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Scattering pattern of a quasitransparent core-shell particle
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Nonisotropic scattering patterns showing a minimum for small and almost transparent core-shell
particles are discussed. It is shown that the Rayleigh-Gans theory will not predict accurately the
scattering by such particles. A law of corresponding patterns is established for small core-shell par-
ticles with an effective index of refraction as close as possible to that of the medium. Based on this

nonisotropic scattering phenomenon, a method for determining the thickness itself and its distribu-

tion of very thin coatings on small colloidal particles is proposed.
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It is well known that light scattered by particles much
smaller than the wavelength of light (smaller than A, ,
-A, /20) do not show any angular dependence in a plane
perpendicular to the axis of polarization of the incident
beam. Another well-established fact is that for such a
size, the Rayleigh approximation is suScient to explain
scattering phenomena. On the other hand, the Rayleigh-
Gans theory of scattering extends its application to larger
particles with an index of refraction near to that of the
medium. Within this approximation, the intensity is pro-
portional to the form factor P(8), which, in the case of a
core-shell spherical particle of radius R2 and core radius
R „where m, and m2 are the index of refraction of the
core and the shell, respectively, relative to the medium, is
given by

illustrated in Fig. 1 for a particle of radius 0.005 pm with
indices of refraction m& =0.99373287 and m2=1.01.'
Hence, even for extremely small particles, there are situa-
tions where the scattering pattern is far from being iso-
tropic. This situation normally occurs. when the particle
e+ectiue index of refraction is very near that of the medi-
um. As we shall see, the position of the minimum is ex-
tremely sensitive to structural parameters such as the in-
dices of refraction and the ratio of the core radius to the
shell, which implies that in order to be able to predict
such patterns accurately we should use Mie's theory to
determine the contribution of the local fields with the re-
quired accuracy. In the same figure we compare the pre-
dictions of the Rayleigh-Gans approximation with that of
an exact Mie calculation for the same set of parameters,
and we observe that they differ notably one from the oth-
er. Therefore, in this quasitransparent region, the
Rayleigh-Gans approximation is not accurate, even for
small particles which are effectively almost transparent.
The purpose of the present paper is to study the proper-
ties of the scattering patterns in this quasitransparent re-
gion.

All the calculations that follow will be made with five
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As one can see from Eq. (1), P(8)=0 when the scat-
tered electric-field amplitude of the shell cancels exactly
that of the core, that is,

(mz —1)[R2G2(q) R&G, (q—)] = —1,
(m, —1)R,G, (q) 0

(
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which implies that, while their magnitudes are the same,
they are out of phase. This means that there exists a col-
lection of indices of refraction such that at some specific
angles the scattering pattern exhibits a minimum. This is

8(deq)
FIG. 1. Scattering patterns according to Mie (curve a) and

Rayleigh-Cians (curve b) theories for R2=0.005 dum, Q=0.85,
m

&
=0.993 732 87, and m &

= 1.01.
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electrical and magnetic Mie terms, which, up to the pre-
cision required, is enough for the particle sizes chosen in
this paper. To simplify matters we shall only refer to the
nonabsorbing particles.

Q =0.5

II. EFFECTIVE INDEX OF REFRACTION
OF A STRUCTURED PARTICLE: THE CONDITION

OF MAXIMUM TRANSPARENCY

R =0.005 p, rn

Let us first define the concept of effective index of re-
fraction of a structured particle by a procedure similar to
the random unit cell (RUC) concept for a composite
media. We shall say that the effective index of refraction
of a coated sphere of radius R2 is equal to the index of re-
fraction of a homogeneous sphere of the same radius with
the same extinction coefficient. That is, the effective in-
dex of refraction, m, ~, relative to the medium will be
given by

C,„,(R „R2,m ),m~, A)=C,„,, (R2, m, a, A). ,

In the case of very small particles compared with the
wavelength of light, ' C,„, can be approximated by

2 6 2C „t(R),R2, m), m2, A, )= g v p)
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and where
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FIG. 2. Values of ml and m& that minimize the extinction
coeScient for different R 2's.

