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A technique of canonical quantization in a general dispersive nonlinear dielectric medium is

presented. The medium can be inhomogeneous and anisotropic. The fields are expanded in a slowly

varying envelope approximation to allow quantization. An arbitrary number of envelopes is includ-

ed, assuming lossless propagation in each relevant frequency band. The resulting Lagrangian and
Hamiltonian agree with known propagation equations and expressions for the dispersive energy.
The central result of the theory is an expansion of the quantum Hamiltonian in terms of annihila-
tion and creation operators corresponding to group-velocity photon-polariton excitations in the
dielectric.

I. INTRODUCTION

The classical theory of nonlinear optics is now well es-
tablished. ' However, the rapid growth of quantum-
limited laser experiments has led to increased interest in
the quantum properties of dielectrics. A large range of
dielectric fibers and waveguides are commonly used in
applications where quantum limits are approached. This
leads to the central problem of quantum nonlinear optics:
how to quantize a dielectric that, as well as the usual in-
homogeneities and anisotropy, can also have nonlineari-
ties and dispersion. One approach is to simply model the
dielectric by its microscopic components, which in prin-
ciple is always possible. This approach is seldom used
since typically dielectrics have a complex internal struc-
ture.

Instead, the essential similarities of nonlinear dielec-
trics can be used to generate a theory of minimum com-
plexity. This alternative procedure uses the classical field
equations extended to nonlinear dielectrics, to define a set
of canonical variables that can be quantized. In fact,
Born and Infeld treated a theoretical model of nonlinear
electrodynamics as early as 1934, although this theory
did not attempt to treat the general problem of a non-
linear dielectric. The first treatment of a dielectric along
these lines was apparently that of Jauch and Watson,
who gave a canonical theory of a homogeneous linear
nondispersive dielectric. With the growth of laser phys-
ics came the requirement to extend these methods to non-
linear optics. However, early attempts in this direction,
while incorporating the known linear theory, did not ful-

ly reproduce the nonlinear field equations. Other ap-
proaches to this problem include the treatment of
evanescent fields in linear media, the definition of the
mode operators for a linear dispersive medium, and the
theory of a nondispersive inhomogeneous linear dielec-
tric. An innovative treatment by Hillery and Mlodinow
used the displacement field as the canonical variable for
nonlinear quantization, and successfully quantized a
homogeneous, nondispersive medium using a similar
technique to that of Born and Infeld.

In real dielectrics, there is generally a combination of

dispersion, inhomogeneity, and nonlinearity. This leads
to the need for a unification of the Hillery-Mlodinow
nonlinear theory with other techniques incorporating
dispersion and inhomogeneity. It is important to note
that relatively simple techniques using effective Hamil-
tonians are already in wide use in quantum optics. '

They are able to explain the nonclassical features ob-
served in squeezing experiments, ' which also occur
even in optical fiber media. " There is now a growing
recognition of the similarities between the effective Ham-
iltonians of extended nonlinear dielectrics' and those of
simple quantum field theories. ' However, it is desirable
to derive the relevant Harniltonians from a canonical
quantization scheme.

A theory of nonlinear dispersive quantization in media
with a nonlinear refractive index was recently given for
the soliton problem.

' Another interesting approach to
this problem led to the correct paraxial field equation, but
with a Harniltonian that was different from the energy of
the system. ' While this is possible in cases of time-
dependent Hamiltonians, it can lead to nonuniqueness of
the quantization scheme. ' ' An approach of dividing a
medium into alternatively dispersive and nonlinear seg-
ments is also known. ' In the present paper, a detailed
three-dimensional canonical quantization technique is
proposed that extends the original treatment used in the
soliton problem' to more general dielectric structures. It
is shown to lead to a Hamiltonian that generates the
correct field equations, and also agrees with the known
classical results for the nonlinear and dispersive energy of
a dielectric. " The present treatment is able to handle
the case of dispersive, inhornogeneous, and anisotropic
media, as well as treating nonlinearities of any given or-
der. The canonical field is related to the electric displace-
ment (D), which is also used in the quantum treatment of
multipolar expansions. '

The resulting Hamiltonian is relatively simple, the dis-
placement field and magnetic fields being expanded in an-
nihilation and creation operators that correspond to
photon-polaritons or dressed photons, traveling at the
dielectric group velocity. It should be emphasized that
the theory is a minimal quantum theory, and is necessari-
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II. CLASSICAL THEORY
OF THE NONLINEAR DIELECTRIC

For simplicity, the dielectric of interest is regarded as
having a uniform linear magnetic susceptibility with an
arbitrary induced polarization. In addition, since propa-
gation is of interest, the charges present are assumed to
occur only in the induced dipoles of the polarization.
The field equations are therefore, using the notation
D = (dldt)D:—

V.D(t, x)=0,
V X E(t, x)= —B(t,x),
V B(t,x)=0,
VXH(t, x)=D(t, x),

(2. I)

ly restricted to regions of low absorption that occur be-
tween resonances in the dielectric transmission. As
dispersion is related to absorption elsewhere in frequency
space, absorbing reservoirs can be added to the theory,
although these effects are small in frequency ranges that
do not overlap absorption bands. An interesting result in

the theory is the occurrence of an extra type of boson
which originates from the causality and dispersion rela-
tions in the underlying local fields. However, as these ex-
tra bosons are generally neither phase matched nor reso-
nant, they can be neglected to a first approximation for
propagation problems. In fact, they are part of more
general phase noise and absorbing reservoirs, which re-
quire a detailed microscopic theory for their treatment.

While dispersion is almost universal in dielectrics, its
effects are largest in the propagation of wideband radia-
tion. The theory presented here is therefore likely to be
useful in treating quantum effects that occur in communi-
cations systems or measurements using wideband
quantum-limited electromagnetic radiation. Since the
theory does allow an arbitrary dielectric structure, it has
a variety of applications. It is well suited for questions of
nonlinear input-output problems. There is no restriction
to slowly varying dielectric properties. The theory can
treat surface or waveguide nonlinearities. A solid lattice
structure can also be included, which allows treatment of
quantum local-field corrections that are important in in-
hornogeneous devices.

The results are presented in the following order. In
Sec. II a treatment of a classical dielectric is given, intro-
ducing the nonlinear response function in terms of the
displacement field D. The expansion parameter is there-
fore an inverse dielectric perrnittivity tensor, which is
denoted g. In Sec. III a canonical theory of a linear
dielectric is obtained, using a causal, local Lagrangian.
In Sec. IV the local Lagrangian method is used as the
foundation of a nonlinear canonical Lagrangian and
Hamiltonian. In Sec. V the quantization of the nonlinear
medium is presented, using a treatment of modes defined
relative to the new Lagrangian. In Sec. VI the results are
interpreted in terms of group-velocity quanta or photon-
polaritons, propagating in the medium and interacting
via the Hamiltonian nonlinearities.

where

D(t, x) =eoE(t, x)+P(t, x),
B(t,x)=pH(t, x) .

