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The observation of modulational instability of optical waves in the normal dispersion region has

been accomplished through the copropagation of two nonlinearly coupled, orthogonally polarized
visible waves in a strongly birefringent optical fiber. Intensity autocorrelations exhibit -3.5-THz
oscillations on both waves, and each wave spectrum develops a single shifted frequency sideband.

The results agree well with an analysis of coupled nonlinear Schrodinger equations.

Modulational instability (MI) is a ubiquitous phe-
nomenon, first studied some 20 years ago in the context of
water waves, 'z and it is exhibited in many nonlinear wave
systems. ' "MI is characterized by the instability of con-
tinuous waves to amplitude perturbations of certain fre-
quencies, which grow exponentially. MI has been shown
to be closely related to the recurrence problem of Fermi,
Pasta, and Ulam, ' and to soliton formation. 5 The
possibility of MI for nonlinear optical propagation was
first suggested by Ostrovskii, s and is the temporal analog
of the spatial instability in optical filamentation. s Optical
MI was later analyzed in detail, and it was pointed out
that the effect would only be seen for anomalous group-
velocity dispersion (GVD, 8 k/8e3 (0), which occurs in

glasses for k) 1.3 atm. This effect was first observed in
the nonlinear propagation of infrared light in optical
fibers. '0 The observation was characterized by high-
frequency intensity modulation and the development of
sidebands around the pump up and down shifted by the
modulation frequency. Since the nonlinear propagation of
coupled polarized light waves was analyzed, " it has been
known that the nonlinear coupling of two continuous
waves can extend the domain of instability of a single
wave. In Ref. 11 it was shown that incoherently coupled
nonlinear Schrodinger equations (NLSE's) can exhibit
Ml even for parametric regions where a single NLSE
would be stable to modulation (i.e., for normal disper-
sion). MI of coupled waves has since been discussed for
many physical systems. '2 ' Recently, incoherently cou-
pled NLSE's were used to analyze MI for two orthogonal-
ly polarized waves, nonlinearly coupled by cross-phase
modulation (XPM), copropagating in a birefringent opti-
cal fiber in the anomalous dispersion region. ' The case of
nonlinear coupling of optical waves of different frequen-
cies was subsequently studied using a similar analysis and
shown to exhibit MI for normal dispersion, ' however, the
necessary inclusion of coherent couplin terms in the
NLSE's tends to inhibit MI in this case. ' The system of
Ref. 15, however, does not suffer from this di%culty, and I
show in an extension of the analyses of Refs. 15 and 16
that MI can occur for normal dispersion when polarized
waves are coupled in a birefringent fiber. MI has also
been predicted for coupled orthogonally polarized waves
in a birefringent medium where large wave intensities pro-
duce nonlinear index changes on the order of the linear
birefringence. 's Experimentally, there have been numer-

ous recent observations of single-wave MI for anomalous
GVD. ' 2' There was also a recent observation of MI for
anomalous dispersion, where the MI was assisted by XPM
by a visible wave. In this case, however, the anomalous
wave would experience Ml at higher power without the
second wave, and the symmetric sideband spectra of the
anomalous wave were similar to that found for single-
wave MI.

In this paper, by copropagating orthogonally polarized
waves in a strongly birefringent fiber, temporal intensity
self-oscillation caused by MI is observed in the normal
dispersion region. The intensity autocorrelations of the
output waves exhibit -3.5-THz oscillations with 100%
modulation depth. The spectrum of each wave shows the
exponential buildup from threshold of a single sideband
shifted by the modulation frequency, in contrast to the
symmetric spectra observed in single-wave MI. '0

Copropagating orthogonally polarized fields

C, (z, t) -Re[Ej(z, t)e

in a strongly birefringent fiber are described accurately by
a pair of coupled NLSE's,
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for j 1 and 2, where ko e30/e, b d k/dt02 is the dis-
persion, b ~

+b/2, b2 —b/2, b vz,
' —

vz,
' is the

group-velocity mismatch of the two polarization modes,
the time frame is chosen to travel with the average veloci-
ty vg„' (vz, '+v~, ')/2, and n2 is the nonlinear index
(Kerr) coefficient. This description ignores coherent cou-
pling terms which, for large birefringence, have large-
phase mismatch and can be neglected, provided the non-
linear birefringence is small compared to the static
birefringence (here it is smaller by a factor of —1000).
Following Refs. 15 and 16, one notes that Eq. (1) have the
continuous-wave solutions EJ -Aj exp(i&~ ), where

n2ko(~AJ ~
+ —', ~A3 J ~ ), for j-1 and 2. Linear sta-

bility is evaluated by substituting E~ - (A, +u, )
x exp(i&J ) into Eq. (1). One keeps only linear terms in uj
and uses the ansatz uj- (rj +isj)exp[i (Kz —0 t )]. The
algebra is simplified by assuming ( A 1 ) ~ A2 ) -I', then
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one obtains the dispersion relation