In order to yield the maximum transparency for a
given R 2, m 2, Q, and A, , one should look for an m

&
that

satisfies

d
C,„,(Q, R2, m„m2, A, ) =0,

dm ] R2'm2'Q, A,

(13)

rather than C,„,=0. This will give the value of the core
refractive index that will make the particle almost trans-
parent. Using then Eq. (6), one can calculate the value of

Q =R, /R2 . (10)

Substituting Eqs. (7)—(10) into Eq. (6), we get, for m, tr,

(m, +2m2)+2Q (m f
—m2)

m &=m2
(m +2m ) —Q(m —m )

If we replace in this expression Q by the volume fraction
of the particles in the medium, it will become identical to
that of Maxwell-Garnett effective index of refraction of a
composite. Within this approximation, the maximum
transparency is obtained with values of m, and m 2 that
satisfy the condition m, z = 1, that is,

2(Q —1)m2+(Q +2)
m] =m2

(2Q +1)m2+(Q —1)

R =

0 2

Q =0.85

It is interesting to note first that, under this approxi-
mation, the relation between the index of refraction is in-
dependent of the radius of the particle, and second, that
for a whole range of values of m ] and m2 one could ob-
tain total transparency. Of course, at higher-order ap-
proximations one will not be able to find a collection of
m] and m2 such that C„,=O, yet the values predicted by
Eq. (12), for some morphologies, will be close to those
that give a minimum value for the extinction coefficient.

0.9
0.8 0.9 1.0

FIG. 3. Values of m, and m2 that minimize the extinction
coeScient for different R &'s.
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FIG. 5. Scattering patterns for a particle of radius 0.005 pm.
a: Q=0. 85, m, =0.93819554, and mz=1. 1; b: homogeneous
equivalent particle with the same effective index of refraction; c:
Q =0.85, m, =0.938 106 56, and m z

= 1.1 [solution of Eq. (12)].

FIG. 4. Values of m& and m& that minimize the extinction
coemcient for different Q's.

m, z for such particle; this corresponds to the closest
effective refractive index to that of the medium.

In Figs. 2-4 we show the set of values of m
&

and mz
that minimizes C,„, for different values of Rz and Q. The
values obtained from Eq. (12) will superimpose those of
Rz=0.005 pm up to the second significant figure in the
case of Q =0.5, and for Q =0.85 they will match the
third significant figure. The latter differences look as
negligible, yet as we shall see, they will have a profound
effect on the scattering pattern of such particles. These
deviations from Eq. (12) can give values for the extinction
coefficient 3—6 times smaller.

III. SCATTERING PATTERNS OF
QUASITRANSPARENT COATED

SPHERICAL PARTICLES

In this section we shall discuss the main properties of
the scattering patterns for particles whose effective index
of refraction is very near that of the medium.

Figure 5 shows the scattering pattern of a particle of 50
A radius with Q =0.85, rnid =1.1, and m, =0.938 195 54
(this m, minimizes the extinction coefficient for that
choice of Rz, mz, and Q). The effective index of refrac-
tion for this particle, according to Eq. (6), is
m ff 1 .000 037 23. As one can see, the light scattered by
such particle is far from being isotropic, showing a deep
minimum at 90'. This is contrasted with the pattern of
the equivalent homogeneous particle, shown in the same
figure, with m, z mentioned above, which is isotropic as
expected. In order to show how sensitive the position of
the minimum is with respect to the index of refraction,
we compare, in the same figure, the previous scattering

patterns with that obtained by changing m
&

to
0.938 106 56, which is the solution of Eq. (12) for
Q =0.85 and m z

= l. 1, that is, a change of only
8.897 344X10 in the relative index of refraction. As
we see, the minimum moves all the way to 16' for such a
minute change. It is interesting to note the strong back-
scattering present for the latter choice of parameters,
which also is quite surprising.