The medium is completely defined by its polarization
P, which in general depends on the local fields. It is
known that the polarization in the dipole approximation
or multipolar expansion can be expressed most readily by
canonically transforming to the microscopic Hamiltonian
that uses the electric displacement D as its canonical vari-
able. ' Thus, a specified electric displacement generates
an electronic polarization in the medium. This approach
is also useful here. The total electric-field vector is ex-
panded as a local functional of the electric displace-
ment, ' ' including the finite response time of the medi-
um to allow for dispersive effects:

E, (t x)= g f g', ".,', (r, , . . . , ~„,x)
n ()Oj

XD (t —~ x)jl 1

XD, (t —~„,x)dr, dr„. (2.2)

D(t, x) = g Xl"(t,x), (2.3)

Here the functions g'"' are the nth-order electric-field
response functions to the local displacement field, and the
Einstein summation convention is employed whereby re-
peated vector indices j„.. . , j„are summed over. This
technique of expanding the polarization and hence the
electric field in terms of the displacement appears prefer-
able, for quantization purposes, to the more traditional
technique of expanding the polarization in terms of the
local electric field. ' The displacement technique was first
suggested for a nondispersive, homogeneous medium,
while the present theory treats the general case of a
dispersive, inhomogeneous medium. The new expansion
coefficients have a clear operational meaning, since the
electric displacement at time (t r) can be—calculated
from a known charge deposited using a longitudinal
current, across a small element of the medium. The elec-
tric field is then obtained from the measured voltage in-
duced at later times (t), which is a uniquely defined phys-
ical observable.

In general, there could also be higher-order multipolar
or magnetic response functions as well. The present
theory, for simplicity, only includes electric dipole in-
teractions that can be treated using the above expansion.

Because the response function in Eq. (2.2) is time
dependent, it is not easily possible to quantize the theory
in time-integral form. Instead, the response function is

approximated using a slowly varying envelope approxi-
mation' prior to quantization, so that a Taylor-
expansion series can be used. In order to achieve this, D
is expanded in terms of a series of complex envelope func-
tions, each of which have restricted bandwidths. The
relevant nonzero central frequencies are then
co, . . . , co, and the displacement is expanded in com-
plex fields Xl', with 2) -e '" '. Thus
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where

V — V

The original displacement is now replaced effectively by
%+1 real fields, each with a restricted bandwidth. A
zero-frequency field is allowed in this notation, with

v =0. There are X additional fields, introduced as
dynamical variables corresponding to the imaginary parts
of 2)", giving 2% + 1 real fields in total.

Substituting Eq. (2.3) into Eq. (2.2) gives the result
that, for completely monochromatic fields at frequencies
co, the electric field is just

E, (t, x}=
N

n(&0) v = —N
I

N

~
(to ', . . . , co ";x)2),'(t, x) . 2)J."(t,x)

v = —N
(2.4)

where g(to, x) =[e(to,x)] (2.8)

(n) 1 n.(s ). . . &to;x)
The energy integral in Eq. (2.5) then becomes, in terms of
the displacement fields,

(H ) =f 8'(x) [toe(to, x)] C(x)
a

v Bco

where

+ (B(t,x) B(t,x) ) d x,
2p

(2.5)

E(t,x)=2Re[C(x)e ' '] .

Clearly, Eq. (2.4) is only valid when each field 2)' is pure-
ly monochromatic, although a combination of frequen-
cies co', . . . , co" is possible. This will be generalized later
to cases of slowly varying envelopes, in which the fields
2)" are not purely monochromatic. In these expressions
the sums extend over all positive and negative frequen-
cies, with co = —co". The frequency-dependent
coefficients g'"'(co', . . . , to";x) correspond to those more
usually measured in high-frequency regions.

Next, the time-averaged linear dispersive energy will be
treated for a classical monochromatic field at nonzero
frequency co. For a permittivity s(to, x) this can be writ-
ten in terms of a complex envelope function 8

N

(H)= f —,
' g Xl '(t, x) [g(co x)

v= —N

—cog(to, x)].$"(t,x)

+ (B(t,x) B(t,x)) d x .
2p

(2.9)

Here g indicates a frequency derivative. The permittivi-
ty tensor s(to) must be real, symmetric, and equal to
s( —to) for a nonabsorptive medium. This must clearly
also hold for the inverse permittivity g co }. Here Eq. (2.9}
is valid in the general case of anisotropic, inhomogene-
ous, and dispersive dielectrics. It is correct even when
f(to) and g(to) do not commute, as could occur if the
geometry of principle directions in the dielectric depend-
ed on the frequency.

It is useful to introduce a dual potential function at
this point. This is defined as A, with a similar expansion
to that of Eq. (2.3), so that

In the present notation, for monochromatic frequencies
near co, i.e., co =co, the electric displacement is given by

D(t, x }=V X A(t, x),

B(t,x) =@A(t,x), (2.10)
gF(t, x) =s(to, x) C(x)e (2.6)

This relation can be inverted, using Eq. (2.4), to give the
vth frequency component of the electric field in terms of
the electric displacement. Thus the field C(x}is

C(x)=g(to, x) 2) (t, x)e' ',
where

N

A(t, x) = g A'(t, x) .
v= —N

Next, g(to, x) can be expanded in a quadratic Taylor
series g„(co,x) near co', which is rearranged to demon-
strate the explicit dependence on co. Hence g(to, x) be-
comes, near co =su,

g(~o, x)=g"'(co,x)=f g"'(r, x)e' 'dr .
0

(2.7)
g(~, x) =g,(~o, x) =g„(x)+cog„'(x)+—,'co'g,"(x)

Combining Eqs. (2.6) and (2.7) shows that g(co, x) is the
inverse of the usual frequency-dependent permittivity
tensor, which is presumed to be nonsingular: where

+O((co —to ) ), (2.11)
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g,(x) =g„(O,x)

—:geo', x) —co"g'(co', x)+ —,'(co') ("(co",x),

g'„(x)= g, (co, x)= a —=g(co, x)—co'g'(co', x),

a2
g'„'(x) = g„(co,x)

Bco

—a':—g"(co",x) = g(co, x)

The odd term g„(x), which appears in the expansion of
g(co, x), does not appear in the energy integral. The new

l

functions g„(x) obtained here are quadratic approxima-
tions to geo, x) near co' with derivatives g',(x) and g„'(x).
In order to simplify the energy expression in terms of the
local fields and their time derivatives, these functions are
formally evaluated at co=0, in Eq. (2.11). It should be
noted that even though the Taylor series itself is not valid
at co=0, the field envelopes A are defined to only have
frequency components near co=co'. Thus Eq. (2.11) is ap-
proximately valid —up to 0((co—co ) }—when used with
A . It therefore has the full accuracy of the more usual
Taylor expansion expressed in terms of co —co'.

