezed vacuum.
What is important is the relative phase between the
squeezed vacuum and the coherent driving field, and ob-
viously, this can be controlled through the phase of the
coherent field $0.

In specifying the correlation functions of the input field
operators to be given by (2.9), we are of course assuming
'that the atom couples only to squeezed modes of the radi-
ation field. This is a very difficult practical requirement
which we shall return to in the conclusion.

Using (2.9) and the definitions (2.2) and (2.4), it is then
straightforward to determine the correlation functions of
the noise sources p, (t) and p2(t) appearing in the equa-
tions of motion. These are

(p&(t)p, (t') ) =y. (&,(t)&, (t') )

&C/C=y, —, , exp[ —
—,'(y, +e, )~t t'~]c —so[5, (t —t')]+5(t t')—

C 2 C

(p (t)p (t') ) =y, (E,(t)E,(t') )

&C C=y. . . exp[ —
—,'(y, —e, )~t t'~]cos[—5,(t t')]+5(t —t')—

C 2 C

(p&(t)p2(t')) =0.

(2.10)

Hence p, (t) exhibits reduced fluctuations in two spectral
peaks centered at frequencies +5, and with linewidth
—,(y, +e, ), while pz(t) exhibits enhanced fluctuations in

two spectral peaks of linewidth —,'(y, —e, ).

III. SOLUTIONS TO THE EQUATIONS OF MOTION

As a preliminary step, we express each of the noise
sources as a sum of independent colored- and white-noise
sources. For instance, we write

p&(t) =p&(t)+p, (t), (3.1)

We then perform a straightforward average over the
white-noise sources to yield equations in the form

~a S„—b,,S P~(t)S, , —

(3.3)
2

S +b,,S„—QOS, p') (t)S, , —

S, = —y, —y, S, +QOS +P~(t)S +P'), (t)S

where

(p& (t)p& (t') ) =y, 5(t t'), —
(3.2)

(p', (t)p;(t')) = —y. . . exp[ —
—,'(y, +e, )~t t' ]—

2 C 2

Xcos[5,(t —t')] .

where the bar is now understood to incorporate the
white-noise average. It remains therefore to perform the
average over px(t) and p'r(t) to obtain (S;(t)), where ( )
denotes the total average.

In view of the somewhat unusual spectrum of noise ex-
hibited by px(t) and p'r(t) (spectral peaks at frequencies
+5, ), it is a good idea first to perform a qualitative in-

spection of Eqs. (3.3), in order to identify the most in-

teresting regions of parameter space.
In the lowest order (neglecting noise terms) and for

zero detuning, (S„(t)) displays a simple exponential de-

cay, while (S (t)) and (S,(t)) exhibit damped oscilla-
tions of frequency Qo. The contribution to the time de-
velopment of (S„(t)) from the additional noise terms is
proportional to the time average of px(t)S, (t). Since
S,(t) undergoes Rabi oscillations, it follows that this con-
tribution will be important only if px( t) contains
significant Fourier components at the frequencies +00.
In our instance, this clearly corresponds to the case in
which 5, =00. In contrast, the contribution of the terms
pr(t)S, (t) and p'r(t)S~(t) to the overall evolution will be
significant only if p'r" possesses Fourier components
around zero frequency. This is clearly not the case for
the "two-mode" squeezed vacuum we are modeling here.
Hence we expect that p'r(t) can be efFectively decoupled
from the atomic dynamics for sufficiently large Qo and 5, .
As pointed out in Ref. 1, this has special significance in
the ease of a squeezed-vacuum input, since through an
appropriate choice of the phase $0, p'„(t) can be made to
correspond to the unsqueezed (noisy) quadrature.

The important difference between the present "two-
mode" formulation and the "single-mode" squeezed-
vacuum model examined in Ref. 1 is that a different
quadrature phase noise operator is decoupled. In the
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"single-mode" model, PJt(t} and P'r(t) have Fourier com-

ponents only in a relatively small frequency band around
zero frequency, and hence px(t) is decoupled from the

equations of motion. Of course, in the "single-mode"
white-noise model, neither quadrature phase noise
operator can be decoupled as their Fourier components
are significant over the whole of frequency space.

