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A quantum theory of a two-photon laser is developed by making use of the antinormal-ordering

Q function. Starting from the microscopic atom-field interaction Hamiltonian for cascade three-
level atoms and including saturable absorbers, we first present a master equation for the field-

density operator, and then transform the master equation into a Fokker-Planck equation for the Q
function. The Q-function approach enables us to study the two-photon laser analytically, obtaining
simple expressions for nonlinear gain, mean photon number, frequency pulling, natural linewidth,
and photon-number variance in a unified method. We find that the field in a two-photon laser will

build up from a vacuum without triggering if its linear gain is larger than the cavity loss. Also hys-

teresis can occur in the two-photon laser even without triggering. With an overall two-photon reso-
nance, the normalized photon-number variance approaches a common value —", well above "thresh-

old, " independent of the one-photon detuning. We compare these results with previous results ob-
tained from an effective interaction Hamiltonian. We find that the domain of validity of the
effective Hamiltonian for the photon-number variance is much smaller than that for the mean pho-
ton number. Well above "threshold" the effective Hamiltonian overestimates both the natural
linewidth and the photon-number variance.

I. INTRODUCTION

The quantum theory of a (single-mode) two-photon
laser was studied theoretically for many years, ' ' but
with few experimental realizations. ' ' In recent years
there has been new interest in this novel system. First,
Brune et al. have studied a two-photon micromaser both
theoretically' ' and experimentally. ' In the experiment
of Brune et al. ' the cavity frequency is turned to half
the frequency of the 40S~39S transition of rubidium
Rydberg atoms, so that the two-photon emission rate is
enhanced whereas the one-photon emission rate is
suppressed. They observed two-photon oscillation in the
microwave region. Second, Scully et al. have shown
that two-photon correlated-spontaneous-emission lasers
(two-photon CEL's, which are coherently pumped,
single-mode two-photon lasers} can generate bright light
with phase squeezing. ' ' By assuming large one-photon
detunings, most of the theoretical investigations on the
two-photon laser used an effective atom-field interaction
Hamiltonian which has a single two-photon exchange
term. The use of the effective Hamiltonian gives two-

photon gain but no one-photon gain, and also does not
predict any dynamic Stark shift. Brune et al. ' derived
an effective two-photon Rabi frequency starting from a
microscopic atom-field interaction Harniltonian that in-

cludes explicitly a middle level. By assuming large one-
photon detunings (compared with one-photon Rabi fre-
quencies), they first treated the middle level to first order
in one-photon Rabi frequencies and then eliminated the
middle level. The application of the effective Rabi fre-

quency gives only two-photon gain {as that of the
effective Hamiltonian does), but it does predict a dynamic
Stark shift and thus a frequency pulling at two-photon
resonance. ' Zhu and Li' studied the photon-number

distribution of the two-photon laser by using directly the
microscopic Hamiltonian (i.e., no elimination of the mid-
dle level). They found both one- and two-photon gains,
and argued the dif6culty in defining a criterion for the
threshold of the two-photon laser. The use of the micro-
scopic Hamiltonian allows the one-photon detunings to
vary from very large to very small, and represents a more
realistic model compared with the use of the effective
Harniltonian as is evident in the experiment of Brune
et al. ' Very recently, Boone and Swain' have further
studied the photon-number distribution by also using the
microscopic Harniltonian. However, none of the two pa-
pers gave any analytic expression for photon-number
variance, which is an important quantity in photon statis-
tics.

Comparing the current understanding of the two-
photon laser from the microscopic Hamiltonian with that
from the effective Hamiltonian, and with our understand-
ing of a one-photon laser, which is well known and has
played an important role in laser physics, we still do not
know something and need to answer some questions.
One is the threshold and the buildup processes in the
two-photon laser. Is a triggering required to start up the
laser operation? The answer from the effective Hamil-
tonian is always yes. ' Another is the general expression
for the photon-number variance. Well above threshold,
does the normalized photon-number variance approach
unity (the value of the Poisson distribution} as in the
one-photon laser? The effective Hamiltonian predicts '
it to be —,', and thus the answer is no. To answer these

questions based on the results of the microscopic atom-
field interaction Hamiltonian, we develop in this paper a
quantum theory of a two-photon laser by using the
Fokker-Planck equation for the antinormal-ordering g
function. ' We include the effects of saturable ab-
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sorbers in our study. We find that, when the linear
gain of the two-photon laser is larger than the cavity loss,
the laser field will build up from a vacuum without
triggering. Well above "threshold" the normalized
photon-number variance is found to be —", , independent of
one-photon detuning (overall two-photon resonance is as-
sumed). We also compare these results with those in Ref.
14 obtained by using the effective Hamiltonian. Recent-
ly, Lu and Zhu have made such a comparison for the
two-photon CEL's, and Boone and Swain' have done so
for a single-mode two-photon laser. In this paper we find
that the domain of validity of the effective Hamiltonian is
much smaller than that for the mean photon number, and
the effective Hamiltonian overestimates the natural
linewidth well above "threshold, " in disagreement with
the conclusion of Ref. 15.

The layout of the paper is as follows. In Sec. II we
present the master equation for the reduced field density
operator. In Sec. III we transform the master equation
into a Fokker-Planck equation for the Q function. In
Sec. IV we discuss the operation of the laser and give gen-
eral expressions for laser intensity and frequency pulling.
In Sec. V we study the natural linewidth and the photon-
number variance by using the Q function. In Sec. VI we
compare in detail these results with those in Ref. 14 and
discuss the domain of validity of the effective Hamiltoni-
an. Finally, we summarize our results in Sec. VII.

