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Exact results for the photon statistics of a two-photon micromaser are presented, including the
effect of finite detuning of the intermediate level. A periodic dependence on interaction times is

shown to arise for large detunings, when sufficiently long interaction times are considered. Some

typical photon-number distributions are shown, including some exhibiting sub-Poissonian fluctua-

tions and multiple peaks. Previous treatments and the validity of some usual approximations are
discussed. By direct comparison with the exact results, it is shown that the effective-Hamiltonian

approximation yields incorrect equations for the off-diagonal elements of the field density matrix.

I. INTRODUCTION

Two-photon processes are extremely interesting in
quantum optics, for the high degree of correlation be-
tween the photons in a pair may lead to the generation of
nonclassical states of the electromagnetic field, such as
number states, ' or squeezed states, or to violations of
classical expectations in interference experiments. Quite
recently, a two-photon micromaser has been operated.
This system offers a unique chance to study under con-
trolled conditions the interaction of a single mode of the
electromagnetic field with a source of correlated pairs of
photons.

The theory of the two-photon micromaser was first
presented by Brune et al. and Davidovich et al. Re-
cently, two of the present authors reported results for the
photon statistics of the two-photon micromaser which
appear to be at variance with some of the conclusions of
Ref. 6. Our purpose here is to explain this apparent
discrepancy and to present a comprehensive study of the
photon statistics of the two-photon micromaser, includ-
ing long interaction times, and finite detuning of the in-
termediate level.

Our treatment will be based on the exact solution for a
three-level cascade atomic system interacting with a
single-mode radiation field. As the intermediate level is
detuned from one-photon resonance, a two-photon transi-
tion results. We shall show here how this happens and
how the photon statistics evolves, as the detuning is in-
creased, from a behavior very similar to the conventional
one-photon rnicromaser ' to the characteristic two-
photon pattern reported in Ref. 7. %e shall also investi-
gate the range of validity of some of the approximations
normally made in the study of two-photon processes, by
comparing the exact solution for the three-level system to
the usual "effective-Hamiltonian" treatments.

Our paper is organized as follows. In Sec. II the model
is introduced, the equation of motion for the field density
matrix is derived, and the general solution for the diago-
nal elements is given. In Sec. III the "two-photon cas-
cade micromaser, " i.e., the limit of vanishing detuning of
the intermediate level from exact one-photon resonance,
is discussed and compared to the ordinary one-photon

micromaser. In Sec. IV the transition to a true two-
photon micromaser as the detuning is increased is shown
both graphically and analytically; the photon statistics of
the two-photon micromaser are discussed, a number of
features are explained, and the range of validity of the
various approximations is clarified.

II. DENSITY MATRIX EQUATIONS OF MOTION
FOR A THREE-LEVEL TWO-PHOTON MICROMASER

The system we shall consider is a three-level cascade as
illustrated in Fig. 1, coupled to a single mode of the elec-
tromagnetic field of frequency co=(co, —co, )/2; that is,
exact two-photon resonance is assumed throughout. The
detuning of the middle level ~b ) from exact one-photon
resonance is

5=co (co~ —
cot, ) —(cob co~ ) co

(where the energies of the atomic levels are
E, b, =fico, b, ). In practice, the Rydberg states of
alkali-metal atoms provide this kind of level structure
with varying degrees of detuning of the intermediate level

ic

FIG. 1. Scheme of the level structure considered. Other lev-

els are assumed to be very far off-resonance with the transitions
at frequency co.
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(see Refs. 4—6). If 6=0 one has merely two one-photon
transitions, whereas for 5 large enough, as we shall see
below, the transition acquires a two-photon character.