Combining (2.9) with (2.11) gives the overall result for
the linear dispersive energy after making a slowly varying
envelope approximation at each frequency ~':

(H) =
—,
' g f [[VXA "(t,x)] („(x) [VXA"(t,x)]——,'[VXA "(t,x)] g'„'(x) [VXA (t, x)]

+@A "(t,x) A "(t,x)]d x . (2.12}

This now has the form of an integral over local fields and
their derivatives. By the superposition principle, it must
b. valid for arbitrary time-varying fields whose spectral
components are in a range of frequencies near the central
frequencies co' in the nonabsorbing bands. It is possible,
by using a large number of modes A'(t, x), to obtain the
average energy for a relatively wideband field in this
form.

III. LOCAL FIELD THEORY
FOR A LINEAR DISPERSIVE DIELECTRIC

In order to quantize the theory, a canonical Lagrang-
ian must be found that corresponds to the Hamiltonian of
Eq. (2.12), while generating the Maxwell equations of Eq.
(2.1) as Lagrange's equations. The requirement that the
Lagrangian has to generate a Hamiltonian that agrees
with the classical energy is essential to obtaining a
correct quantum theory. The reason for this is that gen-
erating only the equations of motion, without regard to
the Hamiltonian, could lead to a wide variety of canoni-
cal momenta. Since these would not result in equivalent
quantum theories, no unique quantum predictions would
result. ' ' It is similarly insufficient to only generate the
correct energy, without regard to equations of motion, as
pointed out by Hillery and Mlodinow. In this section, a
classical canonical theory is developed for the linear case
using a Lagrangian technique. This is required in order
to determine canonical variables for later quantization.
Here a local Lagrangian theory is preferable. This allows
straightforward extensions to the case of a nonlinear field
theory. An alternative, nonlocal, Lagrangian technique
is given in the Appendix for comparison purposes.

As a first step, the linear Maxwell equations will be re-
cast as a wave equation. Using the dual potentials
A (t, x), together with Maxwell's equations, Eq. (2.1), it is
clear that the linear wave equation is

I

For a monochromatic field at frequency co=co, this be-
comes

VX [geo, x) [VXA"(t,x)]j = —pA (t, x) . (3.2)

+i(,'(x) [VXA (t, x)]
——'g"(x) [VXA "(t,x)]] . (3.3)

Here the combination A"(t r)e ' ' —is treated as a
slowly varying function of ~ that can be expanded in a
Taylor series near v=0, up to order r . Note that g,'=0
for v=O, since g(cu) is an even function of co. However,
for vWO there is in general a term in the wave equation
proportional to g', . This does not appear in the energy
expression, and is a result of changes in phase velocity
due to dispersion.

It is next necessary to derive a Lagrangian whose vari-
ational equations correspond to Eq. (3.3), and whose
Hamiltonian corresponds to Eq. (2.12). In fact, since A"
can be specified to be a transverse field, the variations can
be also restricted to be transverse. This is similar to the
choice of Coulomb gauge often used to quantize the elec-
tromagnetic field in the presence of free charges. Howev-
er, this gauge choice is not identical to the Coulomb
gauge, since A is different to the usual vector potential
A. The use of restricted variations is well known in
canonical quantization theory, and can be treated using
transverse functional derivatives. '

Given a Lagrangian L(A, A), which is a functional of
A and A, the resulting transverse Euler-Lagrange equa-
tions are

The wave equation for the vth envelope function with
arbitrary frequency components near co' can therefore be
rewritten as

pA "(t,x)= —V X [g (x) [V X A'(t, x)]

VX J g(r, x) [V XA'(t r, x)]d~ = —pA'(—t, x) .
0

(3.1)

5J 5L
J Qpj

(3.4)
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where transverse derivatives of an arbitrary vector a have
the property that

6 [(VXa).v]=(VXv), .
na, '

A general class of Lagrangian will be treated here, using
functions a, p, y, and 5, which are symmetric real ma-
trices. The most general type of Lagrangian to be treated
1S

N

L =Lo= —,
' f g [A "(t,x) a'(x).A (t, x) [—VXA "(t,x)] p"(x) [VXA"(t,x)]

where

2—i [VXA (t, x)] y"(x) [VXA "(t,x)]—[VXA '(t, x)] 5"(x) [VXA'(t, x)]jd x, (3.5)

a"(x)=a "(x), p"(x)=p '(x),
y"(x)= —y "(x), 5"(x)=5 "(x)

The canonical momenta are then, omitting the field arguments for clarity,

11 = . =[a"(x) A —VX[iy'(x) (VXA ")+5 (x) ~ (VXA ')]I, .
L

(3.6)

These are clearly transverse also, as required for transverse functional derivatives, provided a"(x) is a uniform scalar
quantity. Lagrange s equations follow immediately from (3.6), with the result that

a"(x) A'= —VX[P'(x) (VXA")—5'(x) (VXA')+2iy"(x) (VXA')] . (3.7)

The Hamiltonian generated can be greatly simplified by using the divergence theorem and assuming vanishing bound-
ary terms. This gives the result that, in terms of A' and A ',

N

&=Ho= —,
' f g lA "(t,x) a"(x}A (t, x)+[VXA '(t, x)] p"(x) [VXA'(t, x)]

v= —N

—[V X A "(t,x)] 5'(x) [V X A "(t,x)] l
d'x . (3.&)

This can now be compared with the known form of the classical energy in Eq. (2.12), which immediately gives a, 5, and
p. The value of y is obtained from comparing the wave equation of Eq. (3.3) with Lagrange s equations in Eq. (3.7).
Complete agreement is obtained, provided

a"(x)=p,
p"(x)=g,(x),
y'(x) =

—,
' g„'(x),

5"(x)=—,'g„"(x) .

