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Stochastic fluctuations of coherent and incoherent components of the resonance fluorescence in-

tensity induced by Wiener-Levy laser phase noise are investigated. Statistical properties of the

atomic dipole moment for different values of the laser linewidth and different strength of the driving

field are calculated. The stochastic Mollow spectra of atomic dipole fluctuations are derived. It is

shown that these spectra exhibit a triplet structure which is purely classical and entirely laser-noise

dependent.

I. INTRODUCTION

Laser-amplitude fluctuations, atomic dipole fluctuations,
and atomic resonant-frequency fluctuations can all be in-
corporated in the stochastic Bloch equations with a rnul-
tiplicative random noise. The stochastic Bloch equations
can be written in all these cases in the form of the follow-
ing matrix stochastic differential equation:

dV = [Mo+ix(t)M]V,
dt

(1.2)

where Mo is the deterministic coherent part of the Bloch
evolution and the matrix M describes the coupling of the
Bloch variables with the external source of noise.

The stochastic difFerential Eq. (1.2) driven by the noise
(1.1) can be averaged exactly and as a result the stochas-
tic expectation value of V(t) denoted here by & V(t})
satisfies the following differential equation:

=(M, —rM')& V(t) & . (1.3)
dt

From this equation we see that the influence of the noise
changes the coherent evolution by a simple additive
damping term I M . The solution of this equation can be
written in the Laplace-transform form:

In the presence of coherent radiation, resonant effects
of a two-level atom can be described by the optical Bloch
equations with two phenornenological lifetimes T, and
T2. ' If the environment of the radiating atom is a
source of statistical perturbations described by a random
noise with a finite coherent time, the optical Bloch equa-
tions have to be replaced by optical resonance equations
with effective lifetimes dependent on the power of the
driving radiation. Power-dependent relaxations have
been investigated both experimentally and theoretically
in optical coherent transients.

If the external fluctuations have a coherence time
much shorter than any characteristic time scale of the
resonant radiating atom it is possible to treat the external
source of noise as a stochastic Gaussian white noise x (t)
with zero mean and the following autocorrelation:

&x(t)x(t')) =2rS(t —t ) .

& V(t}=gdz e"& V(z)),
27Tl

where

& V(z) & =(z —M + I M ) '& V(0) ) . (1.4)

The time dependence of & V(t) ) is determined by roots of
the secular equation derived from (1.4). This secular
equation gives the stochastic generalization of the well-
known Torrey equation. ' In a11 of the physical examples
that we have mentioned above it is possible to show that
the additional damping leads to so-called "substitution
rules. " In such cases we can derive certain exact rules ex-
plaining how to add the nonradiative (noise-induced) life-
times to T, and T~. For example, if atomic dipole fre-

quency fluctuations are investigated, the substitution
rules lead to a broadening of the transverse rate, leaving
an unchanged longitudinal rate:

l A l=—+r,
T2 2 T]

There is, however, a very important case of white-noise
fluctuations that escapes this general scheme. This is the
Wiener-Levy diff'usion of laser phase P(t) leading to
white-noise fluctuations of the instantaneous laser fre-
quency p(t)=P(t):

&p(t)p(t')) =21&(t —t') .

At a first glance it may seem strange to have difficulties
with laser-frequency fluctuations when atomic frequency
fluctuations lead to an almost trivial result (1.4). After
all, both the laser frequency mL and the atomic frequency
coo enter the Bloch equations via the detuning b =coo—~I
in a completely symmetric way. The fundamental
differences between frequency fluctuations of the atomic
dipole or of the laser electric field can be traced back to
the interaction Hamiltonian. From the structure of this
Hamiltonian it is clear that fluctuations of coo influence
diagonal atomic transitions, while fluctuations in col in-
volve a11 the off-diagonal atomic transitions. The symme-
try of these fluctuations at the level of the atomic detun-
ing has been obtained with the help of a rotating frame,
rotating with a random frequency p(t). In fact, from
some very early investigations it follows that it is impossi-
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ble to find one universal rotating frame in which both
atomic populations and atomic coherence can be driven

by laser fluctuations in the form described by the canoni-
cal stochastic equation (1.2). This relatively simple fact
has important physical consequences. With laser-
frequency fluctuations we have, in fact, two different and
distinct rotating frames leading to the stochastic equation
(1.2). The first frame is used to describe the atomic popu-
lations and the resulting incoherent component of the
resonance fluorescence. The second frame is used to de-
scribe the atomic dipole moments and the resulting
coherent (Rayleigh) component of the strong-field reso-
nance fluorescence.