II. MASTER EQUATION

FIG. 1. Energy-level diagram for a single-mode two-photon
laser.

jth atom and the field in the interaction picture

pf= —i8(t t )[V—,pf] —I pf . (2.2)

In Eqs. (2.1) and (2.2), 0 is the cavity-mode frequency, v
the actual laser frequency, a (a ) the field annihilation
(creation) operator, y the cavity-loss rate, t the injection
time of the jth atom (assumed to obey a Poissonian distri-
bution '), 8(t t ) the u—nit step function [8(t t )=—1

for t &t and 8(t t )=0 fo—r t (t ], and I the decay
rate of the lasing atoms (assumed to be the same for all
three atomic levels). Also fiV is the interaction Hamil-
tonian of the jth atom with the laser field in the interac-
tion picture. Summation over atoms in Eq. (2.1) can be
replaced by an integral over the injection time t. ,

p= i(Q v)—[a a,p] i +6(t tj )Tr 1[Vi,p j~]

I

+
2 y(2a pa —a a p

—pa a ) . (2.1}

The other treats the reduced density operator p~f for the

We consider cascade three-level atoms interacting with
a single mode of cavity field (see Fig. 1). The top level
la ) and the bottom level lc) are of the same parity,
which is opposite to that of the middle level b ). The en-

ergy of level
l
A ) ( A =a, b, c) is iilco„. The active three-

level atoms are incoherently pumped to the lasing levels

l
a ), b ), and

l
c ) . The corresponding initial atomic pop-

ulations are p„, pbb, and p„, respectively. Population
p„(also p» to the upper transition) plays the role of
saturable absorbers. ' To ensure the single-mode
operation of the laser we assume that the cavity frequen-
cy has been turned close to half the frequency of the a-c
transition but away from the frequencies of a-b and b-c
transitions, so that single-photon emission channels are
closed. We study such a two-photon laser by using the
microscopic atom-field interaction Hamiltonian and the
Scully-Lamb model for lasers.

The Scully-Lamb theory of lasers can be reformulat-
ed, yielding two basic equations of motion. One deals
with the reduced field density operator p for the laser
field in the interaction picture

where r, is the total pumping rate to all three levels.
For the two-photon laser (see Fig. 1) the microscopic

interaction Hamiltonian i}iV in the Schrodinger picture is
(under the rotating-wave approximation)

V, =(gila' )(,'b I+gplb')(c l)a+H. c. , (2.3)

where g &
and g2 are the atom-field coupling constants for

the a-b and b-c transitions, respectively, and are chosen
to be real. For simplicity we consider the case of the ac-
tual two-photon resonance co„=2v and the equal cou-
pling constants g, =g2=g, where co„~.=co~ —~~.. We
denote one-photon detunings by

6=COgi V —
(CObq V) (2.4)

In the goad-cavity limit y « I, where the laser field
does not change appreciably on a time scale of atomic
lifetimes, one can obtain the coarse-grained time rate of
change for the field operator p from Eqs. (2.1}—(2.4).
The master equation for the laser field has thus been de-
rived in Ref. 23 for more general initial atomic condi-
tions. For the incoherently pumped two-photon laser
studied in this paper, the master equation is simplified to
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p„=ap„I—
—,'p„[(n +2)(m +1)pn '+(n +1)(m +2)e„~+2(n +1)(m +1)a„a„']+P„1 1 nm g„

+ p —2, —2[11 (ri )m (m ) (P —2, —2+ —2, —2 2+ —2, —2& —2, —2) I

+apbb[p. +1, +,(n+1)'"(m+1)'"g„'—p„~,„,g„', , +p„, , 11m g„'2 2)

+p„pp„+2 +2[(n +1)(n +2)(m +1)(m +2)]'~ (p„'+e„'—21'„cr„')

+Pn+ 1,m+ 1(& +1)'"(m +1)'"kn -'i, m -i
Ypnm[(n 1)mPn —2, rn —2+n (m 1)en —2, m —2+2 nm+ n—2, m —2an —2, m —21]

i—(Q v—)(n —m)p„+y(n+1)' (m+1)' p„+, +1 ,'y—(—n+m)p„~, (2.5)

with

=1+5 + ( n +m +3)P /a +(n —m ) P /4a

0.„=(2n +3 )(2m +3 )g„

p„=(2n +3)[1+i5+(2m +3)P/4a],
e„=(2m +3)[1 i5+(2n —+3)P/4a],
a„=n +m +3+(n m) —P/2a+i5(n —m),

where

(2.6a)

(2.6b)

(2.6c)

(2.6d)

(2.6e)

a=2r, (g/1 ), P=Sr, (g/1 ), 5=6/I (2.7)

are a linear-gain coe5cient, a saturation parameter, and a normalized one-photon detuning, respectively. In the ab-
sence of saturable absorbers, the master equation is a special case of Eq. (2.5) with pbb =p„=0, in which case we can set
p„=1.

