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We extend the theory of the Hermitian optical phase operator to analyze the quantum phase
properties of pairs of electromagnetic field modes. The operators representing the sum and
difference of the two single-mode phases are simply the sum and difference of the two single-mode

phase operators. The eigenvalue spectra of the sum and difference operators have widths of 4~, but
phases differing by 2n. are physically indistinguishable. This means that the phase sum and
difference probability distributions must be cast into a 2n. range. We obtain mod(2m) probability
distributions for the phase sum and difference that unambiguously reveal the signatures of random-

ness, phase correlations, and phase locking. We use our approach to investigate the phase sum and
difference properties for uncorrelated modes in random and partial phase states and the phase-
locked properties of the two-mode squeezed vacuum states. We reveal the fundamental property of
two-mode squeezed states that the phase sum is locked to the argument of the squeezing parameter.
The variance of the phase sum depends dilogarithmically on 1+tanhr, where r is the magnitude of
the squeezing parameter, vanishing in the large squeezing limit.

I. INTRODUCTION II. HERMITIAN OPTICAL PHASE OPERATOR

The quantum nature of the phase of the electromagnet-
ic field is an old' and much studied problem. Recently,
we introduced a new approach to the analysis of the
quantum optical phase that utilizes the Hermitian optical
phase operator. This operator does not exist in the
conventional harmonic-oscillator infinite Hilbert space,
but rather in a state space 4 of finite but arbitrarily large
dimension (s+ 1). The procedure involves calculating c
numbers such as expectation values, variances, and other
properties of the field as functions of s before allowing s
to tend to infinity. Our approach avoids indeterrninacies
which are inherent in the conventional approach employ-
ing an infinite Hilbert space from the outset. We also
have shown that this limiting procedure solves many of
the problems associated with a quantum formulation of
angle variables for rotating systems.

The Hermitian optical phase operator has been applied
to a calculate the phase properties of a number of single-
mode field states. These include number states and
mixed-thermal states, ' coherent states, ' and squeezed
states. ' Number-phase minimum uncertainty states
and rninirnum phase-noise states' have also been con-
structed. In addition, the formalism has been used to
study the phenomenon of phase diffusion in optical
amplifiers" and in an analysis of phase dynamics in some
nonlinear optical systems. '

In this paper we extend our formalism to pairs of field
modes and apply it to investigate both uncorrelated and
correlated phase behavior. We demonstrate the correlat-
ed, phase-locked property of two-mode squeezed states.

We have described the properties of the Hermitian op-
tical phase operator Pe in detail in Refs. 4 and 5. The
operator Pe exists in an (s +1)-dimensional states space 4
spanned by the s + 1 number states and the s + 1 orthor-
normal phase states:

i8 ) =(s+1) ' g exp(in8 )in ),
n=p

(2.1)

where the s +1 phase values 8 are equally spaced be-
tween Op and Op+277:

+ 2Am
m p (2.2)

(2.3)

and consequently has phase states as eigenstates with the
eigenvalues 8 . These eigenvalues are restricted to a 2~
range and therefore the phase operator is single valued.
Different phase-state bases correspond to distinct phase
operators with different 2m. ranges of eigenvalues.

The restricted range of the phase eigenvalues means
that we must be careful when interpreting the calculated
moments of the phase operator. The results obtained will
depend on the range of eigenvalues and therefore on Op.

and m takes integer values from 0 to s. We are free to
choose any value for Op, giving an uncountable infinity of
orthonormal phase-state bases. The Hermitian optical
phase operator is defined as

42 6713 1990 The American Physical Society



6714 STEPHEN M. BARNETT AND D. T. PEGG

For example, the expectation value of the phase in a (ran-
domly phased) number or thermal state is 80+m. . Fur-
ther complications arise when interpreting the sum and
difference of the phases associated with two modes.