Even though most of the theoretical tools and results
relevant for this problem had been developed several
years ago, it is only just recently that the first experiment
has been reported in which the noise-induced mean and
variance of the total fluorescence intensity have been
measured.

In view of these very important experiments it is the
purpose of this paper to examine the problem of laser-
frequency noise-induced fluctuations of the coherent
I„h(t) and incoherent I;„,(t) fiuctuations in resonance
fluorescence. Possible future measurements of the fluc-
tuations of the coherent intensity could exhibit the strik-
ing property of the failure of the substitution "rules" in
the laser-frequency noise described just by a simple white
noise (no cutoff effects due to a possible finite coherence
of the frequency noise).

As we have said before, the relevant steps of the statist-
ical average have been published in several papers in the
past. This allows us to keep all the technical arguments
at a minimum level throughout this paper.

This paper is organized as follows. In Sec. II we intro-
duce the stochastic Bloch equations with Wiener-Levy
laser-frequency fluctuations and define the coherent and
the incoherent components of the resonance-fluorescence
intensity. In Sec. III we discuss the physical properties of
statistically averaged coherent and incoherent
resonance-fluorescence intensity components. In Sec. IV
we derive the power spectrum of laser-noise-induced
atomic dipole fluctuations. This purely classical spec-
trum exhibits ac Stark splitting for strong laser excita-
tions. In Sec. V we present the optical resonance equa-
tions for the mean atomic population and the mean atom-
ic dipole moment in the presence of laser noise. Effective
power and laser-noise-dependent transverse and longitu-
dinal lifetimes are derived and discussed. Finally, some
concluding remarks are given in Sec. VI.

II. STOCHASTIC BLOCH EQUATIONS

The stochastic Bloch equations (with quantum aver-
ages already performed) have the following form

where u =d+d*, U=i(d —d*), and w are three com-
ponents of the Bloch vector driven by a stochastic field
with constant Rabi frequency 0 and fluctuating phase
P(t). The radiative damping and detuning are denoted by
the Einstein A coefficient and 6, respectively. Phase fluc-
tuations of the laser light are assumed to be described by
a Wiener-Levy stochastic process leading to frequency
fluctuations characterized by the autocorrelation func-
tion (1.6).

It is well known that the total resonance-fluorescence
intensity I consists of two contributions:

I=I„h+I;„, . (2.2)

The first one, originating from the motion of the dipole
d(t), driven by the laser field, is sometimes called the
coherent or the Rayleigh scattered intensity:

I„„(t)=d*(t)d(t) . (2.3)

The second one, called the incoherent intensity, is due to
the quantum fluctuations of the dipole moment produced
by the vacuum field.

The total resonance-fluorescence intensity is deter-
mined by the atomic population p(t)= wft)+ I/2 of the
radiating two-level atom as a result we obtain that

and

I=p(t)

I;„,= p (t) d'(t)d(t) —.

(2.4)

(2.5)

If the external stochastic fluctuations of the field, for ex-
ample laser-frequency noise, are included, the resonance-
fluorescence intensities I, I;„„and I„h become random
statistical variables for which means, variances, and noise
power spectra can be calculated and measured. In recent
experiments the statistical properties of the atomic popu-
lation fluctuations have been measured.

In this paper we shall be concerned mainly with the
statistical properties of resonance fluorescence generated
by the atomic dipole fluctuations:

(I„h)=(d*(t)d(t)),

(I,„,)=(p(t)) —(d'(t)d(t)) .

(2.6a)

(2.6b)

The statistical properties of the total fluorescence I are
fully described by the atomic population fluctuations,
while the coherent and incoherent part of the fluores-
cence involves the dipole-moment fluctuations.