(3.9)

In surnrnary, the results of this section give a local-field theory of a linear dispersive dielectric, with results that agree
both in dynamics and energy with the known classical results for slowly varying envelope functions. The Harniltonian
has the form of Eq. (2.12), while the Lagrangian has the following structure:

N

L =La= ,' f g —[pA (t, x) A "(t,x)—. [VXA (t, x)] g„(x) [VXA'(t, x)]

i [VXA— (t, x}]g'(x) [VXA "(t,x)]——,'[VXA '(t, x)] g"(x) [VXA "(t,x)]ld x . (3.10)

In the plane-wave case, in one dimension, these results are straightforward. In this case the dual potential A is just a
scalar. The Hamiltonian is then given by

~= f[plA(t, )I'+g( )I~.A(t, )I' ,'g"( )I—a„—A(t, )I']d . (3.11)

The corresponding Lagrangian is similarly obtained to be

L, = f i IA(t, )I' —g( )la„A(t, x)l' —
—,g"( )la„A(t, )I' ——'g'( )[a„A*(t, )a„A(t, )

—a„A(t, )a, A*(t, )] d
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Here the notation is restricted to just one scalar com-
plex field [A(t, x)=A'(t, x)]. In both the Hamiltonian
and Lagrangian, the first two terms correspond to those
normally found in the theory of massless scalar bosons.
The remaining terms indicate the corrections due to
dispersion. It is emphasized here that a correct classical
Lagrangian should generate both the usual field equations
and the classical energy; which is indeed true of Eq.
(3.10). A physically realistic inodel of a dielectric would
include vector fields and a periodic structure for g(x).
This would then encompass the usual local field correc-
tions.

IV. NONLINEAR HAMILTONIAN AND LAGRANGIAN

In the case of a nonlinear medium, the full nonlinear
polarizability should be used. For a nonlinearity that is
relatively fast in its response time, the nonlinear polariza-
bility terms in Eq. (2.2) can be approximated on replacing
g(") by an equivalent infinitely fast 5-function response
term, so that

P, (t,x)= —eo g g';".J' J (x)D (t, x) D, (t,x),
n ()1)

(4.1)

where

Eq. (2.2}. That is, using

E(t,x) =—[D(t,x)—P (t, x}—P (t, x)],1

6p

the following result is obtained:

U(t, x)= U (t, x)+ U (r, x),

(4.3)

(4.4)

1

n ()])
XDi (t, x) D, (t, x) . (4.5)

Here the following symmetry restriction is required:

where

U (t,x)=—f '
(D —P ).dD,

6'p 0

U (t, x)= f ' P .dD.
6p 0

The first of these terms corresponds to the electrostatic
part of the linear dispersive energy already calculated.
The second term is a new expression for the nonlinear en-
ergy density which is similar to one calculated by Hillery
and Mlodinow:

P(t, x)=P (t,x)+P (t, x)=D(t, x) —eoE(t, x) P(n) (x) P(n)
( )+JltJ 2J +1 ~J 2 s Jl &J

(4 6)

and

Using a standard result of classical nonlinear dielectric
theory, " the increase in stored electrostatic energy den-
sity in a nonlinear dielectric is

U(t, x)=f ' E dD . (4.2)
0

As the linear energy is already calculated, including
dispersive corrections, it remains only to calculate the ad-
ditional energy stored due to the nonlinear response, as-
suming that dispersive corrections are negligible for the
nonlinear energy. It is possible to distinguish linear and
nonlinear components of the E field, as a functional of
the electric displacement, from the expansion given in

This is necessary in order to allow integration of Eq.
(44). Hence the total Lagrangian and Hamiltonian in
terms of the dual potentials are

L =Lo —f U (t, x)d x,
(4.7)

&=&0+f U (t, x)d x,
where Lo and &o are as in Sec. III. Since the additional
nonlinear terms are assumed to be nondispersive, they do
not include the terms in A.

Equation (4.5) has an obvious generalization to cases
where dift'erent central frequencies co have distinct non-
linear couplings. In this case, new nonlinear coupling
coefficients g

' ' ' " are defined, to give a nonlinear en-

ergy density of [using (2.4)]

U (t, x)= g g g,
' ', "+'(x)[VXA '(t, x)]J [VXA "+'(t,x)]

n + 1

where

)' ' ' n+{(x) g n)(( 2 ~ n+I x)Jl' ' 'Jn+1 Jl' 'Jn+I

v v v v
1 2+ 3+. . . + n+1

1" ' ' ' i' ' ' n + 1 i' ' ' 1' ' ' ' n + 1(x)= ' " (x) .Jl' ' 'Ji' ' ' ' 'Jn+1 Jl' ' ' 'Jl' ' 'Jn+1

(4.8)

The Lagrangian that generates Eq. (4.8) is simply that
given in Eq. (4.7), with the new expression for the non-
linear energy density included. This expression is only

correct when dispersive terms in the nonlinear energy are
negligible, and when the above permutation symmetry
exists. The Kronecker 5 expression in Eq. (4.8) is used to
remove nonresonant terms from the energy density in
which the relevant carrier frequencies do not sum to zero,
so that a slowly varying envelope approximation is impli-
cit here.

The Lagrangian generates the correct equation of
motion for the field in the present approximation, which
is a generalization of the linear equation given by Eq.
(3.3):
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pA'(t, x}=—VX g,(x) [VXA"(t, x)]+i(„' [V XA "(t,x)]——,'g„'(x) [VXA "(t,x)]

+ $ $ g
' ' ' "(x):[VXA '(t, x)]. [VXA "(t,x)]

n (&1) vi, . . . , v„
(4.9)

This Lagrangian therefore gives a canonical theory of the
dispersive nonlinear medium, with the correct equations
of motion and Hamiltonian. The chief approximation is
that the envelope functions are slowly varying, so that a
Taylor-series expansion is possible. In addition, there is
the restriction that absorption and nonlinear dispersion
are neglected within each frequency band. The theory
can be regarded as the canonical equivalent of the widely
applied classical 81oembergen expansion' used in non-
linear optics. Thus the technique given here is the natu-
ral canonical field theory for nonabsorptive nonlinear op-
tics. While it only describes those processes which are
nondissipative in nature, it is possible to add reservoir
couplings to describe dissipation, if required.

In order to give an example of this, a one-dimensional
scalar case will be treated, as in Sec. III. The lowest non-
linearity of most universal interest is the nonlinear refrac-
tive index. This is a third order nonlinearity, due to g' '

in the present notation. This can be seen on comparing
the expansion of Eq. (2.2) with the commonly used expan-
sion ' of

11"(t,x)=i A "—
—,'VX[g",(x) ~ (VXA- )

+i('„(x) (VXA ')] . (5.1)

These canonical momenta combine terms in A "with the
usual derivative terms in A ". This changes the nature
of the mode expansion in terms of annihilation and
creation operators. For a nondispersive medium, the
linear Lagrangian has no terms of this type. Thus the
nondispersive case, which is present as the low-frequency
term in the envelope expansion with v=0, has a rather
simpler mode structure than the dispersive case. In nei-
ther case do the nonlinear terms enter the canonical mo-
menta, since the nonlinear terms have no time deriva-
tives.