The Hamiltonian in the interaction picture is

Van=fig, (ala&&hie ' '+a lb&&ale' ')

at a later time t = to+ ~ may be written as

p, (t)= g [p,(t, )]„lP„(t)&&P (t)l,
n, m

(4)

where lP„(t)& is the solution of the Schrodinger equation

+Ag2(alb&&cle' '+a lc&&hie ' '), (2)

= g [pF(to)], la, n &&a, ml
n, m

(3)

where PF is the density operator for the field alone. Be-
cause the evolution is unitary, the total density operator

I

where g& and g2 are the one-photon coupling constants
for the transitions la & ~ l b & and

l
b & ~ l

c &, respectively.
The lifetime of all the levels will be assumed to be much
larger than the interaction time of each atom with the
field in the maser cavity. Then the spontaneous decay
processes to other levels or other modes may be neglect-
ed, which means that the joint evolution of the single-
mode field and atom is unitary.

We shall assume that the atoms are injected into the
cavity so that there is never more than one atom present
at the same time. Let an atom be injected in the upper
state la & at time to. The total density operator for the
atom-field system at that time is

pr(t, )=la &&alpF

subject to the initial condition

lq„(t )&=la, n & . (6)

A moment's inspection of the Hamiltonian (2) shows that
l f„(t)& must be of the form

lg„(t)&=C, „lan &+Cb „+,lb, n+1&

+C, „+&le,n+2& . (7)

C,„(t)= ig, &—n +le ' 'Cb„+,(t),
Cb „+,(t)= ig, &—n + I e' 'C,„(t)

—igz&n +2 e' 'C, „+2(t),
C, „+p(t)= —ig /

&n +2 e

whose solution, subject to the initial condition (6), i.

(8a)

(8b)

(8c)

When Eq. (7) is substituted in Eq. (5) one obtains the fol-
lowing closed system of equations:

g f(n+1)
C,„(t0+r)=

z p„cosp„r+i sinp„r —p„e' ' —e ' ' +1,
n&n

g, n+1
Cq „+)(tp+7) = i —e 'e' ' sinP„7

n

(9a)

(9b)

g,gz+(n +1)(n +2)
C, „+2(to+r)= p„a„ p cosp 7.+i sinp '—7 p e e (9c)

where r=t —to is the interaction time and Rabi frequencies a„andp„are

a„=[g|(n+1)+g2(n +2)]'~
' 1/2

Q2p„= +a„

(loa)

(lob)

We may now use solution (9) in Eq. (7), and this, in turn, in Eq. (4), to obtain an expression for the evolution of the to-
tal density matrix p(t) over the interaction time v. We assume that at the end of this time the atom leaves the cavity.
The new reduced density matrix for the field alone is obtained by tracing over the atomic states and has the form

[pF(to+r)]„=[p„(to)]„C,„(to+r)C,' (to+r)+ [pF(to)]„, ,Cb„(to+r)Cq* (to+r)

+[pF(to)]„2 2C,„(to+r)C,' (to+r) .

p„(t+r) —p„(t)
Pnm ~ ra ~Pnmat (12)

This difference equation may be approximated by a
differential equation, as is done in standard laser theory,
assuming that the average time interval between succes-
sive atoms is ht and thus that the rate of injection
r, =1/ht,

where

5p„=p„(t+r ) p„(t)— (13)

and the subscripts 0 and I' have been dropped from to
and PF, respectively, for convenience. The total rate of
change of the field density matrix is obtained by adding
to Eq. (12) the cavity-loss terms in the standard way. '
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The final result has the form

Pnm nmPnm +bn —],m —1Pn —1, m —1+ n —2, m —2Pn —2, m —2

where

+Cn +1,m + 1Pn +1,m +1 (14)

a„=r,(C,„C,* —1)— [2nb(n +m +1)+n +m),nm a an am

c„=y(nb+1)&nm

d„m—ra C, n+2C, m+2

(15c)

(15d)

(15a}

b„~=r, Cb „+,Ct,'~+, —ynb[(n +1)(m +1)]' ', (15b)

those in Eqs. (9), where r is the interaction time [note
that the dependence on to vanishes from Eq. (15}].