Whenever fluctuations of a randomly distributed func-
tion [p (t) or d (t)] are detected and observed it is interest-
ing to calculate and to measure the power spectrum of
the noise.

For steady-state autocorrelations of population and di-
pole we define the following quantities:

d= —ih ——d —i—e - w,
~ . 3 .Q;()

2 2
(2. 1a) S (co)= lim2Re J e ' '(p(t+r)p(t))dr,

taboo 0
(2.7)

d = iA ——d +i—e ~ w,.n; (, )

2 2
(2.1b) Sz(co) = lim 2 Re J e (d*(t +r)d(t))dr . (2.8)

t —~ oc 0

w= —A(1+w)+iQ(d*e ' '"—de'~'"), (2.1c) The quantity S (co) represents a stationary spectrum of
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population fiuctuations, while Sz(co) represents the sta-

tionary spectrum of dipole fluctuations.

m. RESONANCE FLUORESCENCE INTENSITY

The transformation of the stochastic Bloch equations
(2.1) into the canonical form (1.2) is well known and has

I

been described in great detail elsewhere. ' '

In this paper we shall just quote the main result of this
transformation when applied to the problem of coherent
and incoherent intensity fluctuations induced by white-
noise laser-frequency noise.

We introduce the following ten-component stochastic
vector [transposed of V ( t )]:

V (t)=(I h(t), d(t)w(t)e'~'", d'(t)w(t)e '~'", d (t)e '~'" d* (t)e '~'" w (t),d(t)e'~'", d'(t)e '~'" I(t) A ) (3.1)

By a repeated application of the stochastic Bloch equations (2.1) it is easy to check that this ten-component vector
satisfies a stochastic differential equation in a form given by (1.2) with proper time-independent 10X 10 matrices Mo and
M. As a result we obtain that the stochastic expectation value of V(t) has to satisfy Eq. (1.3) which has the explicit
Laplace-transform form solution given by Eq. (1.4}. In the following we shall only be interested in steady-state values of
averaged fluorescence intensities. Isolating the pole at z =0 and evaluating the corresponding residue, we obtain after a
simple but lengthy algebra the following expressions:

AQ Re I [(X, 'X+3) [(+43) +
p
II'] I(I,.„( )) =

[0 Re(X )
—A ]I A ~(X+3) '+ —'0

I

—2& Re[L,* '[(XQ ) '+ —'& ]]J
(3.2a)

and

Q Re(/t)(I =—
2 0 (RaL, )

—A
(3.2b)

where the complex Lorentzian functions X,(A}, X2(b, }, and X3(b) are defined by the following expressions:

X,=(ib, ——,
' A —I ) ', X2=(ib, —

—,'3A —I') ', X3=(ih —,
' A——21 ) '. For later reference we also note that

2i/3
(wde'~( )) = — ' (d'e "~( )),0

((I —AX;)[(X+3) '+ —,'0 ]—2iQ X3 'Iml:, I(d&e2'0( ae ) ) =
[O'ReX, —A ]( A i(XQ, ) '+ —'0 i' —20'ReIX3 '[(XQ ) '+ —'0']

I )

(3.2c)

(3.2d)

iAQ
2 0 Rek, —A

(3.2e)

It is easy to check that in the limit of weak field, i.e.,
when 0&(A, I we obtain that the total fluorescence is
equal to the coherent contribution and the incoherent
part vanishes:

—,
' A+I

2A ( —,
' A+I ) +b

(3.3)

In this limit it is justified to speak about substitution rules
which are described by the Lorentzian function X,( 5 )

which leads to Eq. (1.5), and as a consequence are
equivalent to the substitution rules obtained for atomic-
frequency fluctuations. In the limit of weak field, laser-
frequency fluctuations and atomic dipole fluctuations are
indistinguishable. The situation is completely dift'erent if
the field is strong. In this case the rotating frame leading
to the ten-component vector (3.1} involves three
Lorentzian functions forming the expression (3.2a). Be-
cause of this the substitution rules (1.5) are not even valid
approximately, and the fluorescence intensities (I„h)
and (I) have to be described by the full expressions
given by Eqs. (3.2) with three distinct functions X&, X2,
and L3.