(P'x(t)P~(t') & =2y, (¹M)b+e

X cos[5,(t t'—)],
t p'„(t)pr(t') & =2y, (N+M)b e— +

Xcos[5,(t —t')],
(Px(t)Pr(t') & =0,

(3.4)

A. Decorrelation approximation

We begin with an approximate analytical solution to
the equations of motion which relies on the assumption
that the noise sources and system variables can be
decorrelated under averaging. Briefly, we solve formally
for two of the system variables and substitute the results
into the equation of motion for the third variable, after
which averaging is performed in the decorrelation ap-
proximation. Two distinct limiting cases characterize
our problem, corresponding to the choices of phase $0=0
and m/2. For simplicity, we shall consider only these two
cases, and hence we write

1
T&c'Yc

1V —M =—
(3.5)

The limit of large squeezing (e, ~y, ) corresponds to the
limit N ))1. We assume a strong driving field (Qo)) y, }
and set 5, =0. We find, after some work,

where b+= —,'(y, —e, ) and b =
—,'(y, +e, ), and we have

introduced the familiar squeezing parameters X and M,
defined by

1

%+M =
( ly le )2

2

+ (N+M)b+ f dt'exp
3

+b+ (t t') sin[A—,(t —t')]cos[5, (t t')]( S—(t') &

2y, (¹—M)b+ f dt'exp
0

3 ~ +b+ (t t') cos[Qo—(t t')]cos[5—,(t t')]( S(t')—&, (3.6a)

2

+ (N+M)b+ f dt'exp
200 0

2y, (N +M)b—+ f dt'exp

3 ~ +b+ (t t') sin[A, (t——t')]cos[5, (t —t')](S,(t') &

3y.
+b+ (t t') cos[Q,(t ——t')]cos[5, (t —t')](S,(t') &

+2y, (N+M)b+ f dt'exp
0

3
Q +b+ (t t') sin[A, (—t —t')]cos[5, (t t')](S,(t') &, — (3.6b)

(S,(t) &
= —y, —y, (S,(t) &+ Qo(S (t) &

—2y, (N+M)b f dt'exp
0

+b (t t') cos[5, (t —t—')](S,(t') &

2

(N+M)b+ f dt'exp
200 0

3 ~ +b — (t t') sin[A, (t —t')]cos[5, (t t')—](S,(t') &—

—2y, (N+M)b+ f dt'exp
3

+b+ (t t') cos[Qo(t —t')—]cos[5,(t —t')](S,(t') &

2y, (N +M)b + f —dt 'exp
3 ~ +b+ (t t') sin[Go(t —t'}]cos[5—,(t t')](S (t') & . — (3.6c)

As mentioned earlier, we expect the most interesting results when 6, and 00 are comparable, and so for simplicity we
choose 6, =flo. We know further that 5, »b+. If b+ and b are larger than the decay rates of the various spin com-
ponents, then to a good approximation we can make the following substitutions inside the integrals:
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(S„(t'))=(S,(t)),
(S,(t')) =cos[no(t —t')](S,(t))+sin[no(t —t')](S,(t) ),
(S,(t') ) =cos[Q,(t —t')](S,(t) ) —sin[n, (t —t')](S,(t) ) .

(3.7)

The assumption of large b+ restricts the maximum amount of squeezing we can consider for a particular value of y„
since b+ ~0 in the large squeezing limit. However, this maximum amount of squeezing can always be increased via an
increase in y, .

With the substitutions given in (3.7), we have simply to evaluate some straightforward integrals. This produces time-
dependent terms, but with the assumptions made above, these are expected to give only small transient effects and so we
neglect them. The result of these approximations is a set of modified Bloch equations with the form

(s„&= —y„&s„&,

&s, &= —y, &s, &
—n, &s, ),

(s, ) = —y. —y, (s, )+n, (s, ),
where

(3.8)

and

ya
yx

yy

y =y

b~+y, /4
1+2(N+M)bg +

b++3y. /4 (b +3y, /4)'+4QO

b+ +11y, /8 3y, /8
1+2(N+M)b+

(b —+3y, /4) +Q (b —+3y, /4)2+9Q2

b+ bg(bg+y, /2)1+(¹M) +(N+M)
b++y, /2 (b++y, /2) +4no

b+ (b+ +3y, /4) y, b+ 3y, b++2(N+M), , + —(N+M), , +
(b-+3y, /4) +Qo 8 (b —+3y, /4) +no (b —+3y, /4) +9QO

(3.9)

fL, =GO 1—y,' b —+3y, /4 b —+3y, /4
(N+M)b+

800 (b+ +3y, /4) +no (b+ +3y, /4) +9QO

y, b++3y, /4 b++3y, /4

800 (b++3y, /4) +no (b++3y, /4) +9QO

b+

(b++y, /2)2+4QO

(3.10)