The corresponding quantum theory is obtained from
the Dirac commutation relations, which are identical to
those in the homogeneous case. In this case, these are
transverse commutation relations, and would usually have
the form& where the corresponding field operators are
denoted A and ft,

P(t, x) =e~' '( —co, co, cv)8*(x)8(x)8(x)e ' '+H. c. [A,"(x,t), ft
1
(x', t)] =iA'fi, j(x—x')5„ (5.2)

m=m, +-,'g"'f1~„A(t, }I"d . (4.12)

This model of a one-dimensional nonlinear refractive
index medium corresponds to that used in recent calcula-
tions" of quantum soliton properties in optical media.
However, in order to treat quantized fields, it is necessary
to include commutators, and extend the classical canoni-
cal theory to a fully quantized field theory.

(4.10}

Here, as in Eq. (2.5), 6(x) is an envelope function with
carrier frequency co. This result can be used to obtain g' '

in terms of the more usual y' ' coefficient on matching
powers of 2) in the power-series expansion. Thus, on
comparing the nonlinear polarizability equation Eq. (4.1)
with Eq. (4.10), it is immediate that

g' '( to tv'—) = —e~' '( —cv, cv, cv)/[s(co)] . (4.11)

The overall Hamiltonian is then, for a complex field
A(t, x),

A"(t, x)=&1/V g Ak(t)eke'" "(v~0) .
'

(5.3)

Here the sums over k include terms labeled —k, with—k = ( —k, e„*), in a symmetrical combination. The
linear Lagrangian of Eq. (4.10) for this set of fields is then

These commutation relations apply at equal times, and
have spatial Fourier components of arbitrarily large fre-
quency. In the current problem, this prescription is not
appropriate, ' as the fields are limited in bandwidth. In-
stead, the commutation relations should be viewed as
only applying to spatial Fourier components of frequency
within the bandwidth range of the vth frequency band.
In practice it is usual to obtain commutation relations for
annihilation and creation operators of the field eigen-
modes. This is just as valid a quantization procedure as
the field quantization defined by (5.2), and has the distinct
advantage that it clarifies the questions of bandwidth.

In order to obtain mode functions, a set of Fourier
transformed fields is defined. These Fourier components
are indexed with k =(k, e„). The momentum k satisfies
periodic boundary conditions, and the polarization ek is
defined so that k ek =0. Thus

V. QUANTIZATION

The form of the nonlinear Lagrangian and Hamiltoni-
an in Eq. (4.7) is similar to field theories used elsewhere to
describe boson fields. The term in g„(x) in the linear La-
grangian is an unusual feature, and gives rise to canonical
momenta which have the structure where

W

[(~ )' ~.—(z")' p" ~"
0 1+5~

i [(A,") y"—A,
"—(A, ') y" A,']j,

(5.4)
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V —(gV )4

The matrices a", p, and y" are Hermitian matrices
spanning the range of Fourier modes labeled k in each
frequency range. These are defined explicitly as

1
ak.„= pek"ek5kk — [(k'Xek ).g'„'( x).(kXe k)2V

der appropriate conditions on a, p, and y. The quartic
equation for v&0 is

[(A ) A "(a ) '] a'=[P"+y"(a ) 'y ] (5.11)

and the corresponding frequency matrices will be, using
Eq. (A8),

Xe i(k —k') x]d 3x
7

0+—"=
[ A "+[(A ")t] 'y "I(a") '( A ") (5.12)

p„„.=—f [(k X'ek) g (x) (kXek)e' "'"]d x, (5.5)
1

y&.k
= [(k'Xek } g(x} (kXe&)e'" "'*]d x .

1

If required, the Harniltonian can then be further
simplified to the completely diagonal form, on diagonaliz-
ing the matrices 0—' within each frequency band; thus

In general, a, p, and y are not diagonal, and the result-
ing linear Hamiltonian has the structure

[[n"+i(A.,")ty"] (a") ' [(n') —iy"1,"]1

0 1+5~

v=O n v=1 n

(5.13)

+(A,") p" A, 'j . (5.6)

m"= [(A, ") a' i (A, '—) y']/( 1+5~) (v ~ 0)

(n") =(a" A, '+iy" A") /(I ,+5~) (v~O) .
(5.7)

The canonical momenta m' of the Hamiltonian are given
by

Here a complete diagonalization is performed within
each envelope, to obtain an expansion of the free Hamil-
tonian in terms of uncoupled harmonic-oscillator modes.
The diagonal operators a „and b „,and frequencies co+—„,
are given by

The theory is quantized by imposing the standard com-
mutation relations between m" and A,". These do not in-
volve transversality restrictions, and can simply be writ-
ten

(5.8)

a'= U' a',
(b v)t —U v, (b v}t

where

(5.14)

It is now possible to reexpand &o using boson annihila-
tion and creation operators. These are defined as two

vcolumn vectors a ' and b relative to an arbitrary inverti-
ble complex matrix A', for v~0:

(b") = —
I
A" A,

' i [(A') —] ' (8 ")
I .

(5.9)

&O=R g (a") .Q'. a +R g (b") .Q ".b" . (5.10)
v=0 v=1

In the Appendix it is shown that this is only possible
when A is the solution to a quartic matrix equation un-

It is straightforward to verify that a k and b & have the
character of annihilation operators, and (a k) and (b k )

are creation operators. In the nondispersive case with
v=O it is only necessary to use the plus sign in Eq. (5.9),
as a I, and b k are not independent operators. It is desir-
able to expand the Hamiltonian in terms of these opera-
tors, in a quasidiagonal form, as

[ U+—"Q—
( U —") ']„=co+—„"5„

This generates a set of normal modal solutions corre-
sponding to the diagonal operators a ' (v ~ 0) which typi-
cally have characteristic frequencies co„&0. In addition,
there is a set of anomalous modes with v & 0 correspond-
ing to the operators b ' (v ~ 1). These have a characteris-
tic behavior in which the solutions generate envelopes
A~ ~ which vary with negative frequencies (A~"~-e'~ ~').

Although these modes are a necessary part of the local
Lagrangian theory, they correspond to frequencies that
are outside the range of validity of the Taylor expansion,
since the original Taylor series expansion was only valid
when Al I e

—
I I The anomalous modes correspond to

the physical absorption regions which must necessarily
accompany any dispersive solution. It is necessary to as-
sume that these modes are in the vacuum state, because
they correspond to dynamics outside the range of validity
of the approximations used. In order to accurately treat
absorption, a microscopic theory of the interaction with
the dielectric atoms is preferable.