In Fig. 1 we have plotted the total and the coherent in-
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FICi. 1. Total fluorescence (I ) and coherent fluorescence
(I„h) as a function of laser detuning b, with I =1A. The
different solid lines from the bottom to the top correspond to
the total fluorescence with 0=0.5, 2.0, and 3.5 A. The different
dotted lines correspond to the coherent fluorescence. The
smallest Lorentzian curve corresponds to 0,=0.5 A. The curve
with a shallow dip corresponds to Q=2.0A. The curve with
the most pronounced dip corresponds to Q =3.5 A.
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FIG. 2. Coherent fluorescence (I„„)as a function of laser
detuning b with I =0.2A. The dotted line corresponds to
0=0.8 A. The dashed line corresponds to 0= 1.6A. The
dash-dotted line corresponds to 0=2.4A. The solid line corre-
sponds to 0=3.2A.

FIG. 4. Intensity fluorescence as a function of Rabi frequen-
cy at exact resonance b, =O and I =1.2A: total intensity (I)
(solid line), coherent intensity (I„&) (dotted line), incoherent
intensity ( I,„,) {dash-dotted line).

tensity fluorescence as a function of the detuning for
different values of I and Q. In all the plots in this paper,
6, I, co, and 0 are expressed in units of the natural life-
time A. We see that for 0=0.5A and I =12, the
coherent fluorescence is practically identical to the total
fluorescence. For higher values of the Rabi frequency,
i.e., for 0=2 and 3.5A the differences between these two
fluorescence components are more pronounced. Note
that for Q=2A the curves for both (I ) and (I«h ) have
a dip at the exact resonance b =0.

In Fig. 2 we have plotted the coherent fluorescence in-
tensity for different Rabi frequencies (0=0.8, 1.6, 2.4,
and 3.2A) and for a small laser linewidth I =0.2A. We
note that for 0 & 1 the intensity has a well-pronounced

O.
CO
C O
CD+

Q)
O
0)

IQ
O

CD 0
D

LL
O0
O

v

I

10 20 30

FIG. 3. Coherent fluorescence (I„h ) as a function of laser
detuning 6 with I =1.2A. The dotted line corresponds to
0=0.8A. The dashed line corresponds to 0=2.4A. The
dash-dotted line corresponds to 0=3.2A. The solid line corre-
sponds to 0= 1.6A.

Lorentzian dip at exact resonance. In Fig. 3 we have
plotted the corresponding curves from Fig. 2 but with a
larger laser linewidth I =1.2A. The dips are still there
except that they have been much broadened by the laser
line width.

In Fig. 4 we have plotted the total, coherent, and in-
coherent fluorescence intensities as functions of Rabi fre-
quency 0 for 5=0 and I =1.2. We note in this figure
the well-known fact that the coherent (Rayleigh) com-
ponent of the fluorescence intensity peaks and then falls
off with increasing power of the laser light.

IV. POWER SPECTRA OF DIPOLE FLUCTUATIONS

As we pointed out before, phase-noise-induced fluctua-
tions of the population p(t) lead to the total resonance-
fiuorescence intensity (I). Correlations of population
fluctuations [see Eq. (2.7)] have been investigated for
low-intensity fields several years ago. ' Recently calcula-
tions of these fluctuations and their power spectra for
large values of 0 have been published. "

It is the purpose of this section to study the power
spectra of dipole-moment fluctuations responsible for the
coherent fluorescence intensity. The quantum correla-
tions of atomic dipole moments lead to the well-known
Mollow spectrum. Because we are dealing in this paper
with purely classical fluctuations of the Bloch variables,
the power spectra of dipole correlations describe the
power spectrum of a radiating classical dipole moment.
Because in this case correlations of the classical dipole
are induced by stochastic fluctuations of the driving field,
we shall call the resulting power spectrum a stochastic
Mollow spectrum (SMS).