We may now set n =m and look at the field photon
statistics. At steady state, the probability P(n)=p„„to
find n photons inside the cavity satisfies the equation

a„P(n)+b„,P(n —1)+c„+,P(n +1)

+d„2P(n—2)=0 (16)

(where a„—=a„„,and so forth). Unlike the ordinary laser
or the one-photon micrornaser, here no detailed-balance
condition holds. Nevertheless, it is possible to derive a
closed-form solution to Eq. (16) as a product of continued
fractions, along the same lines as shown in Refs. 7 and
11. Noting that

Here y is the (intensity) cavity-loss rate, sometimes writ-

ten as v/Q, and nb is the average number of photons in

thermal equilibrium, in the absence of interaction with

the atoms. The expressions for C,„,Cb„,and C,n are

a„+b„+c„+d„=0
we find

(17)

n

P (n ) =P (0) ff —b„,+d„,+
r ——1cr

dr —2Cr —1

br —2+dr —2+
3cr

(18)

oci
b1+d, +

ho+do

This is our basic result. In the following sections we

study the photon statistics predicted by Eq. (18) for a
number of cases of interest. Section II is devoted to the
case of a "two-photon cascade rnicrornaser, " with 5=0,
which has not been considered previously in the litera-
ture. Section III discusses the "true two-photon micro-
maser, " i.e., the case of 6%0 and, in particular,
Algren»1. (21)

ra
N (20)ex

Figure 2 shows ( n ), the average number of photons,
and 0, the photon number standard deviation, norrnal-
ized to its value for a Poisson distribution,

1/2

CT—
(n)

III. TWO-PHOTON CASCADE MICROMASER

g]=g2=g . (19)

We shall also follow the usual practice of introducing a
measure of the pumping rate normalized to the cavity de-

cay rate, N,„,

In this section we study the photon statistics of the
three-level micromaser for exact one-photon resonance,
6=0 (such near resonances may be found for chosen
transitions in Rydberg alkali atoms; see Ref. 5). The
two-photon process reduces then to just two one-photon
transitions, and our results look very similar to those
which have been predicted for the one-photon micro-
maser, ' except for the almost complete absence of
"trapping states, "as will be discussed presently.

We shall assume throughout, for simplicity, that the

magnitude of the matrix elements for the two transitions
is approximately the same, that is,

as a function of g~, the normalized interaction time, for
zero temperature (nb=0) and for the pumping rate
X,„=20.The behavior of (n ) in Fig. 2(a) is very similar
to the corresponding one for the one-photon rnicromaser
obtained by Wright and Meystre: there is a "collapse"
followed by a single, undecaying revival. The structure is
quite irregular. The effect of increasing temperature is
also similar to that found in Ref. 9: see Fig. 3, which is
calculated for nb =5. The "collapse" becomes more dis-
tinct and the oscillations are somewhat smoothed.

Regarding the standard deviation cr, one can see from
Fig. 2(b) that sub-Poissonian statistics (o (1)are possible
at low temperatures, in some cases corresponding to rela-
tively large average values of the photon number. It is
perhaps noteworthy that in the "collapse" region in Fig.
2(b) the field appears to be very nearly Poissonian. Fig-
ure 3(b) shows the effect of increasing the temperature:
already for nb

= 5, the nonclassical fluctuations have
disappeared and the distribution is super-Poissonian for
all values of ~.
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FIG. 2. Steady-state properties of the cascade micromaser,
5=0, for an excitation rate N,„=20,and at zero temperature
(nb=0). (a) Average number of photons vs dimensionless in-

teraction time, g ~. (b) Normalized variance
0'=((11 ) (11 ) ) /(n ) vs gr.