The limit we are considering (Qo»b+, y„,y, y, ) allows
for considerable simplification of (3.9) and (3.10). Retain-
ing only the leading-order terms and assuming that
b+ &&y„we find

b+
y„= 1+2(N+M)

2 b++3y, /4

n, =& =0z y

For large squeezing (N » 1), we have

1 1
N —M= ——+

2 8N'
N+M =2N+ —,

'

(3.12)

(3.13)

and

[1+2(¹M)],
2

ya
yy

b+
y, =y, 1+(N+M)

b++y, /2

=y, [1+(¹M)],

(3.11)

Hence, as we alter the phase Po, the decay rates y, and

y, may be enlarged or reduced compared to their
normal-vacuum values. In particular (for N»1), we
note the following.

(i) The component (S„(t)) decays at an enhanced rate
y =2Ny, for $0=0 and at an inhibited rate y =y, ISN
for go=sr/2 The decay rat.e y„gives the width of the
central peak observed in the resonance fluorescence spec-
trum (Mollow triplet), and hence we predict a phase-
sensitive central peak width, varying between supernatur-
al and subnatural values. The maximum reduction in
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The presence of non-white-noise sources in the stochas-
tic equations makes it impossible to obtain exact analyti-
cal solutions, and so for a more accurate description of
the dynamics than that given in Sec. III A, we turn to nu-
merical simulation. Our approach is the same as that
used in Ref. 1, but for completeness we shall outline the
essential features of the method.

Equations (3.3) are simulated using a fully implicit nu-
merical integration scheme. This scheme approximates
the equations with the form

hS"=S"+'—S"=A(S ')b t +B(S ')Px"bt

where

+C(S ')P'r'"b t, (3.14}

S„

S,
—(y, /2)S„—b,,Sy

A(S) = —(y, /2)Sy+b, S„—QOS,

—y, —y, S, +QOS„

(3.15)

width may in principle approach 100%.
(ii) The components (S (t) ) and (S (t) ) decay at the

enhanced rate —,'(y~+y, )=y,N for $0=0 and at the in-

hibited rate —,'(y +y, ) =(3y, /4)( —,'+1/12N) for
Ijflo 'tr/2. This decay rate corresponds to the width of the
Rabi sidebands in the fluorescence triplet. Hence the
sidebands should exhibit a phase sensitivity similar to
that shown by the central peak, but with smaller
enhancement and reduction of the linewidth.

For the choice of phase $0=0, the results for y„and
—,'(ys+y, ) are identical to those found in the "single-
mode" white-noise limit. However, for Po=n/2 an im-
portant difference is apparent. The "two-mode"
squeezed-vacuum result predicts a value for —,

'
( yr +y, )

that is much less than its white-noise counterpart, and
which may in fact be less than its normal-vacuum value.
Hence it is possible for all three peaks in the fluorescence
triplet to exhibit subnatural linewidths for a particular
choice of phase. In the white-noise treatment, line nar-
rowing is seen only in the central fluorescence peak, while
in the narrow-bandwidth treatment of Ref. 1, line nar-
rowing occurs predominantly in the Rabi sidebands.
Hence the "two-mode" squeezing scheme offers an ad-
vantage in terms of line narrowing and resolution of spec-
tral peaks.

B. Solution via stochastic simulation

ht is the timestep, 8„8z6[0,1], and

A(S ')= A(S")+J"„8ibS", (J q );J.=

B(S ')=B(S")+J s82bS", (J ~ );, =

s=s

(3.17)

88;
as, s=s

(3.18}

C(S ')=C(S")+J C8~6S", (J c );J
= C;

as,

(i.e., we linearize about the point S ). It is straightfor-
ward to show that

—y, /2
—y, /2 —Qo

Oo

0 0 —1

J~= 0 0 0
1 0 0

0 0 0
J"= 0 0 —1

0 1 0

(3.19}

The choice 8& =82=0 corresponds to the Euler method
of integration. This method, however, can suffer stability
problems, especially when large Rabi frequencies are in-

volved. Hence we adopt the time-centered scheme
8&=82= —,

' (fully implicit method), which has very good
stability properties.