The sensitivity to changes in index of refraction varies
with the particle size and the closeness of the indices of
refraction of the core and shell compared to that of the
medium. For instance, for a thin shell as that shown in
the previous figure, the sensitivity will diminish 2 orders
of magnitude for particles 1 order of magnitude larger;
for indices of refraction m

&
and mz very close to that of

the medium (say, around m& =0.99374174, m&=1.01,
and R~ =0.005 pm), a change in b, m~ =10 will lead to
displacement of the minimum of the order of 6.5, 1 order
of magnitude more sensitive than the case shown in Fig.
5.

The behavior of scattering patterns with particle size
depends on the angle at which the minimum appears and
also whether mz&m& or m, )mz. As a general rule, a
pattern having a minimum at low angles is less sensitive
to changes in size than a pattern where the minimum ap-
pears at higher angles; the higher the angle, the more sen-
sitive the pattern becomes to changes in external radius.
When we are at the condition of the best matching of re-
fraction indices, which we shall discuss later, the
minimum appears around 90; in this case the sensitivity
is of the order of 1 per 1% change in Rz in a11 cases.
This increases to several degrees (from —3' to —7') when
the minimum appears at higher angles (say, 150'), the
latter trend being almost independent of other parame-
ters such as the indices of refraction, thickness, or wheth-
er the particles are small (say, 0.005 pm) or larger (0.05
pm). When the minimum is at low angles and m, & mz,
the sensitivity is in most cases below 1 (except in some
cases for very thick shells); however, when mz )m, the
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TABLE I. Different values of indices of refraction and radii that minimize the extinction coefficient
and the corresponding pattern shown in Fig. 9.

Pattern

f
e

h

1

J
k

R, (pm)

0.01
0.002
0.002
0.002
0.002
0.002
0.01
0.01
0.01
0.01
0.01

0.5
0.5
0.85
0.85
0.85
0.5
0.85
0.85
0.85
0.5
0.5

m,

0.413 832 6
2.041 004 72
1.065 522 111
0.993 734 293
0.938 120 807
0.930 807 1

1.065 175 443
0.993 768 261
0.938 461 58
2.028 696 95
0.931 242 511

m2

1.08
0.9
0.9
1.01
1.1
1.01
0.9
1.01
1.1
0.9
1.01

be superimposed on each other, and one can hardly dis-
tinguish between them except in that the depth of the
minima are different. The latter implies that the perfect
cancellation occurs at 90' in the limit of the radius going
to zero. However, within reasonable accuracy this law
can be extended up to diameters of the order of A, l15 as
shown in Fig. 9.

Therefore, for small particles, compared to the incident
wavelength, we can state a law of corresponding patterns
as follows: Any pair of index of refraction of a core and
shell particle that minimizes the extinction coeScient, for
any given particle radius and ratio between the radii of
the core and the shell, will have an identical scattering
pattern shape with a minimum at 90'.

For larger particles the law of corresponding patterns
does not hold so well; however, the patterns come very
close to each other as shown in Fig. 10 for a particle of
0.05 pm of radius and different core-shell morphologies
that minimize the extinction coeScient for the given pa-
rameters. For this particle size, the minima move slightly
from 90', being at 84' for Q=0.85; when Q =0.5 the

minimum is around 85.5' for m 2 =0.9 and
m

&
=1.789498, and at 87' for m2 =1.1 and

m
&
=0.3314046.