FIG. 3. Cascade micromaser at finite temperature, nb=5.
All other parameters as in Fig. 2.

sin (a„ Ir/2) (23)

Trapping states can be seen in the expanded view of
the collapse region shown in Fig. 4. One of the major
differences between the present system and the one-
photon micromaser is that in the present case there is
only one sequence of trapping states, all corresponding to
~n ) = ~0). The reason is that a transition upward in pho-
ton number (from, say, state In ) ) may take place by the
emission of either one or two photons. These two events
have probabilities proportional to the coefficients b„„and
d„„ofEq. (14), respectively. By Eqs. (15) and (9), at zero
temperature (and b, =0) we have

to emit two photons and jump over the barrier, to the
state

~
n + 1 ) . It is in general impossible for any n to

make all three of the probabilities (22) and (23) vanish
simultaneously when a„is given by Eq. (10a).

All this means is that there is really only one trapping
state, namely, the vacuum In =0), for which the one-
and two-photon transition probabilities vanish when

&n)

30-
b„q sin Qq7 (22a)

d„„-sin(a„r/2) . (22b)
20-

It is in principle possible to make both (22a) and (22b)
vanish simultaneously, for any n, by a proper choice of ~,
but it does not follow that the state

~
n ) becomes then a

barrier, as it would in the one-photon micromaser. For
there is always some probability for the (one-photon)
losses to bring the photon number down by one, to the
state ~n

—1), and then the atom has some probability,
d„&„&,proportional to

10-

I

27r
I

37r
I

4'
I

57r g~

FIG. 4. Expanded view of Fig. 2(a) for short interaction
times showing "trapping states": b, =0, N,„=20,nb =0.
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Qp7 =2q&

where q is an integer; that is,

2m. 4n.g70$~$~$ ~ ~ ~v'3 v'3

(24)

(25)

crate a number state dynamically, a possibility which has
been suggested instead for the one-photon micromaser'
at very low temperatures. (The scheme of number state
generation by state reduction proposed by Krause, Scul-
ly, and Walther, ' however, might still be applicable. )

which yields a periodic sequence of trapping "reso-
nances, " as seen in Fig. 4, for zero temperature (nb =0).
[There is one state missing from Fig. 4, at 6m /v 3 = 10.9;
this is due to the finite resolution with which the points
were sampled, which is also the reason why the dips do
not reach all the way to zero. This is an indication of the
extreme narrowness of these features. Note also that the
dip on the far right of Fig. 4, near gv =16.8, is not one of
the trapping states (25); the origin of this particular
feature is not clear. ]

At higher temperatures, of course, ~0) loses its trap-
ping character as well, since thermal fluctuations may
take the field to the state

~
1 ), from where the photon

number may continue to increase. This is quite analo-
gous to the vanishing of the trapping resonances as nb in-

creases in the one-photon micromaser.
The absence of trapping states suggests that one could

not, in principle, use the two-photon micromaser to gen-

&n)
(a)

IV. THE TRUE TWO-PHOTON MICROMASER

Figures 5 and 6 show the dependence of ( n ) and cr on
g~ for a finite detuning: 6=10g and 6=50g, respective-
ly. Clearly Fig. 6 already exhibits the regular, periodic
features expected from a true two-photon transition
(compare Ref. 7), whereas Fig. 5 may be seen to fall be-
tween this and the 6=0 case of Fig. 2: the first period is
just beginning to take shape.

In this section we shall first establish how this limit is
approached analytically; then we shall look at the photon
number distributions corresponding to Fig. 6 in greater
detail; and finally we shall consider the question of the
different approximations to the descriptions of two-
photon processes.

A. The limit of large detuning

Analytically the limit of large detuning is not hard to
obtain from the exact solutions (9) to the atom-field evo-
lution equations. Under the condition

30
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FIG. 5. Steady-state properties of a two-photon micromaser
with finite detuning of the intermediate level, b, = 10g. All other
parameters as in Fig. 2. (a) Average photon number, (b) nor-
malized variance. The second scale on the horizontal axis, in
units of A, v., is included to facilitate the comparison with the
large-detuning case (Fig. 6); A, =g /6 is the e6'ective two-photon
coupling constant.

l

50vr
I

lOOvr

27r

I

l 50vr

57r

I

200m
4m

gr
4.