Noise sources with the correct statistics are construct-
ed using summations of suitably weighted Gaussian dis-
tributed random numbers. The negative correlations that
characterize squeezing require that these sources be corn-
plex. This enables S„(t), Sr(t), and S,(t) to develop
imaginary parts, but in practice these average to zero
after a sufficient number of trials, provided that the in-

tegration routine is stable.

Results for the spin averages

Substitution of (3.17) and (3.18) into (3.14}leads to the in-

tegration scheme

bS"=(I—8 J"ht —82J ttPx"bt —8zJ CP'r"bt)

X [ A(S")b t +B(S")P'x"ht+ C(S")P'„"ht] .

(3.20)

—Sz

B(S)= 0

S„

C(S)= —S,
S

L

(3.16)
Our 6rst set of results are obtained for parameters that

should roughly satisfy the conditions of the decorrelation
approximation (Qo))b+ ))y, ). In Fig. 1 the squeezing
parameters correspond to a 64% reduction in noise
(below the vacuum level) at the frequencies +6, . This
reduction in fluctuations extends over a bandwidth
2b =12.5y .

As predicted by the decor relation approximation,
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) d (S (r)) exhibit enhanced decay rates(S (r) ) an
The simul-

taneous inhibition of the decay o „,isca of (S (t) ) and (S,(t) is
erhaps the most significant feature of the "two-mode"

h . This feature is more dramati-s ueezed-vacuum sc erne.
cally demonstrate in ig.d F . 2 where the maximum squeez-
ing has been increased to 89%.

It is interesting o costin to compare decay rates obtaine from
h

'
l t'ons and from the decorrelation approxima-the simu a ions a

An exponential fit to the curves o igs.
l(c) yields decay rates y„=1.4y„y» y,

~~ =m/2. In comparison result (3.11 givespp 7T

b+1+2(%+M)
3 /42 b++ Xa

= 1.2y„O.21@, ,

b+1 VQ 3

2 ~ ' 2 2
—(y +y )= —+(X M) „+ Va

=1.1y.,O. 6Oy. ,

for ~=0 and m./2, respectively. This level of agreement
does not perstst as eth bandwidths b+ are reduce,

~ ~h' hl' ht' the limitations of the decorrelation approxi-ig ig ing

1. 0-l 1. 0

(b)

0. 5- 0. 5

tt)

O
L

0. 0-
0

0. 0-
0 V + + + ~ v v v.

—0. 5- —0. 5-

—1. 0-,
0

—1. 0-,
0

1.0-

0. 5-

0. 0-
0

—0. 5-

—1.0-,
0

uted b simulation (5000 trials) for Oo= y„=50, 5, =0, 6, =50@„and5 (t)) and (S,(t)) (oscillating) computed y simu

y =10y, with (a) e, =0 (no squeezing), (b) e, =2.5y, (64 o maximumVc l Ya» wl
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rnation. However, the basic predictions of Sec. III A are
confirmed.

2. Correlation functions and spectra

The spin averages give us a good insight into the be-
havior of the atomic system, but for connections to be
made with observable quantities such as the fluorescence
spectrum, we musmust compute correlation functions.
Methods for computing correlation functions from the
adjoint equation have been outlined in Ref. 7 and were
used in Ref. 1. Briefly, if the solutions of the equations of
motion (3.3) are written in the form

1. 0

0. 5-

0. 0-
0

—0. 5-

—1. 0

0

(3.2l)S.(t)= g f, (t", t')S, (t')+g;(t t )

J

then the stationary correlation functions are given by

(S,(t)S.„(t')) = (f,„(t,t') )+ (g, (t, t')g„"(t') )

+i g e«(f, , (t, t')g" (t')), (3.22)
I, m

where g, (t, t')~g;"(t) as t ~~.
Expression (3.22) is evaluated from stochastic simula-

tion as follows. We first allow the equations to evolve to
a stationary state, thereby obtaining a value for g;" t' .
new trajectory is en

'
t

'
then initiated, with four different sets o

initial conditions, so that we may identify f, (t, t' an
(t t'). The rocedure is then repeated, and after a suit-

e removeable number of trials, the average is taken. We rem
the coherent contribution to the correlation functions
and sarnp e to a imed 1 t t'me at which the correlation functions
are small (so as to avoid aliasing in the fast-Fourier trans-
form .

A ma or consideration in the computation of outputmBJoi'

spectra from systems subjected to squeeze ig is e
effect of reflections of the input squeezed light. ' One
must allow not only for the nonzero power spectrum of
th zed vacuum but also for correlations that are
established between the reflected squeezed light and ig
radiated from the system. These correlations can sub-
stantially affect the total fluorescence spectrum.