It is not just the formulation of the phase operator that
is important' but the limiting procedure is also a crucial
part of our approach. We do not take the limit of the
states or the operators as s tends to infinity as these are
only defined in the state space %. The limit as s tends to
infinity is only taken after c-number expressions, such as
the moments of operators, are obtained. These limits are
well behaved for physical (that is, experimentally accessi-
ble) systems.

III. PHASE SUMS AND DIFFERENCES

It is natural to define the phase sum and difference
operators for two modes (a and b) to be the sum and
difference of the single-mode operators (Pe, and gee).
However, the 4m eigenvalue ranges of these two-mode
operators adds further subtlety to the interpretation of
the phase probability distributions. If we wish to de-
scribe the sum or difference of two single-mode phases,
each of which is determined relative to third (reference)
phase, then it is natural that this sum or difference will be
expressed in a 4~ range. This is because each single-
mode phase will be expressed in a 2m range. However, if
we are interested in only the sum or difference of the two
single-mode phases and not the individual phases, then it
is more meaningful to restrict the sum or a difference to a
single 2m range. This restriction to a 2m range makes it
easier to interpret two-mode phase correlations. We will
illustrate the use of these two ranges by some examples.

A. Uncorrelated fields of random phase

We begin by examining the simplest possible case of
two uncorrelated modes each in a state of random phase
(for example, any number or thermal state ). The expec-
tation values of the sum and difference of the phase eigen-
values are simply the sum and difference of the individual
mean values. Moreover, the variances of the sum and
difference are the equal to the sum of individual vari-
ances:

where m, and mb both range from 0 to s. The possible
values of the phase eigenvalue sum are

2aM
~M Oa + ~ob + s+1 (3.3)

where M has integer values between 0 and 2s inclusive.
The probability for finding the two-mode field with a
phase sum 0~ is

M

P(8, )P(8M —8, ) (M(s)
m =0

S

P(8, )P(8M —8, ) (M)s) .
m =M —sa

(3.4)

The phase distributions for the individual modes are uni-
form and therefore all the P(8, ) and P(8 &) are equal
to 1/(s + 1). Thus we find that the phase eigenvalue sum
probability distribution is

M+1 M& )(s+1)
2s —M+1

(s+1)
(3.5)

which gives a triangular probability distribution as shown
in Fig. 1. This is analogous to the probability distribu-
tion for the sum of the numbers shown on two dice. The
probability for scoring any number between 1 and 6 with
a single die is uniformly —„but the probability for the to-
tal score has a triangular distribution:
P(2) =

—,'„P(3)= —', P(7)=—' . .P(12)= —,', . The
difference between the two single-mode phase eigenvalues

Pe, —
Pe& will range from 80, —

80& 2nto 80,——8.
0& +2~

and has a similar triangular probability distribution.
While it is perfectly legitimate to calculate the distribu-

tions of the phase sums and differences in these 4m

ranges, there is a redundancy implicit in using 4~ radians
to express the result. For example, a phase difference of
cz radians should be physically indistinguishable from a

=2'=
~(4'e +deb) ~Pe +~4eb

3
(3.1)

This property follows directly from the uncorrelated na-
ture of the two-mode state in question. The compound
probability distribution for the sum of the phases is readi-
ly derived from the single-mode distributions as follows.

Although it is possible to work with single-mode state
spaces of different dimensionality, it is sufficient (and
simpler) to let each of these spaces to have dimension
(s+1). Then the single-mode phase operators have ei-

gen values
~Pa+ ~Pb

0,+6 b

8P,+ SPb +4m

2&ma0,=0o, + s+1
277m b0 b=~Ob+ s+1

(3.2a)

(3.2b)

FIG. 1. Probability distribution for sum of the single-mode
phase eigenvalues for two uncorrelated modes in states of ran-
dom phase. The sum has values within a 4m range and the ran-
domness of the phase sum is not immediately evident.
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phase difference of a+2m radians, but both these values
can occur in the same 4m range. It is therefore desirable
to reduce the possible values of phase sums and
differences to a 2~ interval. We can achieve this by
selecting a 2m. interval within the 4m range and adding or
subtracting 2m. (as necessary) to or from values outside
the selected interval in order to shift these values into the
interval. As a result of this procedure we are left with a
2~ range for the phase sum and difference probability dis-
tributions. Clearly, the moments of the phase sum and
differences will, in general, be different when we use a 4n.