FIG. 6. All parameters as in Figs. 2 and 5 except for the de-
tuning, 5=50g. The numbers refer to particular values of the
interaction time for which the corresponding photon number
distributions are plotted in full in Fig. 8.
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n8g
Q2

(26)

the frequency P„,given by Eq. (10), may be expanded as
1/2

Q2P„= +g (2n+3) =—+ (2n+3) .
g2

2 b,
(27)

Let also

e= (2n +3) .=2k (29)

Then if e « 1, we may write

ik(2n +3)r
2n +3

iiL(2n + 3)r —i[a+A(2n +3)]r)—e
2 2n +3

a + '
0(

—ik(2n +3)r i[i) +k(2n 3)+]r)
b, n +I

(30a)

(ii +1)(ii +2} (2(2n+3)r 1)c n+2 2n +3

(30b)

In this limit clearly the coefficient Cb„ofEq. (9b) is (al-
most always, see below) much smaller than C,„andC,„.
This means that the probability to find the system in state
!b) becomes negligible. At the same time, the one-
photon transition probability b„„in Eq. (15b) becomes
(except for the contribution of the thermal fiuctuations)
negligible versus the two-photon transition probability
d„„[Eq.(15d}].

More quantitatively, let us introduce an effective two-
photon coupling constant A, as

2

(28)

periodicity is less accurately obeyed for longer interaction
times. This is because the argument of the trigonometric
functions appearing in the original probability amplitudes
(9) is P„r;thus, for a sufficiently large value of r it is in-
correct to replace P„bythe approximate expression (27)
in the argument of the trigonometric functions.

It is easy to show that the requirement for the approxi-
mation (27) to be legitimate in the trigonometric func-
tions is

2

4n —
A,r « 1, (32a}

or, if n =0, 1,
'2

9 —A~«1. (32b)

&n)

In the case of Fig. 6, with n =20 and g/b, =
—,', the in-

equality (32a) is not satisfied over the whole range plot-
ted; still, the approximate periodicity is clearly visible.

The experiments reported in Ref. 4 had 6/g = 350 and
g=7X 10 s ', so that A, =g /b, =2X10 s '. To ob-
serve a couple of periods of 2n/A, as. in, Fig. 6, the in-
teraction time would have to be of the order of 6 ms. The
field decay time in the cavity, however, is only of the or-
der of 0.2 ms, so it would not be justified to neglect the
cavity 1osses during the interaction time. In fact, it
would probably be impossible to achieve any significant
field intensity under these conditions, unless one had
many atoms in the cavity simultaneously. It appears,
then, that to observe the approximate periodicity exhibit-
ed in Fig. 6—which is a genuine two-photon effect—
larger values of i[, would be necessary, which might be
reached in atomic systems for which the detuning 5 of

ii(2n+3)r —i[a+2(2n+3)]r)2' —e (30c) 30-

If the terms of order e are ignored everywhere [note that
Cb

„

is to be squared in the density matrix equation, Eq.
(11);see Eqs. (14) and (15b)] the transition amplitudes C,

„

and C, „+2,Eqs. (30a) and (30c), may be directly com-
pared to Eqs. (2.11) and (2.12) of Ref. 6. In this limit all
the predictions of the theory are periodic in ~ with period
2n /A, . Figure 6, for which b, /g =50 and thus
e-4(n )/2500-0. 03, exhibits this periodicity, whereas
Fig. 5, for which 5/g=10 and thus e-0.8, does not.
(Note the change in the horizontal scale from Fig. 5 to
Fig. 6, so that both cover the same range of values of A.~,
i.e., the same number of periods. )

Only the leading terms in Eqs. (30) are periodic with
period 2m. /A, irrespective of the value of n. Thus, near
the points where these terms vanish, i.e., near

20-

10-

I

0 lj6vr

(b)

2q 7T

q =1,2, 3, . . . , (31)
l

0 0877.
I

O. l6 sr

deviations from strict 2m. /A, periodicity will be apparent,
as indeed they are in Fig. 6. Figure 6 also shows that the

FIG. 7. Expanded view of Fig. 6 showing the region of small

interaction times.
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the intermediate system were smaller than for the system
in Ref. 4 [although still large enough for two-photon
effects to dominate, i.e., for Eq. (26) to be valid].