The equations of motion for the diagonal elements p„„=p„ofthe field density operator are readily obtained from
Eqs. (2.5) and (2.6) by setting m =n,

Pn Tn 2(PaaPn —2— PccPn ) Tn(PaaPn PccPn+2)+Paa( ~
1nPn —1 ~npn + ~n —1Pn —1 ~n 2Pn —2)—

+Pbb Bn —2Pn —1 Bn —1Pn +BnPn+ 1 Bn —1Pn )+Pcc(cn —1Pn +1 Cn 2Pn +~a —1P—n +1 nPn+2)

+y(n +1)p„+, ynp„, — (2.8)

where

a(n +1)(n +2)[1+(2n +3)P/4a]
(2n +3)I [1+(2n +3)P/4a] +5 ]

a(n +1)
(2n +3)g„„

n+2
An n n+l n

(2.9a)

(2.9b)

(2.9c)

For small n such that nP/a &&1, Eq. (2.10) becomes ap-
proximately

ynp„=anpn 1/(1+5 ), (2.11)

tailed balance implies that

yriPn =(Tn i+ ~n -1)Pn 1+-(Tn -2~n -2)Pn 2--
(2.10)

B„=a(n +2)/g„„,
B„=a(n + 1)/g„„,

a(n +2)
(2n +3)g„„

(2.9d)

(2.9e)

ln Eq. (2.8) the terms containing T's represent direct
two-photon processes in the How of probability for
finding n photons, those containing A's and C's represent
indirect two-photon processes, and the rest terms give
one-photon processes. In steady state we have p„=O.
By adding and subtracting same terms

T„,(p„p„,—p„p„+,) in Eq. (2.8) we have detailed
balance. For example, when pb& =p„=O and p„=1,de-

which is similar to the situation in a one-photon laser.
However, in contrast to the one-photon laser, the re-
currence relation (2.10) does not admit any simple analyt-
ic solutions for, say, photon-number variance. Zhu and
Li' and Boone and Swain' calculated numerically the
photon-number distribution of the two-photon laser. To
better understand the properties of the two-photon laser,
however, analytic expressions for the photon-number
variance, etc. , are desired. In this paper we will use the
approach of the Q function to find analytic expressions
for mean photon number and photon-number variance
(which determine the first two moments of the photon-
number distribution), etc. The advantage of using the Q
function is that it can determine the mean photon num-



42 Q-FUNCTION APPROACH TO A TWO-PHOTON LASER 6759

ber, frequency pulling, natural linewidth, and photon-
number variance in a unified approach.

Q(g ge )—
0 '~n. m. Pnm (3.1}

IIL FOKKER-PLANCK EQUATION
FOR THE Q FUNCTION

In this section we convert the master equation (2.5)
into a Fokker-Planck equation for the Q function, which
is an antinormal-ordering quasiprobability function.
The Q function can be expressed in terms of the field
density-matrix elements p„

and denominators of its various terms. ' ' ' The
Fokker-Planck equation for the Q function is obtained by
expanding the equation in terms of the derivatives and
keeping terms up to second order in the derivatives. As-
suming that the average photon number of the two-
photon laser is much larger than unity, we can safely
neglect 1 compared to I@ in the Q's equation of motion.
We find the Fokker-Planck equation for the Q function
after some lengthy calculations:

8 ~ 8 a2 a2—Q(8, 8",t)= — dg+ Dq@, + Dr;r;aeac' " ae'

The expectation value of an antinormally ordered func-
tion F,„„(a,a ) can be calculated by using the Q func-
tion 26, 27

(F,„„(a,at)) =fF,„„(v,C')Q(8, 8')d 8 . (3.2)

The derivation of the Fokker-Planck equation for the

Q function in this work is very similar to that in Ref. 14,
and we will only outline the derivation here. Taking the
time derivative on both sides of Eq. (3.1) and substituting
the master equation (2.5) into Eq. (3.1) we obtain an equa-
tion of motion for the Q function. This equation contains
derivatives with respect to 8 and 8' in both numerators

+c.c. Q(6, @*,t),

where the drift coefficient is

(p..—p„)(1+I
@I'p/2a)

(1+
I
C I'P/2a )'+5'

Pbb Paa Pcc

1+5'+2I @I'p/a

+[i(v—Q) —
—,'y]c,

and the diffusion coefficients are

(3.3)

(3.4)

2P„(1+1@1 p/2a) Itc'I2p (p„p„)[(1+Ill p/2a) —fi ] 2pbb+(p„+2pbb+p„)l@ p/a
D + + +

4 . (1+ I
@I'p/2a)'+&' 2a [(1+ 8 I'p/2a)'+5']' I+fi +2lgl p/a 2

(3.5a)

(p„+p„)(1+I@ P/2a)+i5(p„—p„) (1+i5)p„+(1 i5)p„+(—p„+2pbb+p„)III P/a
4@' (1+ I

@I'p/2a)'+S' 1+~'+2I&l'p/a

(pg, —p„) 8I P/2a+
(1+i5+

I
8

I p/2a)

2~
I
@I'p&(p.. 2pbb+ p„—}
« I+fi'+21~I'p/a}2

(3.5b)

82
+2 Dry Qz(I Q, t),

BIB/
(3.6)

The cavity-loss rate y enters into the diffusion coefficient

D@@, when the antinormal-ordering Q function is used.