Using our formalism, it is relatively straightforwar to
incorporate reflections of the input squeezed vacuum in
the output. The basic formula relating the output field to
input and atomic fields has the simple form

E.„,(t) =E,„(t) i +y, pro,—[S (t) S+(t)]), —3.23

1.0-

0. 5- I
)

fl

I I

(b)

0. 0-
O

—1. 0-,

FIG. 2. Spin averages (S„(t)) and (S,(t) ) (oscillating) cotn-
puted by simulation (5000 trials) for Qo= 50y„h, =0,
6, =50@„and y, = 10y„with (a) e, =5.Oy, (89%%uo maximum
squeezing), $0=0, and (b) e, =5.0y„P rr/ O.=fr 2.

with which we can develop expressions for the correla-
tion functions of the total output field. These expressions
can then be computed numerically from the simulations
in a straightforward manner. The fluorescence spectrum

1 d' fl ctions is given by the Fourier trans orrn of
the correlation function (E,'„, (t)E,„, (0)). n t is
fluorescence spectrum the squeezed-vacuum power spec-
trum contributes peaks at the frequencies ~p+5, . In gen-
eral, these peaks dominate the much smaller Rabi side-
bands that appear at the same frequencies Op=5„
b,, =0). However, the central atomic fluorescence peak,
which is well separated from the sidebands, is essentially
unaffected by the inclusion of reflections, and so the most
significant line narrowing and broadening is still clear y
visible in the spectrum.

W h 11 concentrate here on the fluorescence spec-esa
trum without reflections included. This is computed y
Fourier transforming the corre lation function
(S (t)S (0) ) and corresponds to observing the light ra-
diated from the atom through a small "window" of

0

unsqueezed-vacuum modes. In a cavity configuration (in
which the squeezed light is incident on the atom through
the cavity modes), this is equivalent to observing the
fluorescence out the side of the cavity.

To begin, we compute the fluorescence spectrum for
the parameters used in Fig. 1. The results are displayed
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in Fig. 3, and they confirm earlier predictions regarding
narrowing and broadening of the spectral peaks. For
$o =0, all three peaks are broadened, while for Po =m./2,
all three peaks exhibit some degree of narrowing com-
pared to their ordinary vacuum profiles. Although the
extent of narrowing in the sidebands is modest (remember
we are considering an input with only 64% maximum
squeezing), it is important to note the contrast with the
"single-mode" white-noise squeezing model, which, for
the same amount of squeezing, yields sidebands with
significantly broadened linewidths. With increased levels

of squeezing, more substantial narrowing of the sidebands
occurs in the two-mode model, and the contrast is even
more pronounced. We note that the linewidths observed
in the fluorescence spectra of Fig. 3 are in good agree-
ment with the decay rates exhibited by the simple spin
averages in Fig. 1.

For completeness and to highlight the points made ear-
lier regarding reflections, we display in Fig. 4 the fluores-
cence spectrum with reflections of the squeezed input in-
cluded. The spectra obtained with reflections included
are inherently more noisy than the simple atomic fluores-
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FIG. 3. Fluorescence spectrum, omitting reflections [i.e.,
Fourier transform of (S (t)S (0))], computed by simulation
(20000 trials) for the parameters of Fig. I with (a) go=0 and (b)
tl)p 'Ir/2. The dashed curve in each figure is the ordinary vacu-
um spectrum.

FIG. 4. Fluorescence spectrum, including reflections [i.e.,
Fourier transform of (E',„,'(t)E,'+„,'(0) ) ], computed by simula-
tion (20000 trials) for the parameters of Fig. I with (a) $0=0
and (b) go= m/2.
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cence spectra. This can, of course, be alleviated by
averaging over a greater number of trials.

It is a worthwhile exercise to gauge the extent to which
the effects of line narrowing and broadening persist for
values of the parameters that do not strictly satisfy the
conditions upon which earlier predictions were made.
This may be well be a problem facing any realistic experi-
ment. We consider the case in which the squeezed-
vacuum bandwidth is only of the order of the atomic
linewidth (i.e., b~-y, }, and in addition, we reduce the
Rabi frequency to the value 00=20y, . The fluorescence
spectra are shown in Fig. 5. As one might expect, the ex-
tent of line narrowing and broadening is somewhat re-

duced compared to the results obtained under more ideal
conditions, as in Fig. 3. However, the effects are still
plainly visible, which together with other results we have
gathered, enables us to conclude that the basic predic-
tions of Sec. IIIA are reasonably robust in the face of
nonideal inputs.