In principle, the authors of Ref. 6 would have obtained
(exact) periodicity from the numerical solution of their
master equation if they had considered long enough in-
teraction times. This periodicity was lost, however, in
their analytical treatment, since they made n a continu-
ous variable and also expanded the trigonometric func-
tions in powers of the quantity 3A.r, to first order (which
is clearly not justified for sufficiently larger ~, but which
would be acceptable for the experiments of Ref. 4, where
r=25 ps).

Graphs of ( n ) and o for short interaction times are
shown in Fig. 7. They may be seen to look very similar to
those obtained numerically in Ref. 6, from a master equa-
tion which essentially contains only the leading terms
(e =0) in the expansion (30).

P(n)

0. 25 -
&

(gs
yl
( (

I

(

(

I

O. I
5-

(

I

O. io-
(

I

0.05
I

I
l

0.20-

IO 20 40 50

FIG. 8. Steady-state photon number distributions corre-

sponding to the points marked in Figs. 6(a) and 6(b). In all cases

6=50g, nb =0, %,„=20.The values of A,~ for the three curves

are (1) A,~=0.51m. (solid line); (2) k~=1.02m (dash-dotted line);

(3) Xv=1.06~ (dashed line, double-peaked). See text for more

details.

B. Photon statistics for large detuning

In this subsection we shall look in more detail at some
of the features of the large-detuning limit (Fig. 6); in par-
ticular, the trapping states and some of the photon num-
ber distributions.

1. Trapping states

One may expect that for this system also there would
be no trapping states, for the same reasons that were
given for the cascade system in Sec. II, except perhaps for
the vacuum state

~
0 ) . In fact, for this system, not even

the vacuum is in general a trapping state. It may be
checked easily from expression (9) for the transition am-
plitudes that, in general, when b&0 it is not possible to
make both C»=0 and C,2=0 simultaneously, which
would be necessary for the system to be trapped in the
state ~0) at zero temperature [as may be seen from the
general form of the state vector (7)].

On the other hand, in the approximate expression (30c)
for C,2 the leading term vanishes for ~=2qm/k, making
the probability to leave the vacuum state by emission of
two photons very small. The probability of emission of
just one photon is also very small in this large-detuning
limit, and hence the dips at r =2m. /k, 4n /Kin Fig. 6. [In,

fact, for the case plotted in Figs. 5 and 6, there is an addi-
tional, accidental vanishing of higher-order terms in Eqs.
(30c) and (30b) at the same points, which results from our
having chosen an integer value for b, /g. ]

Note that the trapping states found in Ref. 7 are also
absent from the present, more exact treatment. (A dis-
cussion of the relationship between the present treatment
and that in Ref. 7 will be found later in this section. )

Figure 8 displays the photon number distributions
P(n) for some chosen values of r, labeled on Fig. 6.
Curve 1 corresponds to A,~=0.51m, one of the local maxi-
ma in Fig. 6(a), and has (n ) =19.9 and o =1.25. (The
reason one might expect (n )-X,

„

in general has been
discussed in Ref. 6.) Curve 2 corresponds to a higher
peak in Fig. 6(a), at A.r=1.02m, for which (n ) =29.8,
and is sub-Poissonian with o. =0.695. Curve 3 corre-
sponds to A,~=1.06m, and is instead super-Poissonian
(tr=3.44) and double-peaked (there are still smaller
secondary maxima not visible in the figure), with
( n ) =9.9; it corresponds to one of the peaks in Fig. 6(b).