Without saturable absorbers we have p„=1 and

pbb
=

pcc =0 in Eqs. (3.4) and (3.5).
In order to study the properties of the intensity and

phase of the two-photon laser, we rewrite the Fokker-
Planck equation (3.3) in terms of intensity and phase vari-
ables I and P through the relation 6'= &I e'b,

a a a a' a'—Q2(I, P, t) = — dr — d~+ Drr+ D~~dt
' ' dI BP

Drr 2I[D&&~+Re(D@&e ' ~)],

D&&
= [D@@+ Re(D@@e—'~)]/2I,

Drt = Im(Dr;ce '2'b)

(3.8a)

(3.8b)

(3.8c)

are, respectively, the intensity-, phase-, and cross-
diffusion coefficients for the Q function. In arriving at
Eq. (3.7} we have neglected diffusion-induced drift
terms' by assuming that the mean photon number is
much larger than 1. The new Q function is related to the
old one by

I

are the intensity- and phase-drift coefficients, respective-
ly, and

where

dr =2&I Re(d@e '~),

d& =Im(d@e '~)/&I

2Q, (I,P, t) =Q(C, @',t),
(3.7a) such that

(3.7b) fQ, (I,P, t)dIdg= fQ(C, @*,t)d'8=1 .

(3.9a)

(3.9b)
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di =(6 —y }I,
a(p„—2pbi, +p„)sgn5

2(I5I+ I5I-'+4N)

where

a(p..—p., )(N+ l51-')
6(N)=

I51[1+(N+ 151 ')'l

(3.10a)

(3.101)

(3.10c)

Substituting Eq. (3.4) into Eqs. (3.7) we obtain the drift
coefficients for the intensity and phase, respectively,

is the nonlinear gain of the two-photon laser, and
N=IP/2aI5I represents a normalized photon number.
One needs population inversion (i.e., p„&p„) to achieve
positive gain. The role of the middle-level population pbb
(it is a loss for the upper transition but a gain for the
lower transition) in the gain 6 has been canceled, since
we have taken g, =gz. %hen pbb=0, the linear gain
6 (0)=a/(1+5 ) equals the linear gain for an off-
resonant one-photon laser. Substituting Eqs. (3.5) into
Eqs. (3.8} we have the diffusion coefficients for the inten-
sity and phase:

Dll=yI+ ,'aII51 -'(2pbs p.. —p„)(—151+151 '+4N) '

+-,'aII5I '[(N+15l ')'[p, (3N+151 ')+p„(N+3151 ')]+p..(151 ' —N)

+p„(3I5I '+5N)1 [1+(N+ I5I ')2]

y a (p«p«)(N +151 ') (p«+2pbb+p„)(N+15I
D = + +4I 8II5I 1+(N+ I5I-')' I5I+ I5I-'+4N

Dip=0

(3.11a)

(3.111)

(3.11c)

and the photon-number variance

& (b, fi )'& = &:(he )':. &
—&:&: &

= ( (5I )' &
—

& I &, (4.2)

where.:.: denotes antinormal ordering of a and a~, and
5I=I (I ). Making —use of the Fokker-Planck equation
(3.6) we find the equations of motion for the intensity and
phase of the field:

IV. OPERATION, INTENSITY
AND FREQUENCY PULLING

In this section we examine the operation of the two-
photon laser. Since the Q function is an antinormal-
ordering function, we find, by using Eq. (3.2), the expec-
tation value of the photon-number operator 8' =a a,

(4.1)

d,(., ) =o,
d~(no)=0 .

(4.5a)

(4.51)

Equation (4.5a) determines the laser intensity. Substitu-
tion of Eq. (3.10a}into Eq. (4.5a) gives

i

photon laser, as in the one-photon laser. This result can
be regarded as a semiclassical result. Note that, by set-
ting n =1 in Eq. (2.11), we have pi/po=G(0)/y. Thus,
6(0)=y means p, =pa, and 6(0)&y is equivalent to
p& &po. Davidovich et al. also found the condition

p &
&po for the self-starting in a two-photon micromaser.
In the steady state we have d/dt =0. It follows from

Eqs. (4.3) that the position no of a peak (or a valley) of
the steady-state Q function, which is the steady-state
mean photon number ( 8 )„when there is only one peak,
satisfies the following deterministic equations:

6(Np)=y
(4.3a)

and/or

(4.6)

„&y)=&d,&, (4.31} (4.7)

and that for the antinormally ordered photon-number
variance:

dt
((5I) ) =2(di5I)+2(DII) . (4.4)

%hen the linear gain is larger than the cavity loss,
G(0) &y, we see from Eq. (4.3a} that the laser intensity
(I ) will start to increase; i.e., the laser field will build up
from a vacuum via spontaneous emission. On the other
hand, when G (0) & y, the laser field cannot build up from
the vacuum through spontaneous emission. Consequent-
ly, G(0) =y is a "triggering-free" threshold of the two-

6,„=a(p„—p„)/2I5I
=6 (o)(1+5') /2151 (4.8)

Physically, Eq. (4.6) means that the nonlinear gain equals
the cavity loss in steady state. %e plot the gain 6 as a
function of the intensity N in Fig. 2. The gain 6 behaves
differently depending on whether I5I & 1 or I5I & l. In the
former case, the gain 6 decreases to zero monotonically
with increasing N, and there exists one (none) positive
solution of No to Eq. (4.6) if G(0)&y ( &y). These are
similar to a one-photon laser. In the latter case, as X in-
creases, 6 first increases to its maximum value
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C)
strength"

a(p„—p„}[1 (—N +~5~ ') ]
II =Np

[5i[1+(N,+ /5i-')']' (4.12)