Having obtained a modal expansion of &0, the correct
final nonlinear Hamiltonian can be written as in Eq. (4.7).
This now has the following expanded form, written for
simplicity in terms of the operators a ':
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%=HO+ g g J g,
' ',"+'(x)[VXA '(t, x)], [VXA "+'(t,x)], d x,

n ()0) Iv), . . . , v„+1I
(5.15)

where

A "(t,x)=

and

1/2

Xek""" X(~")kk'ak"
k k'

s ~'= lkl'(ki+~kl+-, '~'0'i') (6.3)

show that the dispersion relation for propagating waves is
satisfied. The expected relation is that @co =lkl g(ru).
From the result of (6.2), it is possible to show that

A '(t, x) =[A"(t,x)]
1/2

A (t, x)=
2V g eke'"" y (g')kk'ak't +H. c.

k k'

VI. SUMMARY

A well-defined Lagrangian-based canonical theory of a
nonlinear, dispersive dielectric was obtained from the
known linear and nonlinear dielectric properties. This
can be quantized, provided care is taken to use mode
functions whose characteristic frequencies are within the
relevant bandwidth applicable to the dielectric transmis-
sion bands. The resulting modes have creation and an-
nihilation operators that are very similar to normal pho-
ton operators. The nonlinearities in the Hamiltonian
couple the linear quanta together. In order to demon-
strate this more specifically, the plane-wave case will be
treated for an isotropic, homogeneous medium, with a
single carrier frequency (v= 1).

Here a, P, and y are given by

+k'k +k~k'k (P —
—,
'

l kl'0)' +k'k

I k'k ~k~k'k lkl 01~k'k

Yk'k 1 k~k'k

(6.1)

This result implies that 3, X, and 0 are all diagonal, with

Here only the a k operators corresponding to the normal
modes are included, as the b k operators generate anoma-
lous localized modes. These would normally have an off-
resonant coupling in calculations of lossless propagation.
The corresponding terms are therefore omitted from Eq.
(5.15). However, it is obvious from the theory presented
here that additional quanta are a necessary element of a
dispersive medium. In principle, these could become ex-
cited through the nonlinear coupling induced by the
Hamiltonian. While this is certainly possible, a calcula-
tion of these effects requires more information on the
dielectric structure, since the anomalous modes may not
have the characteristics inferred from the present
simplified model.

Bk
2 Vl klan, (cok )

lk'X 1Ctli f
X ( k X e„a„e —H. c. ),

aceCOk

Bk8 t, x) — t gpcok

I k ' X I CO I t
X(ekake —H. c. )

(6.4)

where

0/(~) =—0i+~0'/+-, '~'0'i'

(~k)'=lkl'g)(~k)rI .

The above expression agrees precisely with the nonlocal
dispersive mode expansion obtained in the Appendix,
apart from the Taylor expansion for g(co). This is ap-
proximated here by expanding around the carrier fre-
quencies for the envelope function to give g&(co), as in Eq.
(3.2). Thus the new mode operators a k in each frequency
band correspond closely to the operators found using a
nonlocal Lagrangian.

It is useful to note here that the intensity or Poynting
vector in the combined dielectric and radiation field sys-
tern, neglecting rapidly varying terms, is just EXH, even
in a general dielectric. ' This now has a quantum expec-
tation value in the single-mode case of

The expression in parentheses is identical to the approxi-
mate expansion g&(co) near co=co', provided the positive
branch is used. It is clear that the solutions Q from the
negative branch do not correspond to frequencies near
co', and cannot be normal propagating solutions. In this
sense, the modes described by the operators b are un-

physical, as they occur in frequency ranges for which the
Taylor expansion used for the dispersion relation is no
longer strictly valid.

Neglecting these unphysical modes, the results for the
expansion are obtained as follows, in the free-field homo-
geneous case:

1/2

~k'k (+ki k+7k ) ~k'k
(6.2)

(EXH)=
I

V
(6.5)

1
)k'k [(~kl k +|k —l k ]~k'k

ak

Taking these solutions it is straightforward to then

Letting V= AI. for a medium length L, the ratio L/cok is
the transit time for a wave to pass through the medium.
Thus, there are /V'= (a kak ) quanta of energy freak in the
quantization volume, being transported across the area 3
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per unit transit time of the medium. The quantized
theory therefore clearly describes quanta of energy Amok,

each traveling at their respective group velocity of &ok

through the quantization volume V. The quanta them-
selves must be regarded as combined excitations of the
field and of the polarized medium. They can therefore be
termed photon polaritons or dressed photons using the
terminology of Hopfield, as they correspond to the pho-
tonlike branch of the polariton dispersion relation.

Thus there is a simple physical interpretation of these
results. This is that the displacement field is expanded in
annihilation and creation operators corresponding to the
photon polaritons of the dielectric. Nonlinear couplings
between these quanta are provided by the additional non-
linear terms in the Hamiltonian, when expressed as a
function of the canonical electric displacement operator.
The expansion of Eq. (5.15) omits the anomalous quanta,
which model the far-off-resonant absorption bands need-
ed to satisfy dispersion relations. In most cases, the
usual resonance conditions are arranged to prevent cou-
pling to absorption bands. In those cases where resonant
absorption does occur, a microscopic theory of the dielec-
tric is necessary.

For this reason, the dynamics of the anomalous quanta
are not included accurately within the present Taylor
series expansion of the dielectric permittivity. Their ori-
gin is clearly related to the use of complex amplitudes for
the envelope functions. These are classically necessary in
order to correctly treat dispersion in dielectrics. The
imaginary part of the complex amplitude is a new dynam-
ical degree of freedom, which allows for the existence of
polarization dynamics. This dynamical behavior is
known in solid-state physics to result in polariton
dispersion relations having either photon or phononlike
character. However, only the photon-polariton behavior
can be accurately obtained from refractive-index-type in-
formation.

In quantum field theory, a complex field acquires a
charge; in other words, the number of possible bosons is
automatically doubled. Here, these do not appear
symmetrically, owing to the Lagrangian structure. In-
stead, they have the useful effect of providing a minimal
representation of the other degrees of freedom that any
dispersive dielectric with a local polarization must pos-
sess, and which are in fact observable in intracavity dy-
namics experiments. In the present theory, only the
photonlike branches have a physical significance. Never-
theless, it is clear that nonlinearities can in principle cou-
ple these different types of quanta together. To treat this
would require a detailed microscopic model.

APPENDIX

The algebraic properties of the boson annihilation and
creation operators are obtained in this appendix. For
simplicity, the classical Lagrangian from Eq. (5.4) is writ-
ten in matrix form for one frequency component v, as

Here the canonical momenta are clearly

n=(A, a —ik, y),
n' =(ak, +iyA. ) .