In real colloidal systems such as polymer latex, it is
reasonably easy to control the core radius (e.g. , mono-
disperse polystyrene latex). However, the shell thickness
(a second polymerization grafting the seed particles) is
not a parameter with which one can have the same de-
gree of control. From the above discussion, variations in
this parameter have a stronger effect on the scattering
pattern than the actual size and would not allow us to see
such sharp rninirna as the one already shown. In any
case, if we have a colloidal system with a fixed core radius
and with a distribution in thickness (and concomitantly a
distribution of particle sizes), where the medium has its
index of refraction as close as possible to the most prob-
able m, z, one should observe an anisotropy in the scatter-
ing by such systems, although not as sharp, but
suSciently pronounced to be observed. To illustrate such
behavior, Fig. 11 shows the scattering patterns of a core
radius of fixed particles for several distributions of shell
thickness shown in Fig. 12, where the effect of the
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FIG. 10. Scattering patterns for R2=0.05 pm for different
core-shell morphologies which minimize the extinction
coefficient. a: Q=0.85, m, =1.057297, and m2=0. 9; b:
Q=0.85, m, =0.946221, and m2=1. 1; c: Q =0.5,
m, =1.789498, and m&=0. 9, d: Q=0.5, m, =0.331404661,
and m2=1. 1.

8(deg)
FIG. 11. Scattering patterns for particles with a distribution

in Q given in Fig. 12. R, =0.0425 pm, m, =1.022214, and

m2 =0.96. The curves a, b, and c refer to the corresponding dis-
tributions of Fig. 12 used to generate the scattering patterns.
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FIG. 12. Truncated normalized Gaussian distribution for Q.

particle-size distribution has also been taken into ac-
count. As one can see, even for a distribution as broad as
c, the scattering pattern shows a minimum, which has
about a third of the intensity of an experimentally easily
accessible small angle (say, at 30'). As the distribution
becomes narrower, the minimum becomes more pro-
nounced, signaling the potential use of this technique in
determining narrow-shell-thickness distributions. In or-
der to obtain the distribution of Q's, one has to solve the
inversion problem, which as in most scattering cases is ill
conditioned; however, just by changing slightly the medi-
um index of refraction, one can generate a whole family
of patterns with minima at different angles but associated
with the same sample, and therefore, in principle, one can
construct a well-conditioned inversion prob1em. Further-
more, if we had a sample with mz & m, , we know from
the previous discussion that when the minimum appears
at low angles, it is practically insensitive to the particle
size, and therefore, if we choose a medium whose index of
refraction is such that the minimum appears at low an-
gles, then one can apply this technique to determine
narrow-thickness distributions in wildly polydisperse
(particle-size-wise) systems. This could be the case for in-
stance of vesicles with a thin shell of a lipid.

There are other experimental problems that can have
an effect on the pattern described, yet one can isolate
them or they are second-order effects. For instance, if
our temperature control within the scattering volume is
of the order of 10 'C, then there will be an indetermina-
tion of the indices of refraction in the sixth significant
feature (for most polymers, dnldT=10 'C '), and for
the case shown in Fig. 11 (Rz =0.05 pm), this will only
displace the minimum by about 0.1, which is negligible
in our analysis. Density fluctuations of the index-
matching medium will also contribute to the total scatter-
ing, yet the turbidity due to these, for most organic sol-
vents, is of the order of 10 cm ', while the turbidity of
a dilute (10" particles per cc) suspension of particles of
mean radius of 0.05 pm of the type (curve c) described in
Fig. 11 is 5.67X10 cm '. Even for an ideal suspen-
sion of the best refractive-index-matching particles used
in Fig. 11, the turbidity for the same particle concentra-
tion will be 10 times greater than for most common or-

ganic solvents. If the index-matching medium consists of
a mixture of solvents, we will have, in addition to the
density fluctuations, concentration fluctuations that will

add to the total scattering measured. Although the con-
tribution to the scattering of the latter can be larger than
that from the density fluctuations, in many cases this is
not more than 1 order of magnitude higher, and for mix-
tures that are not highly concentrated this is just 2—3
times larger. This means that in the example chosen,
even in the worst case, the scattering due to concentra-
tion fluctuations will still be below or at most the same
order as that coming from the particles, and therefore, al-
though the depth of the minimum will be reduced, the
effect described above can still be directly observed
without data treatment. In any case, the contribution
coming from density and concentration fluctuations can
be measured independently and then subtracted from the
total scattering measured, and the excess scattering will
follow the patterns shown in Fig. 11.