In the case of small detuning
~
5

~

& 1, the solution No is al-

ways stable, again similar to the one-photon laser. In the
case of large detuning ~5~ & 1, a solution No is stable only
if

No&N. =1—151 '. (4.13)

D
C)

FIG. 2. Gain curve G [in units of a(p„—p„}~5~ '] of the
two-photon laser as a function of a normalized laser intensity
N=IP/2a)5~ for ~5)=10 (solid line), ~5)=2 (dashed line), and

~5~ =1 (dotted line). The closed (open) circles denote stable (un-

stable) solutions to Eq. (4.5a).

a anp=2 ———1
P y

(4.10)

which is twice the mean photon number in a (resonant)
one-photon laser with the same parameters a, P, and y
[cf. Eq. (5.9)]. Physically we may interpret this result by
saying that each atom emits two photons in the resonant
two-photon laser instead of one photon in the one-photon
laser.

We now examine the stability of the solutions Np s
found above. The condition for a stable intensity no (i.e.,
for a peak in the steady-state Q function) is

Bdl(no) BG(No)
All = =Np (0, (4.11)

at N =N =1—
~5~

' and then decreases to zero. Conse-

quently, there exists (i) none, (ii) two, and (iii) one positive
solution of No to Eq. (4.6) for (i) y & G,„, (ii)

G(0) & y & G,„,and (iii) y & G(0), respectively. To start
laser operation one needs triggering in case (ii} since the
linear gain G(0) &y, whereas triggering is no longer
needed in case (iii). Namely, G,„=y is a "triggering-
needed" threshold. Overall, it follows from Eqs. (4.6),
(3.10c), and (4.8) that the normalized mean photon num-

ber Np are

(4.9)

provided G,„)y when ~5~ & 1, or G (0) & y when

~
5

~

& 1. The smaller No (with minus sign), and even the
larger No (with plus sign) may be negative. The negative

Np should be dropped. For example, in the case of one-
photon resonance 5=0 and without saturable absorbers,
Eq. (4.9) gives

ad, (0)
ar

=G(O) —} . (4.14)

Consequently, the solution at the origin is stable (i.e.,
there exists a peak at I =0) only if the linear gain
G(0) &y, as expected physically. The peak at the origin
is just a thermal field, arising from the below-threshold
operation of the two-photon laser. For case (ii} discussed
above, there exist two stable solutions no to Eq. (4.5a)
(see Fig. 2); namely, there exists bistability in the two-
photon laser in the range of 2~5~ & a(p„—p„)/y & 1+5
when ~5~ & 1.

Let us sumtnarize here the behavior of the two-photon
laser in the case of ~5&1 and without triggering. When
the linear gain G(0) is less than the cavity loss y, the
laser field is a thermal field at Np =0. As we continuous-
ly increase the pumping of the active atoms so that
a(p„—p„)/y becomes slightly larger than 1+5 [i.e.,
G (0) is slightly larger than y], there will be a discontinu-
ous jump in the laser intensity from No =0 to
No =N ( ~5~+ I ), giving rise to a first-order phase transi-
tion. After this, the laser intensity will increase continu-
ously when a/y does so. At this time, if we decrease the
pumping of the active atoms continuously, then the laser
intensity will also decrease continuously until Np=N
which corresponds to a(p„—p„)/y=2~5~ or G,„=y.
After this, the laser intensity will jump discontinuously
from Np =N to Np =0 as the pumping is further con-
tinuously reduced. In other words, we have hysteresis in
the two-photon laser even without triggering (see Fig. 3).
If the quantum Auctuations are included, then we expect
that the discontinuous jumps will become less dramatic.

Having found Np we obtain the actual laser frequency
from Eqs. (4.5b) and (3.10b),

Physically we can simply determine the stability of a
solution Np by looking at Fig. 2 and using inequality
(4.11). For the case G(0)) y (with arbitrary ~5~), in
which there is only one positive Np, the intensity Np is al-

ways stable, in agreement with the above discussions.
For case (ii), i.e., ~5~ ) I and G (0) & y & G,„, the larger

Np is stable whereas the smaller Np is unstable, in agree-
ment with (4.13). The unstable No corresponds to a val-

ley in the Q function. Thus, we conclude that only the
plus sign in Eq. (4.9} should be retained in any cir-
cumstance.

For the solution at origin, No=0, we find from Eqs.
(3.10a) that

where the second equality is obtained after using Eqs.
(3.10a) and (4.6}. Using Eq. (3.10c) we find the "locking

I 0+@~.b
r+r (4.15a)
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No jk

( I+ I Sl ) N~

tt(p..+2pbb+p„)(I&l '+4&o)
D (no)= y+

lfil+ lfil-'+4wo

(5.1b)

Z 18' (+Q ~ ~) aa )cc)r'+

FIG. 3. Hysteresis in the two-photon laser. That
a(p„—p„)/y =2I5I corresponds to G,„=y and
aE,'p„—p„)/y=1+5 to G(0)=y.

where

2pbb+p

2I~I(l~l+ I~l '+4&, )
(4.15b)

20=co„+(cob,—or,b)y/I' .

2Q —co„has the same sign as cob,
—cu,b.