or a 2m. range. While we can select any 2m subinterval,
we specialize to a simple example by choosing the first
half of the range. This reduced-range probability distri-
bution is

P2 (8M)=P(8M)+P(8~+2m) (M~s)

1

s+1
(3.6)

which is a uniform distribution characteristic of a phase
randomly distributed over a 2m interval. The reduced-
range probability distribution is shown in Fig. 2 and can
also be obtained from Fig. 1 by adding the second 2m

section of Fig. 1 to the first. Naturally, the phase
difference distribution will also be uniform when ex-
pressed mod(2n. ). This procedure also has an analogy in
the two-dice system. The sum shown on the dice may be
cast into the range 1 —6 by representing the sum as
mod(6). ' This means that there are two ways of scoring
2, 3, 4, 5, and 6 and that the probability for registering
any score between 1 and 6 is uniformly —,'.

We now have two methods for expressing the probabil-

ity distribution of the phase sum or difference and we can
calculate phase sum and difference moments for each dis-

tribution. Naturally, these will be different and some
care is required when interpreting these moments. For
the random phases discussed in this section we have al-

ready calculated the means and variances of the sum and
difference for the 4vr distribution. In the mod(2m) distri-

bution for the phase sum, ranging from 0o, +Oob to

eo, + cob +2~, the mean and variance are

~4e. +feb &2 =8o. +8ob+ (3.7a)

~~.(4e. +0eb)'=
3

(3.7b)

B.Uncorrelated Selds in partial phase states

Consider the two modes to be prepared in uncorrelated
partial phase states:

S

~a)= g a„exp(inp, )~n),
n=0

(3.8a)

where the 2m. subscript denotes the use of the mod(2m. )

distribution. We note that with this distribution the sum
of the means of the phases is not the mean of the sum of
the phases. This is a consequence of the periodicity of
the phase variable and is not of quantum-mechanical ori-
gin. Two uncor related classical fields with random
phases will admit precisely the same choice of 2m or 4~
ranges in which to express the sum or difference probabil-
ity distributions. Moreover the results from an analysis
of such a classical system are readily shown to be identi-
cal to those obtained above for the quantum phases, when
the large-s limit is finally taken.

The 4~ and 2m distributions are both valid and useful.
The former explicitly reveals the existence of correlations
between the single-mode phases; in particular, if the vari-
ance in the phase sum or difference is not equal to the
sum of the individual variances, then the phases are
correlated. The latter is easier to interpret as a phase
probability distribution because in it the phase sum or
difference is a single-valued variable; for example, the
sum and difference distributions for two uncorrelated
fields in states of random phase are uniform. This is im-
portant because in the 4m distribution there is no unique
shape signifying a randomness of the phase sum or
difference. There are many distributions in the 4m range
that become a uniform 2m distribution.

S

~b) = g b„exp(inPb)~n ),
n=0

(3.8b)

I', (e .+B,) where a„and b„are real and positive. These states are
important in the discussion of phase dependence and in-
clude coherent states, squeezed states, phase states, and
number states as special cases. We have previously
shown that for a suitable choice of eigenvalue ranges
with

'ITS
8 =P-

Oa a (3.9)

Boa+ BOb Bo.+ Bob+2Z

B +Bb

FIG. 2. Phase-sum probability distribution for two uncorre-
lated modes in states of random phase. This probability distri-
bution for the sum of the phase eigenvalues has been cast into a
2~ range of physically distinct values to form this distribution.
The randomness of the phase sum is shown by the uniformity of
the distribution.