Figure 9 shows a particularly curious "rarity": a
double-peaked photon number distribution with nonethe-
less a sub-Poissonian variance, o. =0.8. It corresponds to
A,~=1.95m. , another of the "pathological" regions of Fig.
6. A11 the sub-Poissonian distributions obtained around
that particular "dip" of Fig. 6(b) are, in fact, multiple-
peaked.

Still other types of distributions are possible; we have
found some which look like curve 1 in Fig. 8, but with a

P(n j

0 24—

0.08

2. Photon number distributions

It is somewhat remarkable that, as Fig. 6(b) shows, the
normalized variance of the photon number distribution is
rather close to the value of 1 for most values of ~. This
does not, however, imply that the photon number distri-
bution is necessarily Poissonian, or even close to it.

[0 20
I

30

FIG. 9. Steady-state photon number distribution for
A,~=1.95~ (other parameters as in Fig. 8). This double-peaked

distribution has a sub-Poissonian variance, cr=0.8 ((n )
= 12.0}.
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C. The effective-Hamiltonian approximation.
Oft'-diagonal elements

The purpose of this subsection is to compare our exact
results with one of the most frequently used approxima-
tions in the study of two-photon processes, namely, the
"effective-Hamiltonian" approach, where one considers
just the two-level system ~a &, ~c &, with a Hamiltonian

V, =A'A(~c&&a~a'+a '~a &&c~) . (33)

Proceeding in the usual way, one may derive from this
Hamiltonian an equation of motion for the reduced densi-
ty matrix for the field inside the cavity which is formally
analogous to (14), but with

"jagged" top, for instance (this is the case, in particular,
at A,r=m. /2). The multiple-peaked distributions are also
not confined to large values of ~: they are found in the re-
gion plotted in Fig. 7 as well. The distributions around
the second maximum of Fig. 7(b), for instance, are fairly
bimodal: that is, they exhibit two distinct peaks of com-
parable height.

While these multiple peaks must be related to the
multistability already predicted in the semiclassical limit
in Ref. 5, we have not attempted to establish a detailed
correspondence with this theory (nor with the more accu-
rate quantum potential theory of Ref. 6). We note only
that the existence of these bimodal distributions makes
questionable the validity of the semiclassical approach of
replacing n by &n &; this may have important conse-
quences, e.g., in linewidth calculations.

C =—' 'X(2 +3)~/2 A(2 +3)~+1'
an

—iA(2n +3)~/2g ik(2n +3)7
c, n +2

(38a)

(38b)

If this is compared now to the large-n limit of the leading
terms in Eqs. (30a) and (30c), it is seen to differ only by
the phase factor exp[ —iA(2n +3)r/2]. This is not a
trivial phase factor, however, since it depends on n, i.e.,
the intensity of the field. It is, in fact, a Stark-shift term,
for which the effective-Hamiltonian approach does not
account properly.

We may conclude that in the calculation of the diago-
nal elements, where the phase factors exp[ —iA, (2n
+3)r/2] cancel, the difference between the effective
Hamiltonian approach and the exact result (for large de-
tuning) may be relatively small, but not so for the off-
diagonal terms. In fact, for the diagonal elements, the re-
sults from the effective Hamiltonian are fairly accurate
even for small n Fo.r instance, for n =0, Eqs. (34d),
(35b), and (36) yield d oo

= r, sin (A&2 r) while the exact
result (for very large detuning) obtained from Eqs. (15d)
and (30c) is doo= —,'r, sin ( l. 5Ar). Of course, when the de-

tuning is not large enough for the higher-order terms in
Eqs. (30) to be negligible, the entire effective-Hamiltonian
approach is not valid, and the same appears to be the
case in a small region around )t,r=2qm (q an integer),
where the leading terms in Eq. (30) cancel. (The width of
this region naturally decreases as g /b, .)