In order to calculate the dipole-dipole correlations re-
quired in the definition (2.8) of the dipole power spec-
trurn, we introduce the following four-component tran-
sposed vector:
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V (r, )=(d*(t+7)d(t), w(t+7)d(t)e'~"+', d(t+r)d(t)e '~"+',d(t)e' '") . (4.1)

By a repeated application of the stochastic Bloch equations (2.1) it is easy to check that this four-component vector
satisfies a stochastic differential equation in a form given by (1.2) with proper time-independent 4X4 matrices Mo and
M, and the following initial condition for ~=0:

V (t ~=0)=(I„„(t)w(t)d(t)e'~'", d (t)e '~'" d(t)e'~'") . (4.2)

In the steady-state limit, the dipole-moment autocorrelation can be calculated using the procedure described in the pre-
vious sections and noting that the steady-state values of (4.2) are given by the first, second, fourth, and seventh com-
ponents of the vector (3.1). Combining these results, we obtain the following exact expression for the SMS in the pres-
ence of laser-phase fluctuation

N
&

( co ri&o )f]+N2 ( co no )fp +N 3 ( co coo )Q3 +N4 ( co ri) o )fgSd(~) =2 Re
N(co coo)— (4.3)

where the four functions 1V; in the numerator are defined by the following relations:

N (~)=(i~+r) (i~+a+r) i~+is+ +—4r + 0
1 2 2

(4.4a)

iQ
N2(a) ) =

2
i~+i a+ +4r —(i ~+r)

2
(4.4b)

0
N3(co)= (iso+I ),

2
(4.4c)

. AQ
N (co)= i ic—o+ib, +—+4I4 2 2

(4.4d)

and where the denominator function is

N(~)=(i~+r) i~ is+ (—i~+a—+r) i~+is+ —+4r +n i~+ —+2r
2 2 2

(4.4e)

In the formula (4.3) the four functions
f, =lim, „(V, (t, ~=O) ) are the steady-state expectation
values of the four components (i =1, . . . , 4) of the vector
(4.2) and are explicitly given by Eqs. (3.2a) and
(3.2c) —(3.2e). Note that the expression for the SMS in-
volves, in addition to the two complex Lorentzian func-
tions L, and X3, an additional Lorentzian
z,=(is+-,' ~+4r)-'.

In the limit of weak field the SMS becomes identical
with the quantum Weisskopf-Heitler spectrum of reso-
nance fluorescence with the laser linewidth contribu-
tion. ' In the limit of weak field, the two-level atom be-
comes a classical harmonic oscillator, and statistical
correlations of the atomic dipole moment are linearly
dependent on the electric-field autocorrelation function.
If the field is purely monochromatic, the Weisskopf-
Heitler resonance fluorescence consists of a sharp peak
centered at the driving field. If the external field fluctu-
ates and has finite linewidth I, the standard Weisskopf-
Heitler spectrum is modified. At exact resonance, the
Rayleigh peak has a bandwidth equal to I. Off reso-
nance, the spectrum has an additional component cen-
tered around the atomic frequency coo, with a bandwidth
equal to the natural linewidth of the excited state. The
height of this peak is proportional to the laser linewidth
I . The fact that incoherent effects introduce an addition-
al nonelastic component in the fluorescence spectrum has

I

been predicted'" and observed experimentally' for a
completely different physical situation involving atomic
collisions.

In Fig. 5 we have plotted the SMS for weak-field exci-
tation 0=0.2A, detuned by 5=103 and with a laser

O

D
O

-20 0
M/A

10 20

FIG. 5. The SMS for weak field 0=0.2A, 5=103, and
r=0. 1~.
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FIG. 10. The SMS for 5=0 and I =3A. The dotted line
corresponds to 0=20A. The dash-dotted line corresponds to
Q=SOA (the figure has been shifted by 0.0002 and magnified by
8.0). The solid line corresponds to 0=80A (the figure has been
shifted by 0.004 and magnified by 24.0).