(A2)

Next, boson-type operators can be defined for the corre-
sponding quantum theory after changing the classical
fields to quantum fields, as

a= —[AX+i(A ) 'rr ],&zx—
bt= —[AAi(A,

—
) '& ],2'

(A3)

This must be equal to the original canonical Hamiltonian
generated using Eq. (Al), which is

ff= [(& +i Ay)a '.(& iyA )—+%PA]/, (1+5~) . (A5)

Equating the two forms of Hamiltonian (and ignoring
zero-point energy terms) results in the following identi-
ties:

—'A '(Q++Q )(A )

—,'A (Q++Q )A =(P+ya 'y),
-'A'(Q' —Q-)( A')-'=y a-' .

(A6)

This immediately leads to an equation for A A, which is

X =(P+y a 'y)a

where

(A7)

La=A

so that (if v&0)

[a;,& &]=[b;,b&~) =5,J,
[8;,& ]=[b;,b ]=[d;,b . ]=[I;,8 ]=0.

The quantum Hamiltonian for Eq. (Al) is to be written
using the new operators in the form

4'=Ala tQa+b Qb)/( 1+5~) . (A4)
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Once the solution to this matrix fourth root is obtained,
the frequency matrices are

Q+=[A+(A')-'y]a-'(A') .

Given this frequency matrix, 0 can then be diagonalized,
if it is Hermitian. The requirement of Hermiticity im-
plies, from (Ag), that X is chosen to commute with y a
(and hence Pa ').

An important question here is the existence of the solu-
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tion defined implicitly in Eq. (A7}. Clearly Xa must
have a positive definite structure, to allow the Herrnitian
product (A A ) to be well defined. While any solution
for X can be used to generate an alternate solution —X,
this does not necessarily guarantee the existence of a pos-
itive definite solution, since the matrix X a could have ei-
genvalues of alternating sign. Where a, P, and y do not
allow positive definite solutions, for A A, or if no Herrni-
tian frequency matrix 0 exists, it would then become
necessary to use more general forms of mode expansion
than Eq. (A3), by coupling positive- and negative-
frequency terms. This, however, implies that the original
well-defined frequency ranges are necessarily violated. It
is a requirement, therefore, of mode expansions of this
type, that a, p, and y must generate positive definite solu-
tions for Xa, and that X commutes with y a '. Under
these conditions, the wave equation is equivalent to the
following equation for 0:

piete set of complex solutions, it is simplest to include the
solutions A„' directly, by considering A„* as a distinct
eigenmode with a different index n, in Eq. (A10). The
coefficients a„can themselves be used to generate time-
dependent dynamical variables a„(t). They have an equa-
tion of motion given by

a„(t)= i—to„a„(t) . (A12)

The trivial symmetry in Eq. (A10), where replacing to„
by —co„gives an identical mode function, is included by
taking the complex conjugate of a„as a solution. These
are not regarded here as distinct solutions, since they are
already included in Eq. (All) through taking the real
part. Thus all the frequencies co„can be regarded as posi-
tive.

The Lagrangian that generates Eq. (A12) is now just
the usual harmonic oscillator Lagrangian, where

a A '(Q*)'=P A '+2y g 'Q+ (A9) L =i)i g [i (a„a„'—a „'a„)—to„a„*a„]. (A13)

In the case of v=0, only one type of boson exists (since

y =0), and the question of cross coupling does not arise.
Apart from this and a factor of —,

' in the Harniltonian and
Lagrangian, the equations are identical.

An alternative procedure that can be used is to treat
the eigenvalue problem of the linear wave equation
directly. Since this does not involve the local Lagrangian
theory, these can be regarded as nonlocal modes. The
nonlocal eigenmodes are just the solutions to the Fourier
transformed equation for the envelope functions. In fact,
they are given by the solutions to

8„=i%&„,
where

(A14)

Hence the total system energy or quantum Hamiltonian
is given by

4= girth„a „a„.

From this Lagrangian, the quantum canonical momenta
and canonical commutation relations are

to„pA„(x)=VX g(to„,x) [VXA„(x)]) . (A10)

A(t, x) =2 Re g a„A„(x)e
n ()0)

Corresponding to each eigenmode A„at frequency co„,
there is also a solution A„at frequency co„=—~„, since
g(to, x) =g( —to, x). Similarly, any solution A„has a com-
panion solution A„, since g(to, x)=g (co,x). Of course,
these results are only applicable in the time-reversible
propagation that occurs in nonabsorbing dielectrics
without external magnetic fields. In order to have a com-

Here the eigenfrequencies are labeled with subscripts co„
to distinguish them from the carrier frequencies cu used
elsewhere. A Taylor-series expansion of g(to, x) is not
necessary here. Of course, appropriate boundary condi-
tions must be utilized at any cavity boundary. For an
infinite medium, it is usual to define a periodic boundary
condition on a large volume V, and then take limits as
V~ 00. This results in complex eigenmodes A„, with a
frequency spacing determined by the nonlinear eigenval-
ue problem of Eq. (A10). In fact, (A10) simply general-
izes (A9) to the case of more general frequency depen-
dence in g(co, x), relative to the Taylor-series quadratic
dependence on frequency of gi(to, x).

Given that a complete set of modal solutions A„ to Eq.
(A10} is available, the total field can be expanded in terms
of A„as

An expression of the form (A15) is the usual one em-
ployed for vacuum fields also. However, the derivation
here relies heavily on the reality and symmetry of the re-
fraction index. These assumptions cannot in fact be valid
over all frequencies, since dispersive dielectrics are also
absorbers. For this reason (A15) is only an approxima-
tion, valid inside restricted frequency bands. The fre-
quency band index v is implicit here, as it is not necessary
to distinguish the bands. Nevertheless, the expression is
valid only near the nonabsorbing frequencies of the
dielectric.

It is essential to have a correspondence between %
defined in Eq. (A15), and the usual classical dispersive en-
ergy expression. This is obtained by calculating (H)
from Eq. (2.9), for a classical single-mode excitation, i.e.,

( H ) =a„*a„f [ [V X A„*(x}][g(co„,x)

—co„g(to„,x)] [VXA„(x)]

+@co„A„"(x)A„(x)Id x . (A16)

uXv .d A=O . (A17)

The following result from vector analysis, using the
divergence theorem, is now required:

f v (VXu)d x= fu.(VXv}d x,
provided
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Applying this result and assuming the boundary terms in
fact vanish, together with the wave equation of Eq. (3.1),
gives the necessary condition on mode normalization.
For the Harniltonian of Eq. (3.7) to agree with the classi-
cal energy, the result is

2pco„A„* x .A„x

flQ) ~

2((co„)ik„i V

ik .x —ice t
(a„e„e " " +H. c. ),

(A 19)

The normalization then reduces to a simple expression in
terms of the group velocity co'=r)coldk, so that Eq. (3.2)
becomes in the quantum case

]/2

—[V X A„*(x)]g'(co„,x) [V X A„(x)]I d x= 1 .