(4.16)

plays the role of the cavity-loss rate y for determining the
actual laser frequency in a one-photon laser. Note that y
depends on the laser intensity No, which in turn depends
on the ratio G,„/y and ISI. Equation (4.15a) shows
that, even in the case of the actual two-photon resonance
co„=2v, there still exists frequency pulling in the off-
resonant case 5%0. This frequency pulling originates
from a dynamic Stark shift between levels Ia ) and lc ) in-
duced by the cavity field through the middle level Ib ).
The direction of the mode pulling follows that of one-
photon detuning for the upper transition a —b. When
0=or,b, Eq. (4.15a) predicts no frequency pulling,
v=0 =co,b =co&,. This is expected since it is just the res-
onant case 5=0. In order to achieve the actual two-
photon resonance for the usual off-resonant case, it is of
practical importance to know how to adjust the cavity-
mode frequency according to the atomic transition fre-
quencies. The rule follows from Eq. (4.15a) as

8
dr Drr Q2(I) =0 . (5.2)

The detailed-balance solution of Eq. (5.2) is

r dr(x)
Q2(I) exp dx (5.3)

where C is a normalization constant to be determined
from Eq. (3.9b). Using Eqs. (3.10a), (3.10c), and (3.11a)
we can obtain an expression for Qz(I). As an approxima-
tion, we expand dr and Drr around I=no up to first and
zeroth order in I —no, respectively, and obtain

It is important to note that D&&(no} is half the natural
linewidth of the two-photon laser. The first term
y /8no of it comes from the vacuum fluctuations associat-
ed with the cavity loss, which can be reduced and even el-
iminated if we can replace the ordinary vacuum by a
squeezed vacuum (e.g. , by shining a broadband squeezed
vacuum into the laser cavity). The second term of
Dyy(no ) is due to the spontaneous emission. Comparing
the effects of different levels on the natural linewidth, we
see that the contribution from pbb is twice (gain for the
lower transition and loss for the upper transition) as
much as that from p„(gain only) or from p„(loss only).
Only in the resonant case 5=0 will all the gain and loss
mechanisms contribute on the equal position to the natu-
ral linewidth.

Since the drift coefficients (3.10) and the diffusion
coefficients (3.11) are independent of the phase variable P,
the steady-state solution Qz(I} of the Fokker-Planck
equation (3.6) must be P independent too. Consequently,
it satisfies the equation

V. NATURAL LINEWIDTH
AND PHOTON-NUMBER VARIANCE

no y(3p..+p„} &(2pbb p- p .)

p, p„ l~l(lfil+—
lai '+4&o} .

—no ~rr (5.1a)
I

In this section we investigate the quantum fluctuations
in the two-photon laser peaked at I=no &&1. In steady
state the diffusion coemcients take their values at I=no.
Making use of Eq. (4.9) we find from Eqs. (3.11) the
steady-state diffusion coeScients

I ~rr I I ~rr I(I no }
Q2(I)= exp2n.Drr(no) 2Drr(no)

(5.4)

which, as a function of I, is a Gaussian distribution cen-
tered at I =no with a "variance" ((5I) )
=Drr(no)/I ~rr I.

Since Q2(I) is well peaked at I =no, we can expand dr
and Drr in Eqs. (4.4) around I =no up to first order in 5I,
and set d /dt =0 (steady state). Substituting the resulting
expression for ((5I) ) into Eq. (4.2) and using Eqs.
(5.1a), (4.12), (4.9), and (4.8) we arrive at

2No

Drr(no }
((~fi)'&= no

I ~rr I

3p..+p„+(p.. p„)(2pbb—p.. p„—}~y —'I~l '(I~l+lfil '+4&o} '
I~l '+&o

=no
p..—p„—2y lfila-'(lfil-'+no)-' (5.5)
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Alternatively we can obtain Eq. (5.5) by using directly the g function in Eq. (5.4). In the absence of saturable absorbers
(i.e., p» =p„=0,p„=1) we can express the normalized photon-number variance ((hh ) ) /no in terms of No and 5
only by eliminating a/y:

no

2(I+5 '}+No(13151 '+3151+IINO} (No+ 151 ')'+I
2No(I51+ 151 '+4No) (N, +151 ')' —1

(5.6)

a+y
D~~(no) =

8no
(5.7)

2) lla —9y «o
8a —6y a —y

(5.8)

In Fig. 4 we plot the normalized photon-number variance
((hh ) )/no as a function of the relative pumping level

a/y. One sees that ((hR) ) /no decreases monotonically
from much larger than unity near threshold a ~ y to the
value —", far above threshold a»y. It is interesting to
compare these results with those of a (resonant) one-
photon laser having the same linear gain (coefftcient) a
and the saturation parameter P. It is well known that the
normalized mean photon number, half the natural
linewidth, and the photon-number variance in such a
one-photon laser are

a an&=— 1
P r

(5.9}

c+y,
D~~(no) =

8n)
(5.10)

(5.11)

respectively, where y, is the cavity-loss rate for the one-

For the resonant case 5=0, in which there is no fre-
quency pulling, half the natural linewidth [Eq. (5.1b)] and
the photon-number variance [Eq. (5.6}]reduce to

(5.12)

whose value is between —", and —,'.

photon laser. In the case of the equal cavity-loss rates
y=y&, (1) Eqs. (5.9) and (4.10) give no=2n&, (2) conse-
quently, Eqs. (5.10) and (5.7) lead to
D&&(no)= 2D&&(—n, ), i.e., the natural linewidth of the
two-photon laser is only half that of the one-photon laser,
and (3) it is easy to show from Eqs. (5.8) and (5.11) that
the normalized photon-number variances obey the in-
equality ((ER) )/no& ((b,&) ), /n, (see Fig. 4), which
implies that ((b,&) ) & ((b,R') )&. In the case of the
equal mean photon numbers no=n&, which requires
y~=y/(2 —ya ')(y, we find that D&&(no)&D&&(n&)
and ((ER) ) & ((b,R') ),. All these results show that the
degree of the photon-number fluctuations in the resonant
two-photon laser is always larger than that in the one-
photon laser, but the natural linewidth in the two-photon
laser can be either smaller or larger than that in the one-
photon laser.