As regards the off-diagonal elements, we note, for in-
stance, from Eq. (38b) and (30c), that in the limit of large
n the exact d„=C, n +2C,

*
+2 and the effective-

Hamiltonian d„' =C,'n+2C, '
+2 are approximately re-

lated by

—iX(n —m)rd
nm nm (39)

a„' =r, (C,'„C,"—1)— [2nb(n +m+1)+n +m],nm a an am

c„=y(nb+1)v'nm (34c)

(34a)

b„' =r, Cb „+&Cb' +, ynb[(n +—1)(m +1)]', (34b)

A phase factor like this would appear also in a„',but, of
course, not in the loss terms, so it cannot simply be fac-
tored out of the equation of motion (14). This indicates
that the use of the effective Hamiltonian for any calcula-
tion involving off-diagonal elements is not justified unless
the interaction time is such that

/

dnm a cn 2+cm +2 (34d)
kkz &(1,

where

C,'„=cos(P'„r/2),

C,
' „+2= i sin(P'„~/—2),

(35a)

(35b)

with

P'„=22[(n+1)(n +2)]'~ (36)

P'„=A,(2n + 3)

[compare with Eq. (27)] and

(37)

This is to be compared to the large-detuning limit of
our exact result, i.e., with Eqs. (15) with (27)—(30), which
looks in general rather different. A limited agreement is
obtained in the case when the number of photons, n, is
large. Then we can write

where k =n —m is the degree of off-diagonality. For
linewidth calculations, typically k = 1. We note here that
in a recent study of the two-photon laser Boone and
Swain' have also concluded that the effective Hamiltoni-
an approach may yield wrong results for the off-diagonal
density matrix elements.

In Ref. 6 the effective Hamiltonian is not used, and the
Stark-shift phase factors are properly included; their con-
tributions to the linewidth are, in fact, discussed there in
detail.

It is interesting, on the other hand, to investigate the
correctness of the treatment used in Ref. 7, which in-
volved the adiabatic elimination of the intermediate lev-
els, in the light of the exact results reported here. Denot-
ing with double primes the probability amplitudes ob-
tained in Ref. 7, and modifying the notation slightly to
agree with ours, we obtain from Ref. 7
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~n+2
C,'„'= c os(P'„'r/2)+ i sin(P'„'r/2) e

2A, &(n +1)(n +2) .
„ ly„+&~/2

c, n+2 sin „"r/2e

(41a)

derivation of Eqs. (41)—(44) the rotating-wave approxi-
mation was not made, whereas it is implicit in the form of
the Hamiltonian (2), from which our "exact" solution
was derived. Clearly, the last two terms of Eqs. (42) and
(43) are just the kind of terms which are neglected in the
rotating-wave approximation', under the assumption
ai ))b, they may be neglected to yield (with A, =g /b, )

(41b)

where, for the particular three-level system illustrated in
Fig. 1, the parameters y„,p'„',and co„ofRef. 7 become

y„=l(2n,
—1),

co = A, .n

(45)

(46)

2n —1r. =g' n —2 n+1+2' 5 2'+ 6 (42)

To proceed with the comparison it seems necessary to
take the limit of a large number of photons in the two-
photon Rabi frequency P'„',which yields

2 1 n —2
CO~

—g 2' —5
n+1
2'+ b

(43)

and

P'„'=2[(co„+2/2)+A, (n +1)(n +2)]'~ (44)

This is to be compared to the leading terms of Eq. (30)
(large-detuning limit), where Cb„ is to be ignored. We
may notice that if one merely sets y„=to„=0,Eqs. (41)
become identical to those derived from the effective
Hamiltonian model, Eqs. (35). Equations (42) and (43),
however, suggest that this is really not the right choice
for this particular system, since y„is of the order of A,n, a
frequency which has been kept throughout.

A more correct approach is to realize that in the

P'„'=A(2n+3) . (47)
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Using Eqs. (45)—(47) in Eq. (41) one recovers exactly the
leading terms of the exact solution, Eqs. (30a) and (30c)
(except for a trivial sign). The adiabatic elimination of
the middle level is thus justified by comparison with the
exact solution. It is, however, somewhat mysterious at
this time that the large-n limit appears to be necessary to
fully establish the correspondence.
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