Mollow spectrum. The fundamental difference between
the stochastic spectrum and the quantum spectrum is in
the source of fluctuations. The Mollow spectrum results
from vacuum fluctuations, while the SMS results from
phase-laser fluctuations. We see that when I is small,
there is basically one central Rayleigh peak, but when I
increases, two sideband peaks appear and their heights
grow with I . This indicates that the triplet structure is
purely noise dependent. Correlations of the atomic di-
pole result in this case from purely classical fluctuations
induced by the laser-phase noise. In Fig. 10 we have
plotted the SMS for 6=0 and I =3A but for different
values of the Rabi frequency 0 in order to exhibit the sto-
chastic ac Stark frequency splitting of the dipole-moment
power spectrum. In Fig. 11 we have plotted the SMS for
I =3A, 0=30A but detuned by b =0, 5, 15, and 25A.
Comparing these curves with the triplet at exact reso-
nance, we see that detuning introduces a strong asym-
metry in the atomic dipole-moment noise power spec-
trum.

V. OPTICAL RESONANCE EQUATIONS
WITH PHASE NOISE

have plotted the dipole-moment spectrum for 0=60A, at
exact resonance and for different four values of the laser
linewidth: I =0.5, 2.0, 6.0, and 10A. In order to exhibit
more clearly the structure of the SMS we have shifted
and magnified the curves by factors explained in the
figure caption. The remarkable feature of these curves is
the presence of a triplet. Note that the appearance of
these three peaks is similar to the structure of the famous
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The optical resonance equations (ORE} are a substitute
for the optical Bloch equations in cases when the relaxa-
tion mechanism becomes power and detuning dependent.
It has been shown several years ago that a large class of
broadening mechanisms described by external fluctua-
tions with a finite coherence time can be represented by
the ORE with power- and detuning-dependent homo-
geneous lifetimes T, and T2. We have already pointed
out that the Weiner-Levy fluctuations of the laser lead to
two distinct rotating frames for the Bloch vector. In
these frames the stochastic Bloch equations have the
canonical form given by Eq. (1.2).

In this section we shall apply the idea of the ORE in
order to derive effective homogeneous lifetimes T, and
T2 for the stochastic expectation values of the atomic in-
version (w(t}) and the atomic dipole moment (d(t)).

The different rotating frames for w(t) and d(t) are
reflected in the existence of two distinct vectors V(t) in-
volving the inversion and the dipole that form Eq. (2.1)
with different matrices Mo and M.

The following four-component vector [transposed of
V(t)] contains w(t) and has no d (t) in its definition:

V (t)=(w(t), d*(t)e '~",d(t)e'~'", A ) . (5.1}

0 0 0 ~

-100-80 -60 -40 -20 0 20 40 60 80 100

FIG. 11. The SMS for I =3A, Q=30A for different values
of detuning. The dotted line corresponds to 6=0. The dashed
line corresponds to b, =5A (the figure has been shifted by
0.0003). The dash-dotted line corresponds to b, =15A (the
figure has been shifted by 0.0006 and reduced by 5.0). The solid
line corresponds to 6=25 A (the figure has been shifted by
0.0009 and reduced by 10.0).

The following four-component vector [transposed of
V(t)] contains d(t) and has no w(t) in its definition:

V (t)=(d(t) e ' '"w(t), d*(t)e ' '" e ' '")

The stochastic vector (5.1) defines population fiuctua-
tions, while the stochastic vector (5.2) defines atomic fluc-
tuations. Note that the stochastic evolutions of (5.1) and
(5.2) are completely independent, and as a result the sto-
chastic averages in the form given by Eq. (1.3) are
different because they involve different matrices Mo and
M.

The ORE are in general derived from such averaged
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equations by an adiabatic elimination of the laser-damped
components of the vector ( V(t)). This procedure is
justified for values of I ~ A and for times when the early
transients have died out. This procedure is exact at
steady state. Performing the adiabating elimination of
the damped variables in the two vectors (5.1) and (5.2),
we obtain the ORE for the average dipole transition and
the average inversion in the following form:

(d) = ib, — —(—d )
2

C ~
6)
Cfl

(D

GO

tDC

n'(ia —-'A —4r)
+

2 (d),0 —2( A + I' )(i b, ——,
' A —4I )

(5.3a)

(. )
0 (A+2I )

( )
( —'A+I ) +5 (5.3b)

These ORE are diagonal and decoupled from each other.
From Eq. (5.3b) for the atomic inversion we can conclude
that the decay of the mean population is governed by an
effective longitudinal linewidth given by

1 0 (A+21 )

T2 2 ( —,'A+I ) +b,

This expression has a power-dependent and laser-
dependent contribution which has a Lorentzian shape.