[(I(-~)'-8][(it+~)'-8]-C', (2)

Instability is present when complex solutions exist for E.
For normal GVD, b, 8, and C are positive, and instability
occurs only if C) ~8 —tr ~. The power gain for the in-
stability 21m(K) is plotted in Fig. 1 using the present ex-
perimental parameters n2 3.2X10 '6 cm/W, b 1.6
ps/m, b 0.065 ps /m, eH'ective fiber core area 1.3X 10
cm, and wavelength 600 nm. At low power the peak gain
is found in a narrow band of frequencies near fI,„=b/b.
Changing the birefringence (i.err b) thus provides a simple
method of tuning the modulation frequency. As the
power increases the gain bandwidth increases and shifts to
lower frequency. For intensity greater than a critical
value,

Pcritical 3~ /4bkort2 ~ (4)

the gain ceases [Fig. 1(b)]. These characteristics are in

contrast to single-wave MI, where fI,„-JP, and the
peak gain increases linearly with power. It has been noted
previously that single-wave MI can be thought of in terms
of four-wave mixing (FWM). The same is true in the
two-wave Ml described here. In the case of MI of a single
wave in the anomalous dispersion region, nonlinear phase
shifts (-n2koP), owing to the intensity dependence of
the index, can phase match the FWM process. For nor-
mal GVD, however, the nonlinear phase shifts actually in-
crease the phase mismatch, and therefore single-wave MI
is not observed for normal GVD. In the present system,
however, the birefringence of the fiber allows for the phase
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where tr bQ/2, 8 bD (kon2P+bQ /4), and C
—', kon2Pbft . Equation (2) has the solutions

It 2 8+~2+. [(8+~2) 2+ C2 (8 tr2)2] I/2 (3)

matching, as has been previously predicted and ob-
served. The nonlinear phaseshifts still increase the
FWM phase mismatch, which explains the critical power
phenomena noted in Eq. (4), i.e., for large enough powers
the phase mismatch induced by nonlinear phaseshifts be-
comes so large that no gain exists at any frequency. Nu-
merical solutions of Eq. (1) show that the slow wave de-
velops a single sideband downshifted by Q,„and the fast
wave upshifted by II,„. This can also be understood
from the phasematching condition d,kr„t+ Ak, l,„0,
where hk is the wave-number shift of each sideband. Us-
ing the dispersion relations

kj koq+ [v~,„+(b/2)] fI + (b/2) fI

one obtains the condition Q(bfI —b) 0, when the fast
wave is upshifted and the slow wave downshifted by Q.
Thus, one finds that, for low power, Q a„=b/b, and the
sidebands shift so that they have approximately the same
group velocity as the opposing pump wave. Again, the be-
havior of the coupled-wave MI contrasts to single-wave
MI, where the pump develops symmetric up and down

shifted sidebands. 'o

The experimental configuration used is shown in Fig. 2.
A synchronously pumped, cavity dumped dye laser sup-
plies 600-nm, 9-psec pulses at a repetition rate of 4 MHz.
A polarizing Michelson interferometer produces a pair of
orthogonally polarized pulses of equal intensity with a
selected relative time delay. The combination of the po-
larizing beam splitter (PBS) and two X/4 wave plates in

the interferometer prevents reflection back towards the
laser. The pulse pair is focused into an 18-m birefringent
fiber (beat length of 1.3 mm, group-velocity mismatch of
1.6 ps/m, and core diameter of 4 turn), with its axes
aligned to the polarizations of the input pulses. The out-
put wave is selected at the fiber output by a polarizer (typ-
ical extinction of the opposite wave is 500:1),and is either
autocorrelated or measured with a spectrometer. The au-
tocorrelator uses a noncollinear, background-free arrange-
ment with a 0.3 mm potassium dihydrogen phosphate
crystal for second harmonic generation. Either measure-
ment is made with a slow scan (-100 sec) and thus rep-
resents the average over many laser pulses. For all the
data presented, the fast pulse trails the slow pulse by 25
psec at the input, so that the fast pulse, advancing
1.6x 18 29 psec during propagation, has passed through
the slow pulse and leads by 4 psec at the fiber output.
Note that a single pulse, owing to its own nonlinear propa-
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FIG. ]. (a) Calculation of MI gain vs frequency for group-
velocity mismatch of 1.6 ps/m. Curves are (largest to smallest)
for cw powers of 500, 250, 125, and 60 W. (b) MI peak gain vs

power.