For the (one-photon} off-resonant case 540, it is
straightforward to show that the normalized photon-
number variance decreases monotonically with increasing
intensity No, and approaches the value —", again, which is
independent of 5. In Fig. 5 we plot the nortnalized
photon-number variance as a function of the ratio
G,„/y for ~5~ &1. Far above the "triggering-needed"
threshold G,„»y, Eq. (5.6} reduces to

((gR)2) 315l+11Np

2151+8No

C)
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V
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LA—
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I
I
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10
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FIG. 4. Normalized photon-number variance ({6&) }/ao as
a function of the relative pumping level a/y for the resonant
case 5=0 [Eq. (5.8}]. The dashed curve is that for a {resonant}
one-photon laser with the same parameters [Eq. {5.11}].

FIG. 5. Normalized photon-number variance as a function of
the ratio 6,„/y for the initial atomic condition p„=1,
pbb =p„=0. Solid line, ~5~ = 10; dashed line, ~5~ =2; and dotted
line, (5) = l.
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VI. COMPARISON WITH THE EFFECTIVE
HAMILTONIAN MODEL

In preceding sections we have analyzed the two-photon
laser with an arbitrary one-photon detuning 5, starting
from the microscopic atom-field interaction Hamiltonian

V~ in Eq. (2.3). On the other hand, the two-level —two-

photon laser has also been studied in Ref. 14, starting
from an effective atom-field interaction Hamiltonian for a
two-photon transition, which is usually regarded to be
valid in the off-resonant case with large one-photon de-
tunings. In this section we compare the predictions for
the two-photon laser obtained in this paper with those
obtained in Ref. 14, and discuss the domain of validity of
the effective interaction Hamiltonian. The comparison is
made in the case of the actual two-photon resonance
co„=2v (b, =O in Ref. 14) and the equal coupling con-
stants g, =g2=g. Also we have to set pbb =0 in the fol-

lowing comparison.
In order to distinguish notations and equation numbers

we denote the notations and equation numbers of Ref. 14
by primes. The effective atom-field interaction Hamil-
tonian 4 V used in Ref. 14 becomes

V,'=g'(a') (c'~a2+H. c. , (6 1)

whose counterpart is V in Eq. (2.3). Here g' is an

effective atom-field coupling constant for the two-photon
transition between levels ~a) and ~c). The linear gain
coefficient a and the saturation parameter P in Eq.
(2. 19') become a'=2r, (g'/I ) and P'=Sr, (g'/I"), re-

spectively.

A. Master equation

where

+y(n + 1)p„+& ynp„, —

a'(n + 1)(n +2)
1+(n +1)(n +2)P'/a'

(6.2)

(6.3)

To have the same direct two-photon —process terms,
i.e., T„=T„', we only need the condition

The master equation obtained from the microscopic
Hamiltonian V is Eq. (2.5), and that obtained from the
effective Hamiltonian V' is Eq. (2. 17') (with

p„=p„=0). The loss parts of the two master equations
are identical. The gain part of Eq. (2. 17') consists of
terms containing p„~, p„z ~ z, and p„+z ~+& only,
which represent the direct two-photon processes. Name-

ly, the indirect two-photon processes and the one-photon
processes are missing if we use the effective Hamiltonian.
To see this point more clearly we should look at the equa-
tions of motion for the diagonal elements p„:Eq. (2.8) for
the microscopic Hamiltonian; and Eq. (2.20') for the
effective Hamiltonian, i.e.,

Pn Ta —2 (Paapn —2 Pccpa ) Tn (Paapn Pccpn +2)

1«nP/2a «52 . (6.6)

Equation (2.8) reduces to Eq. (6.2) only under conditions
(6.6). On the other hand, it would be inaccurate to say
that the mean photon number no obtained from the
effective Hamiltonian is valid only under the conditions
1 « n OP/2a «5, as will be seen in Sec. VI B.

B. Operation and intensity

The operation and the mean photon number of the
two-photon laser are determined by the nonlinear gains 6
in Eqs. (3.10c) and 6' in (4.8a') and the cavity loss y.
Two nonlinear gains obey a simple relation

(6.7)

where N=Ip/2a~5~=Iv'p'/a' [by Eq. (6.5)]. The two
gains agree with each other when inequality (6.4) is
satisfied (I=n ). Since 6'(0)=0& y always, however, the
effective Hamiltonian incorrectly predicts that the solu-
tion at the origin [cf. Eq. (4.7)] is always stable and
triggering is also always needed. Relation (6.7) implies
that the normalized mean photon number
No =n Ov'p'/a' is

No =No+ i5/ (6.8)

Consequently, the effective Hamiltonian is valid for the
mean photon number under the condition

N, »i5i (6.9)

which corresponds to (6.4). When ~5~
& 1, 6,„&&y is a

suScient condition but not a necessary one for satisfying
(6.9). Also, the intensity locking strength All derived
from the microscopic Hamiltonian reduces to that de-
rived from the effective one under condition (6.9), as can
be seen from Eqs. (4.11) and (4. 11').