(and a similar choice for mode b), the mean phase values
are p, and pb. Moreover, the resulting phase probability
distributions are symlnetrie about these mean values.
For reasonably we11-defined phases, the distributions have
a pronounced central peak. When we find the phase ei-

genvalue sum distribution in the 4~ range, we shall ob-
tain another symmetric distribution with a central peak
about a mean of p, +p&. The variance of the phase ei-
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genvalue sum will be the sum of the individual single-
mode variances, showing the lack of phase correlation be-
tween the modes. A corresponding result holds for the
phase eigenvalue difference where the mean will be

p—b
The question now arises —what is the best way to cast

the phase-sum distribution into a 2m range? Of course,
all such choices are valid but the inost convenient (and
most easily interpreted) is that which reproduces the
mean value as p, +pb W.e realize this distribution by
selecting the central 2a interval from the full 4m range. If
the 4m. distribution is sharply peaked (as, for example,
when both field modes are prepared in intense coherent
states ), then inserting the outside parts will have little
effect on the moments of the phase sum. If instead we
choose to cast the 4n distribution into the first 2m inter-
val, then the original single peak is split into two parts,
one at each end of the 2m interval. The mean values is
shifted by m and the variance is markedly increased.
Thus a poor choice of the 2m interval leads to the same
interpretational problems encountered for a poor choice
of 00 in the single-mode case.

A simple, but important, example of a partial phase
state is the coherent state. For suitable choices of the
phase eigenvalue ranges, the expectation values of the
phase sum and difference will simply be the sum and
difference of the arguments the two coherent-state ampli-
tudes. For intense coherent states, which have small
phase variances, the variances in both the sum and
difference will be the sum of the two single-mode vari-
ances.

~g) = g exp(in()~n, n ),
coshr

(3.10}

where the squeezing parameter is g=r exp(ig). Expand-
ing the number states in the single-mode phase state
bases ' gives

I
)=

(s + 1)coshr

X gg+Itanhrexp[i(g 8—,—8 &)]I"
ma mb

x[8..)i8 „) . (3.11)

The compound probability P(8 „8 &) of finding the
modes with phases 0, and 0 b is obtained from the
square modulus of the projection of (3.11) onto
~8, ) ~8 b). Evaluating the geometric progression in-

volved, we find for large s that

C. Phase locking and t~o-mode squeezing

Phase sum and differences are most interesting for
states in which the two modes exhibit quantum phase
correlations. We apply our two-mode phase formalism to
analyze the phase sum and difference properties in the
two-mode squeezed vacuum state. ' ' The work of
Reid and Drummond' suggests that these states might
exhibit quantum phase correlations as a result of the
correlations between the field quadratures.

The two-mode squeezed state is generalized from the
two-mode vacuum by the action of a unitary Bogoliubov
transformation and has the form'

P(8 „8 i )= 1 1

4m cosh r 1+tanh r —2cos(g —8,—8 &)tanhr
60,60b, (3.12)

where 50, and 60b are the spacings between successive phase eigenvalues for the two modes and have the value
2@i(s + 1). In the limit as s tends to infinity we obtain from this the continuous probability density for the phases 8,
and 8 zo

P(8„8I,) =
4m cosh r

~

1+tanh r —2cos(g —8, —8&)tanhr
(3.13)

This distribution is an explicit function of the phase sum,
but not of the phase difference, and suggests that there
will be a preferred value for the phase sum corresponding
to the maximum of the cosine.

We can now calculate the single-mode, and phase-sum,
and difference properties of the two-mode squeezed vacu-
um state. The phase probability densities for one of the
modes is obtained by integrating the joint distribution
with respect to the phase of the other mode:

P(8, ) = f P(8„8s)18„.
06

The integrand is a periodic function of 0b and therefore
the integral will have the same value when evaluated over
any 2' range. Reassigning the limits to be g

—8, —
m and

g —8, +m, we obtain eventually

z d0b
2n cosh r 0 1+tanh r —2cos8&tanhr

(3.15}

This uniform probability density shows that the phase of
mode a is random, which is consistent with the well-

known thermal properties of single modes in a two-mode

squeezed state. ' Clearly, the b mode will also have ran-

dom phase.
In order to investigate the phase sum and difference

properties we introduce the new variables
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0+—:8, +Oh,

8 =8, —8b .