Finally, we allow for a nonzero laser-atom detuning
(b,,&0}. In view of the unusual spectrum of noise experi-
enced by the atom, we might expect some interesting phe-
nomena, especially when Qc+b, , =5, . This is indeed the
case, as we demonstrate in Fig. 6. It is clear that the
response of the zero-frequency and oscillating com-
ponents of the Bloch vector to the squeezed noise allows
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FIG. 5. Fluorescence spectrum, omitting reflections, comput-
ed by simulation (8000 trials) for QO=20y„h, =0, 5, =20y„
y, =2y„and e, =0.6y, (71% maximum squeezing), with (a)
$0=0 and (b) Po=m/2. The dashed curve in each figure is the
ordinary vacuum spectrum.

FIG. 6. Fluorescence spectrum, omitting reflections, comput-
ed by simulation (20000 trials) for 00=14.14y„h, =14.14y„
6, =20y„y, =2y„and e, =0.173y, (29% maximum squeez-
ing), with (a) go=0 and (b) go= m./2. The dashed curve in each
figure is the ordinary vacuum spectrum.
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for a significant modification of the ordinary fluorescence
spectrum. The asymmetry in the spectrum, and the
enhancement or suppression of peaks (to an extent that is
dependent also on the phase $0), is quite dramatic and

suggests alternative signatures one might look for in
detecting squeezed light. Similar effects have been seen in
analyses of the interaction of (single-mode) broadband
squeezed light with two-level atoms' '" and have been
described in terms of dressed-state population trapping. '

The parameters of Fig. 6 have been chosen after con-
sideration of approximate analytical results, which pre-
dict strong enhancement and suppression of two peaks
for suitable choices of detuning, squeezing, and phase. It
is interesting to note the relatively small amount of
squeezing required to produce significant effects.

IV. CONCLUSION

In Ref. 1 it was shown that narrow-bandwidth
squeezed light offers interesting new possibilities in the
field of squeezed-light spectroscopy. In this paper we
have continued with this theme, extending the earlier
work to treat a "two-mode" squeezed-vacuum input.
Resonance fluorescence of a two-level atom is a particu-
larly suitable problem to analyze as the Rabi frequency
provides a control over which spectral components of the
reservoir contribute to Bloch-vector damping. Using this
fact, the atom can be "tuned" to the spectral peaks of the
two-mode squeezed vacuum, and as we have seen, this
leads to the characteristic line narrowing and broadening
found in previous "single-mode" squeezing analyses.
However, in the single-mode broadband squeezing
analysis, the atom "sees" enhanced vacuum fluctuations
at frequency coo due to the noisy quadrature. In the two-
mode formulation, in which the spectral peaks of the
squeezed vacuum are well separated at the frequencies
coo+5„ the atom "sees" only ordinary vacuum fluctua-
tions at frequency coo. This means that broadening need

not occur in the fluorescence spectrum, and in fact, it is
possible for all three lines in the fluorescence triplet to ex-
hibit subnatural linewidths. Hence a variation on the
narrow-bandwidth problem considered in Ref. l has been
shown to offer still further possibilities for squeezed-light
spectroscopy.

Any experimental attempt to observe these effects is
likely to employ a cavity with injected squeezed light to
effect a suitable squeezed-vacuum —atom coupling. The
particular model we have discussed here corresponds to a
cavity operating in the low-Q limit.

The assumption that the atom couples only to squeezed
modes of the radiation field also requires that the decay
of the atom into the cavity modes is substantially greater
than decay through any other channels (e.g. , out the sides
of the cavity). This could be achieved, as suggested by
Parkins and Gardiner, '

by using a microcavity (i.e.,
plane mirrors separated by half a wavelength) with a suit-
ably mode-matched injected squeezed vacuum. In this
configuration, reflections of the input squeezed light
would be inevitable in the observed output spectra.

Alternatively, one might consider the (macroscopic)
confocal optical cavities used in demonstrations of
cavity-enhanced spontaneous emission. ' For this case
reflections of the input could be avoided by observing the
light emitted out the sides of the cavity. Provided the
enhanced spontaneous emission rate into the cavity
modes is at least comparable to the free-space decay rate,
significant effects should be visible in the fluorescent
light.
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