Furthermore, Fig. 13 shows the values of m z and Q
that minimize the extinction coefficient for a given core
radius and index of refraction. For very thin shells the
values of Q in this figure seem to be quite insensitive to
the index of refraction of the shell. For instance, if
R, =0.0425 pm and m

&

= 1.03, and we roughly know the
index of refraction of the shell to be m&=0. 946+0.01,
then the error in Q is only of the order of 3%. For the
same R, and m, , a rough estimate of m&=0. 81+0.06
will reflect itself only in an error =2.5% in the deter-
mination of Q. Even if we did not know m, with pre-
cision, say, m, is in between 1.03 and 1.02, for
mz =0.917+0.03 the maximum error in Q will be about
2.8% around Q =0.9. This means that a very simple ex-
perimental method can be set up to determine the thick-
ness of very thin coating films on small particles when we
do not know with precision both indices of refraction.
We would only have to match the media index of refrac-
tion until we reach a minimum in the extinction
coefficient. From the knowledge of the matching refrac-
tive index and the best estimate of m& and mz, we can
determine Q from curves such as in Fig. 13. This will not

I.O

0.7

L 1 2 L 3.0 G

0.5 0.6 0.7 0.8 0.9 I .0

FIG. 13. mz and Q values that minimize the extinction
coefficient for R l =0.0425 pm and different m l

's.
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require more than standard instrumentation such as a
spectrophotometer and a refractometer. The experimen-
tal difficulties described before will also apply to this
determination, yet as in the scattering experiment, their
effects are negligible or can be subtracted as already dis-
cussed above.

IV. CONCLUSIONS

In this paper we have shown that for a core-shell parti-
cle there is a region that we have designated quasi-
transparent (that is, when the effective index of refraction
is very close to that of the surrounding media) where the
scattering pattern, in the plane perpendicular to the in-
cident polarization direction, is not isotropic, no matter
how small the particle is with respect to the incident
wavelength. We also showed that the theory of Rayleigh
and Gans did not apply in this region for such core-shell
particles, even those that are small and almost transpar-
ent. It was established that in that region, for the case of
particles that are small with respect to the incident wave-
length ( «A. /15), no matter what values of Q or R2 are
adopted, as long as the pair of refraction indices mini-
mized the extinction coefficient for such parameters, its
scattering pattern shape will be the same with a
minimum at 90'. If the particles are not that small, say, a
third of the incident wavelength in the medium, the
shape of the pattern will not differ much from those of
very small particles for pairs of refraction indices that
minimize the extinction coefficient for a given R2 and Q.
Although these will not superimpose on one another, yet
they will be awfully close to each other and having their

minima at angles close to 90'.
We discussed the sensitivity of the position of the

minimum, showing in all cases that this was greater for
changes either in the indices of refraction or in the thick-
ness of the shell than for variations of the same order in
the particle size. The smaller the particle, the greater
this sensitivity of the position of the minimum with
respect to Q and m values. Moreover, we showed that for
m2) m& the position of the minimum at low angles was
quite insensitive to the radius of the particle. All this
suggests that the position of the minimum could be em-
ployed, in principle, for the determination of the index of
refraction or the thickness of film coatings on small parti-
cles.

We showed that, even in the case of particles with rela-
tively broad distributions of thickness, this phenomenon
could be observed experimentally and proposed a method
to determine the thickness and its distribution by light
scattering. This was applicable from relatively broad to
very narrow distributions in thickness, being extremely
sensitive in the last case. If m2 & m

&
and the minimum of

the most probable particle indices appears at low angles,
then the method would be almost particle-size indepen-
dent.

Finally, we also suggested another experimental
method, based on determining the index of refraction of
the index-matching Quid, which gives rise to the smallest
extinction coefficient for the particles, that could be used
to measure the thickness of a very thin shell with reason-
able accuracy when we know the refraction indices of the
core and the shell only roughly.

The wavelength used in this paper is 488 nm in a medium with
1.54 as index of refraction.

~For a better graphical display, all the Mie patterns in this pa-
per have been normalized with I(0).
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