(3.16a)

(3.16b}

The Jacobean for this transformation is 2 and therefore
the new probability density is

P(8+, 8 }= 1

8m cosh r

P(8 )= '

0 +200b +4

f P(8+, 8o)d 8+
Oa

(8- —8o. —
8ob)

—0 +280 +4m

f P(8+, 8 )d 8+

(8- 8o—. 8o—b } .

(3.22)

1+tanh r —2 cos(8+ —g)tanhr

(3.17)

The evaluation of these integrals is more complicated,
but we find eventually the analytic result

P(8 ) = arctan
1

4m
The probability densities for the phase sum or difference
are obtained by integrating with respect to 8 or 8+, re-
spectively. Taking care with the appropriate limits of in-
tegration we find that the eigenvalue sum probability den-
sity, in the 4m range, is

X exp( —2r)tan
8+

2

—l6) l+ z~+ g

le l

—2~+g

(3.23)

P(8+)= '

+ Oa

(8+ ~8o +8ob+2m')
—8++280 +4~

f P(8+, 8 )d 8
+ 05

(8+ 8o, +8ob+2m) .

(3.18)

where we have chosen 8o, and 8ob as in (3.20). Again we
see the problems associated with using the 4m range. For
the case r =0, the two-mode squeezed state becomes the
double vacuum and both of the phase eigenvalue sum and
difference probability densities become

P(8+)= 2(2m l8+ —gl) (g —2n. 8+ ~(+2m)1

4m

The integrals are straightforward and yield a single ex-
pression P(8 )= (2n 18 l) ( —2m 8 2n) .

1

4m

(3.24)

(3.25)

P(8+)= 4' cosh T

2m —18+—8o, —8ob
—2n

I

1+tanh r —2 cos(8+ —g)tanhr
(3.19}

We are free to choose 80, and 00& to have any value and
for simplicity we set

(3.20)

P(8+ ) =
4m cosh r

giving a symmetrical distribution for the sum of the
phase eigenvalues which is centered on a mean of g:

These are precisely the triangular distributions discussed
for uncorrelated fields with random phases in Sec. III A.
However, as we have previously stated, a triangular dis-
tribution does not uniquely signify a random phase sum
or difference. We can only determine the true nature of
the phase sum and difference from the mod(2m. ) distribu-
tion.

We can obtain the mod(2m. ) probability densities for the
phase sum and difference in two ways. We can either
start with the 4m distributions derived above and shift the
appropriate parts of this distribution into the chosen 2~
interval, or we can return to P(8+, 8 ) and shift ap-
propriate parts of this joint distribution into the chosen
ranges prior to integration. These methods produce iden-
tical distributions, but the former is more complicated
and is carried out in the Appendix. From (3.18) and
(3.22) the ranges of values that 8+ and 8 can take for
the joint distribution are

2~ —[8,—gl

1+tanh r —2 cos(8+ —g)tanhr
(3.21) ~8 ~+( 2rr+ 8+ ~ ——~8 ~+(+217,

[8+—g —2~&8 & —[8+—g)+2~,

(3.26a}

(3.26b)

We see that use of the 4m range has led to a distribution
with a discontinuity of slope at 8+ =g. There is no physi-
cal significance in this discontinuity as we will demon-
strate when we turn our attention to the corresponding
mod(2n. ) distribution. This shows the problems that are
associated with interpreting the 4m distribution. The
phase eigenvalue difference probability density, in the 4m

range, is

where the absolute bounds on 8+ and 8 are g
—2' to

(+2m and —2m. to 2m, respectively. We now cast the
joint distribution into the central 2~ ranges g vr to (+rr-
and —m to m for 8+ and 8, respectively by adding or
subtracting 2~ as necessary to values of 8+ and 8 out-
side these 2rr ranges. This gives the joint mod(2m. } proba-
bility density
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=1 1
P2 (8+,8 )=

2%cosh /'

1+tanh r —2 cos(8+ —g)tanhr

CD
CD

CO 2. 5-

C

(0
2 ~

where now

g
—~~8+ ~g+v,

—m~8 ~m .