AUTOCORRELATOR
LASER PULSE

9 psec POLARIZED SPECTRPMFTER I

PULSE PAIR ll

*
I %&1 VM gl

DELAY v I POLARIZING
POL R ZEI

I X/4 ',=Michelson
I M INTERFEROMETER

FIG. 2. Apparatus used to observe MI. PBS creates a pair of
polarized pulses which are aligned with the axes of the
birefringent fiber.
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FIG. 3. Measurements of the spectra of the fiber output for
the slow (first) and fast waves (second column) at peak input
powers of (a) 90, (b) 110, (c) 170, and (d) 220 W. Zero fre-

quency corresponds to the frequency of the input pulses.
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FIG. 4. Background-free autocorrelations of the slow output

wave for peak input powers of (a) 90, (b) 110, (c) 140, (d) 170,
and (e) 220 W. The intensity baseline is the true zero.

gation will broaden to 15-20 psec for peak input powers
of 100-250 W. Thus the pulses only begin to overlap
after -8 m of propagation.

Figure 3 shows the spectra of the fiber output for the
slow (first) and fast (second column) waves at a series of
power levels near and above threshold. In Fig. 3(a), with
the peak input power of both pulses set to 90 W, one sees
just the slight appearance of a single sideband on each
wave. Although the pump has broadened significantly
from self-phase modulation, the generated single sideband
is clearly resolved on each wave. The fast-wave sideband
is upshifted and the slow-wave sideband is downshifted as
predicted by the theory. In Fig. 3(b) where the power has
been increased by only 20% to 110%, one sees a sevenfold
increase in the sideband power, demonstrating the thresh-
old nature of the MI process. Given an amplification
threshold of -exp(16) and the eff'ective interaction
length of 8 m, one predicts a gain threshold of 2m
which is in agreement with the calculated peak gain from
Fig. l. As the power is increased beyond threshold [Figs.
3(c) and 3(d)], the sideband on the slow wave grows rap-
idly and severely depletes the pump, whereas the sideband
on the fast wave saturates at a low power. This extreme
asymmetry between the Stokes and anti-Stokes sidebands
has been noted before as an important eA'ect in four-wave
mixing, and is understood to be the result of Raman gain

and absorption for the Stokes and anti-Stokes bands, re-
spectively.

Figure 4 shows autocorrelations of the slow wave for in-
creasing powers. At threshold in Fig. 4(a) one can possi-
bly see the slight appearance of intensity oscillations. Just
above threshold [Fig. 4(b)] there are very uniform oscilla-
tions at a frequency of 3.6 THz. The uniformity of the os-
cillations is somewhat surprising, given that the pump and
stokes wave have THz spectral breadth. One therefore
sees that, although generated over a broad bandwidth, the
frequencies are phased in such a way as to produce uni-
form modulation. As the power is increased the frequency
decreases to -3.0 THz in Fig. 4(e), in good agreement
with the calculation of Fig. 1. The fast wave shows simi-
lar behavior except that at higher powers the depth of
modulation decreases because of Raman absorption of the
anti-Stokes sideband. Note that the autocorrelation of a
uniform 100% modulated sinusoid would have a peak to
minimum ratio of 3:1. The observed ratio in Fig. 4 nears
this value [2.2:1 in Fig. 4(e)], and given the large varia-
tion in the amplitude of the oscillations it appears the
peak modulation depth approaches 100%. An interesting
feature in the data is that the envelope of the oscillations
becomes narrower and at the highest powers develops os-
cillatory structure. The narrowing of the envelope may be
understood as partly because of the increased bandwidth
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(see Fig. 1) at higher powers. For example, from Fig. 1

one calculates an effective MI bandwidth of -0.3 THz at
170 W, which corresponds to an envelope width of -2
psec [Fig. 4(d)]. The oscillatory envelope structure in the
autocorrelation at higher powers would appear to indicate
similar structure in the wave intensity, and may be related

to the complicating effects of self-phase modulation of the
input pulses, pump depletion, andlor Raman scattering. 2s

Finally, it is interesting to note that this type of complicat-
ed behavior is similar to that found in other nonlinear
wave systems, ' ' and has been suggested to be related to
nonlinear recurrence.
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