The dynamical equation for the atomic dipole moment
contains the complex Lorentzian function X4, typical in
the expression for the SMS [see Eqs. (4.4)]. From Eq.
(5.3a) we obtain that the dipole moment oscillates with an
effective detuning:

b,,s=b, —Im[[X4(h) —2(A +I )/0 ] '), (5.5a)

and decays with an effective transverse lifetime given by

=—+Re[[/4(b, )
—2(A +I )/0 ] ') . (5.5b)

2

-5 -4 -3 -2 -1 0 1 2 3 4 5
Q/A

FIG. 12. Plots of the effective transverse lifetime as a func-
tion of the atomic detuning for I"=0.2A and different values of
Rabi oscillation. The dotted line corresponds to 0=0.5 A. The
dash-dotted line corresponds to 0=1.5A. The solid line corre-
sponds to 0=2.5A.

Q/A

FIG. 13. Plots of the effective transverse lifetime as a func-
tion of the Rabi oscillation for I =0.2A and different values of
the atomic detuning. The dotted line corresponds to 6=0.5A.
The dash-dotted line corresponds to 5=1.5A. The solid line
corresponds to 5=2. 5 A.

In Fig. 12 we have plotted the dipole effective lifetime
(5.5b) as a function of the detuning for I =0.2A and
three values of Rabi frequency: 0=0.5, 1.5, and 2.5A.
Note that this effective transverse linewidth has a power-
dependent dip located at exact resonance. In Fig. 13 we
have plotted the same transverse lifetime as a function of
Rabi frequency with a laser bandwidth I =0.2A and
three different values of the detuning b =0.5, 1.5, and
2.5A. With increased laser noise the detuning depen-
dence of the transverse lifetime becomes less pronounced.

VI. CONCLUSION

The theoretical investigations of this work have been
stimulated by a recent experiment in which fluorescence
from a large number of atoms (typically of the order of
10 ) has been observed by a detector with an area much
larger than the coherence of the fluorescence light with
fluctuating phase. The fluorescence detected in this ex-
perirnent has been purely classical due to the large num-
ber of radiating atoms, and the measured fluctuations of
light intensity have been induced by classical laser-phase
fluctuations.

Our theoretical investigations of resonance fluores-
cence induced by Weiner-Levy laser-phase fluctuations
have been extended to the forward or incoherent com-
ponents of scattered light. In contrast to the total
fluorescence, the incoherent part of the scattered light is
mostly governed by the atomic dipole moment, which
plays the dominant role in the forward light scattering.

We have investigated the coherent and the incoherent
components of the fluorescence intensity, induced by
laser-phase noise. We have compared the coherent and
the incoherent fluorescence for different values of Rabi
frequency and laser-phase bandwidth. We have calculat-
ed the power spectrum of laser-noise-induced dipole fluc-
tuations. This purely classical spectrum exhibits several
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interesting features not observed in atomic population
fluctuations. We have calculated this spectrum for
different values of atomic detuning, Rabi oscillation, and
laser-phase bandwidth. We have shown that for weak-
field excitations, this spectrum is identical with the well-
known Weisskopf-Heitler spectrum. For strong laser ex-
citations, we have shown that the SMS exhibits a purely
noise-dependent triplet structure.

Finally, we have derived the optical resonance equa-
tions for the atomic population and the atomic dipole
moment in the presence of laser-phase noise. We have
shown that the ORE have effective transverse and longi-
tudinal lifetimes which are detuning and power depen-
dent.

In view of recent experiments, we believe that the
laser-phase noise-induced stochastic properties of reso-

nance fluorescence involving forward light scattering and
the SMS could be investigated for different values of the
laser bandwidth and laser intensity.
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