(3.27)

(3.28a)

(3.28b)

E
M
I

CD
M
CO

CL
0 5-

The first point to notice is that both Pz (8+,8 ) and the
range of 8+ are independent of 0, so the integral of the
distribution over 0+ will also be independent of 8
Indeed, evaluating this integral we find that the mod(2m)

probability density for the phase difference is

P2 (8 )= 1

2' (3.29)

This is the uniform distribution characteristic of a ran-
dom phase. Working with the mod(2n) distribution has
made it clear that the correlation between the modes is
not manifest in the phase difference and that the compli-
cated 4n distribution (3.23) is in fact a random phase dis-
tribution. The mod(2n) distribution for the phase sum is
obtained by integrating the mod(2n) joint distribution
over L9

1
P2„(8+)=

2m cosh r

1

1+tanh r —2 cos(8+ —g)tanhr

(3.30)

This function is the Airy pattern familiar from the theory
of the Fabry-Perot etalon and has a single central peak,
within the defined range g

—n to g+n, at 8+=(. The
correlation between the modes is manifest in the pre-
ferred value of the phase sum

(fe +feb~2

and in the variance of the phase sum

((2t' +e4'eb )'

1

2m cosh r

g+ (8+ —k)'d 8+
X

1+tanh r —2cos(8+ —g)tanhr

(3.31)

(3.32)

1)k
b2 (pe, +feb) = +4 g tanh"r

k=i

+4dilog (1+tanhr),
3

(3.33)

We can evaluate this integral by first expanding (8+ —g)
as a Fourier series in the range of —m to ~ and obtain
eventually

Squeezing paJ arnetel r

FIG. 3. Phase-sum variance [b2 (pe, +feb )'] for a two-mode

squeezed vacuum state as a function of r, the modulus of the

squeezing parameter. For zero squeezing the phase-sum vari-

ance has the value n /3, characteristic of random phase. In the

large squeezing limit this variance vanishes.

where dilog() is the dilogarithm function. ' The diloga-
rithm varies from 0 to —

m /12 monotonically as r varies
from 0 to ~. The corresponding variation of the phase-
sum variance is from mz/3, corresponding to randomness,
down to 0. This zero variance denotes the fact that the
phase sum (in the 2n range) becomes perfectly locked to
the value g in the large squeezing limit. This diloga-
rithmic variation is shown in Fig. 3.

Thus the two-mode squeezed state has simple phase
properties that are accessible by exact analytic methods.
The progressively stronger 1ocking of the phase sum to
the argument of the squeezing parameter with increasing
squeezing brings to light another fundamental property
of these states.

IV. CONCLUSION

The formulation of the Hermitian optical phase opera-
tor has made it possible to examine rigorously the quan-
tum phase properties of light. In this paper we have ex-
tended the formalism to discuss two-mode phase proper-
ties as revealed in the sum and difference between the
single-mode phase operators. This extension involves the
added subtlety that the sum and difference operators have
a 4m rather than a 2~ range of eigenvalues. However,
physically distinct phases exist only in a 2m range and
therefore the unambiguous interpretation of phase corre-
lations requires us to cast the phase sum and difference
probability distributions into a 2m. interval. %hen this is
done the physical consequences of phase correlations (or
the lack of them) become evident. We have illustrated
this procedure with the examples of two uncorrelated
modes of random phase, two uncorrelated modes in par-
tial phase states, and the correlated two-mode squeezed
state.