C. Frequency pulling

Under no circumstance [including the region of (6.6)]
will d& in Eq. (3.10b) reduce to d& =v —Q in Eq. (4.Sb').
One finds no frequency pulling (i.e., v —Q=O) from the
effective Hamiltonian, which is different from the
frequency-pulling prediction, v —Q =

—,'co„—Q =(co,b—
cob, )y/21 [see Eq. (4.16)], from the microscopic Ham-

iltonian. Thus, the effective Hamiltonian fails to predict
the frequency pulling v —0 at the actual two-photon res-
onance co, =2v, as pointed out in Ref. 14. The physical
reason for this is that the effective Hamiltonian neglects
the dynamic Stark shift.

D. Natural linewidth

(6.5)

To have the direct two-photon process dominate over the
one-photon and indirect two-photon processes, i.e.,
T„)&A „,A „,C„,C„,however, we need the conditions

nP/2a » 1,
provided that we identify

(6.4) Half the natural linewidth obtained from the effective
Hamiltonian was given in Eq. (4. 13b ), which can be
rewritten as
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@+a(p„+p„)2Np (5~
D~~(n p)=

8no
(6.10)

by using Eq. (6.5). Comparing this with D&&(np) [Eq.
(5.1b)] in the region of (6.9), where np=np, we notice
that, while the contributions from the vacuum fiuctua-
tions (represented by y) are the same, the contributions
from the spontaneous emission are different. (1) Under
the conditions

)5[ '«Np«)5) (6.11)

[which corresponds to (6.6)], the spontaneous-emission
part of D&&(np) is twice that of D&&(n p). To satisfy con-
ditions (6.11) we must have ~5~

& 10. The effective Hamil-
tonian underestimates the natural linewidth in the region
of (6.11). For example, when p„=l, p„=0, and ~5~ &&1
with G,„being slightly larger than y, we have

Np Np = 1 and, consequently, D&&(np) = 1.8D&&(n p ).
(2) On the other hand, well above "threshold" such that

4No»I51, 151 ', (6.12)

half the linewidth takes the form in the resonant case,
D&&(n )p= [y+ (ap„+p«}]/8n pand (the spontaneous-
emission part of ) D&&(np) is a small fraction ~5~/2Np of
(that ofl D&&(n p ). Thus, the effective Hamiltonian
overestimates the natural linewidth well above "thresh-
old" [entering the region of (6.12)]. This conclusion is
somewhat in disagreement with the corresponding con-
clusion of Ref. 15. (3) Between the above two regions we
find a small region Np= ~5~/4&& ~5~

' in which the two
natural linewidths are approximately equal. Last, we no-
tice that Di&(np)%0 in general, in contrast to DI'& =0 in
Eq. (4. 13c').

E. Photon-number variance

((~~ )2 )
Paa Pcc3 +

2(p„—p„—y /a'n
p )

(6.13)

which is exactly Eq. (4. 17'). For the simple case of
p„=1 and p„=0, both normalized photon-number vari-
ances are —,'when 1«Np«~5~ [see also Eq. (5.12)].
When the laser intensity further increases to the region of

In the region of (6.11) the photon-number variance in
Eq. (5.5) reduces to

(6.12), the normalized photon-number variance obtained
from the microscopic Hamiltonian changes from —,

' to —",

[see (5.12)], whereas that obtained from the effective one
remains at —,'. This difference is completely due to the
difference in the steady-state intensity diffusion
coefficients (DII ), since the locking strengths ( A&1 ) from
both Hamiltonians are the same.

VII. CONCLUSION

We have developed a quantum theory of the two-
photon laser by using the microscopic atom-field interac-
tion Hamiltonian and the Q function. Including satur-
able absorbers and assuming an actual two-photon reso-
nance 2v=co„(but allowing one-photon detuning 5), we
first present the master equation for the reduced field
density operator and then transform it into a Fokker-
Planck equation for the antinormal-ordering Q function.
The Fokker-Planck equation, which is represented by its
drift and diffusion coefficients, takes a relatively simple
form and makes an analytic study on the two-photon
laser possible. We discover that, when ~5~ & 1, there ex-
ists a "triggering-needed" threshold G,„=y and a
"triggering-free" threshold G(0)=y (i.e., the linear gain
equals the cavity loss). If G(0)&y, then the laser field
will build up from a vacuum without triggering. We also
stress the physical meaning of the stability of the laser in-
tensity. We find the simple expressions for mean photon
number, frequency pulling, natural linewidth, and
photon-number variance, etc. Well above "threshold"
satisfying (6.12), the normalized photon-number variance
1S —.11

8
'

The results for the off-resonant case 5%0 have been
compared in detail with those obtained from the effective
Hamiltonian. ' We find that the effective Hamiltonian V'.

fails to predict the possible self-buildup of the laser inten-
sity and the frequency pulling in the two-photon laser.
For the wide range of (6.9), the effective Hamiltonian is
accurate for the mean photon number. For a smaller
range (6.11), which is within the range of (6.9), the
effective Hamiltonian is accurate for the photon-number
variance but underestimate the natural linewidth. For
another smaller range (6.12}, which is also within the
range of (6.9), the efFective Hamiltonian overestimates
both the natural linewidth and the photon-number vari-
ance.
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