(A18)

Thus a linear theory of a quantum dispersive dielectric is
relatively straightforward in terms of nonlocal mode
operators. In this case, there is no need even to use a
Taylor expansion. This treatment generalizes a known
homogeneous result to the case of an inhomogeneous
dispersive dielectric. A similar result for the nondisper-
sive inhomogeneous case is also known. However, the
complete integral expression given in Eq. (A18) is re-
quired for mode-function normalization in this dispersive
inhomogeneous case.

The usual orthogonality conditions of mode functions
can also be very strongly modified in a dispersive medi-
um. Despite this, in homogeneous cases, this form of
mode expansion is similar to the usual free-field one
(apart from the normalization). For an isotropic homo-
geneous medium, the relevant modes are plane waves.

where

co'„= alt(co„)

Here e„ is a unit polarization vector with e„*.e„=1 and
k„e„=O. This is substantially identical to the expansion
of Eq. (6.4) in the main text, also for the plane-wave case.
In fact, the only difference, as expected, is that Eq. (6.4)
uses the Taylor expansion approximation g, (co) for the
inverse permittivity. By comparison, in (A19) the exact
inverse permittivity is used. This nonlocal expansion
therefore has the advantage that it is applicable over wide
bandwidths. However, as it does not result from a local
Lagrangian, it is less straightforward to generalize to
nonlinear interactions, and requires the solution of a non-
linear eigenvalue problem.

'N. Bloembergen, Nonlinear Optics (Benjamin, New York,
1965).

~See, for example, the first squeezing experiment of R. E. Slush-

er, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley,
Phys. Rev. Lett. 55, 2409 (1985); and the optical parametric
amplifier experiments of L-A Wu, M. Xiao, and H. J. Kimble,
J. Opt. Soc. Am. B 4, 1465 (1987).

M. Born and L. Infeld, Proc. R. Soc. London Ser. A 147, 522
(1934); 150, 141 (1935).

4J. M. Jauch and K. M. Watson, Phys. Rev. 74, 950 (1948).
~Y. R. Shen, Phys. Rev. 155, 921 (1967).
C. K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).

7M. Schubert and B. Wilhelmi, Nonlinear Optics and Quantum
Electronics (Wiley-Interscience, New York, 1986).

L. Knoll, W. Vogel, and D. G. Welsch, Phys. Rev. A 36, 3803
(1987); Z. Bialynicka-Birula and I. Bialynicki-Birula, J. Opt.
Soc. Am. B 4, 1621 (1987); R. J. Glauber and M. Lewenstein,
in Squeezed and Nonclassical Light, edited by P. Tombesi and
E. R. Pike (Plenum, New York, 1989).

M. Hillery and L. D. Mlodinow, Phys. Rev. A 30, 1860 (1984).
See, for example, P. D. Drummond, K. J. McNeil, and D. F.
Walls, Opt. Acta 28, 211 (1981);M. J. Collett and C. W. Gar-
diner, Phys. Rev. A 30, 1386 (1984); C. W. Gardiner and C.
M. Savage, Opt. Commun. 50, 173 (1984).

"M. D. Levenson, R. M. Shelby, A. Aspect, M. D. Reid, and D.
F. Walls, Phys. Rev. A 32, 1550 (1985); R. M. Shelby, M. D.
Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls,
Phys. Rev. Lett. 57, 2473 (1986).
S. J. Carter, P. D. Drummond, M. D. Reid, and R. M. Shelby,
Phys. Rev. Lett. 58, 1841 (1987); P. D. Drummond and S. J.

Carter, J. Opt. Soc. Am. B 4, 1565 (1987); M. J. Potasek and
B.Yurke, Phys. Rev. A 35, 3974 (1987).

' Y. Lai and H. A. Haus, Phys. Rev. A 40, 844 (1989); 40, 854
(1989); H. A. Hans and Y. Lai, J. Opt. Soc. Am. B 7, 386
(1990).
T. A. B. Kennedy and E. M. Wright, Phys. Rev. A 38, 212
(1988).

' For example, multiplying the Lagrangian by a constant does
not change the equations of motion. It does, however, alter
the energy. Thus there are many Lagrangians for the equa-

tion of motion, which generate an incorrect energy. This re-

scaling transformation leads to rescaled canonical momenta
with incorrect quantum commutation relations. Effectively,
it alters Planck's constant. In atomic physics, this would pre-
dict incorrect atomic spectra in terms of the emitted photon
wavelengths.

' The general problem of obtaining quantum Lagrangians from
macroscopic information is also treated by A. O. Caldeira
and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983); A. J.
Leggett, in Directions in Condensed Matter Physics, edited by
G. Grinstein and G. Mazenko (World Scientific, Singapore,
1986).

' C. M. Caves and D. D. Crouch, J. Opt. Soc. Am. B 4, 1535
(1987).

~sL. D. Landau and E. M. Lifshitz, Electrodynamics of Continu

ous Media (Pergamon, Oxford, 1960); B. I. Bleaney and B.
Bleaney, Electricity and Magnetism (Oxford University Press,
Oxford, 1985).

' E. A. Power and S. Zienau, Philos. Trans. R. Soc. London Ser.
A 251, 427 (1959); W. P. Healey, Nonrelativistic Quantum



42 ELECTROMAGNETIC QUANTIZATION IN DISPERSIVE. . . 6857

Electrodynamics (Academic, London, 1982).
~oSee R. Loudon, The Quantum Theory of Light (Clarendon,

Oxford, 1983) for Systeme International unit definitions of the
Bloembergen coefficients g'"'. Note that the use of a dipole-
coupled Hamiltonian implies that the field used is in fact the
electric displacement field. This does not alter perturbation
theory results for y' ' to lowest order. However, the g'"' ex-

pansion appears preferable with this Hamiltonian.
S. T. Ho and P. Kumar (unpublished) have pointed out that
inconsistencies in the commutation relations for the electric
field can arise if the commutators are assumed to hold over
all frequencies.

J.J. Hopfield, Phys. Rev. 112, 1555 (1958).
See, for example, C. Kittel, Introduction to Solid-State Physics
(Wiley, New York, 1976).

24Perhaps the most well-known example of this introduction of
new degrees of freedom is the Jaynes-Cummings model, first
outlined in E. T. Jaynes and F. W. Cummings, Proc. IEEE 51,
89 (1963). This results in the vacuum splitting predicted by J.
J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly,
Phys. Rev. Lett. 51, 550 (1983).
M. G. Raizen, R. J. Thompson, R. J. Biecha, H. J. Kimble,
and H. J. Carmichael, Phys. Rev. Lett. 63, 240 (1989).