It is beyond the scope of this paper to address the ex-
perirnental implications of our results. Indeed, no precise
experimental procedure has yet been suggested for
measuring the quantum phase. However, the "measured
phase'* observables, which are accessible in homodyne
detection and other coherent detection techniques, pro-
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vide a good approximation to the corresponding Herrni-
tian combinations of the unitary phase operators for
fields of moderate to high intensity. This strong-field
correspondence can also be seen between the phase prob-
ability distribution and the angular properties of the
Wigner function. The interrnode phase correlations ex-
hibited by the two-mode squeezed states increase in
strength with the squeezing parameter and thus with the
field intensity. Therefore we expect that the effects of
these phase correlations will be observable in suitable ex-
periments involving homodyne detection of the individu-
al modes comprising the two-mode squeezed state. In ad-
dition, phase diff-erence correlations, similar to the
phase-sum correlations studied here, may be present in
the output from a correlated emission laser.

Two-mode squeezed states have received a great deal of
attention in quantum optics and indeed the two-mode
squeezed vacuum was the first squeezed state to be
prepared in an experiment. They are of fundamental
interest because of the strong quantum correlations be-
tween the modes that are responsible for intensity corre-
lations and for the squeezing property itself. ' The indi-
vidual modes display random thermal fluctuations and
this has led to their application in finite-temperature field
theory and in thermodynamic problems in quantum op-
tics. ' Moreover they are more strongly correlated than
any other two-mode state of light. ' To this impressive
list of fundamental properties of this important class of

states we can now add their elegant phase properties.
They have random single-mode phases and the phase
difference is also random, but the phases lock so that
their sum has a preferred value. %ith increasing squeez-
ing this phase locking becomes more rigid until ultirnate-

ly, in the limit of perfect squeezing, the phase sum can
have only one value, which is the argument of the squeez-
ing parameter.
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APPENDIX

Here we derive the mod(2m) distributions P2 (8+) and

P2 (8 ) for the phase sum and differences from the 4n

distributions. In both cases we choose to cast the distri-
bution into the 2m. center portion. For the sum distribu-
tion this means

P(8~)+P(8~+2m ) (g—
m 8~ g)

(8 )='+ P(8~)+P(8~ —2n) (g 8~ g+n) .

(Al)

This gives, from (3.21),

1 2~ —18~ —
g 2~—18++2~—

g~
P2„(8~ ) = +

4m' cosh r 1+tanh r —2cos(8+ —g)tanhr 4m2cosh2r I+tanh2r —2cos(8+ —g)tanhr
I

where the + and —signs refer to the two ranges in (Al). The final form of the mod(2n) distribution is

P2 (8~)= 1 1

2mcosh r 1+tanh r —2cos(8+ —g)tanhr

(A2)

(A3)

in agreement with the result derived in III C.
For the mod(2n. } phase difference distribution we have

P(8 )+P(8 +2m) ( —m~8 ~0)
P(8 )+P(8 —2n) (0~8 ~n) . (A4)

This gives, from (3.23),

1
Pz„(8 ) =

2
arctan exp( —2r)tan

4m

1+ arctan exp( —2r)tan
4m

—le i+2~+(

le I

—2~+g
8 +2m. 1+2~+(

le +2~l —2~+g
(A5)

where the + and —signs refer to the two ranges in (A4). It is important to note that the definition of the arctangent
function employed here is such that

arctan[tan(a) ]=a for vr a— (A6)

but if n is not in the range —~ to m, then it must be shifted by an integer multiple of 2m to bring it into this range. Thus
arctan[tan(a+ n)] will be a+ m if a is between —m. and 0, but will be a —m. if a is between 0 and m. Moreover, by writ-
ing exp( —2r}tan(a) as tan(P) and requiring continuity of the arctangent function with variance or r, we obtain

arctan[exp( —2r)tan(a+@)]=arctan[exp( —2r)tan(a)]+m . (A7)
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1
p2„(e ) = arctan exp( —2r) tan

4m

—arctan exp( —2r)tan

Clearly, extreme care must be used in evaluating (AS). The result is

—Ie I+2~

1+ ' arctan exp( —2r)tan
4

—le +2~I+2~ —arctan exp( —2r)tan
le +2~1 —2~

(A8)

The 6rst and fourth terms differ by a as do the second and third terms. Thus this complicated looking expression
reduces to the uniform distribution characteristic of random phase:
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