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Semiclassical on'-shell T-matrix elements for nearly coincident momenta
in the classically allowed region
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Semiuniform off-shell wave functions and T-matrix elements are presented that remain valid even
in the limit of equal incoming and outgoing momenta. Numerical comparisons are made with both
primitive semiclassical and fully quantal predictions for scattering described by a Hulthen potential.

INTRODUCTION

Light scattering by atoms undergoing collisions can
yield a wealth of information concerning interatomic in-
teractions. Recently, a large amount of effort, both
theoretical and experimental, has been devoted to the
study of so-called half-collision events, such as collisional
redistribution' and molecular photodissociation. ' In
a typical redistribution experiment, a photon, tuned far
from the asymptotic free-atom transition, is absorbed, ex-
citing a localized population deep within the collision ac-
cording to the Franck-Condon principle. Information
about the subsequent evolution of the collision complex,
out to the final asymptotic states, is obtained by observ-
ing the polarization dependence of the resulting fluores-
cence close to line center, ' or by absorption of a second
photon to a higher atomic level.

Lately some workers ' have proposed that even more
detailed information about the collisional evolution could
be obtained if these experiments were generalized, so that
the interaction with the second photon would also occur
deep within the collision. This would allow one to isolate
even smaller pieces of the collisional evolution (see Fig.
1). This kind of truncated collisional interaction is well
described by the term "incomplete collisions, "" since,
described as a scattering event, the important collisional
evolution is confined to a region well removed from the
asymptotic "in" and "out" scattering states. A descrip-
tion of these incomplete collisions can be readily couched
in terms of the rather powerful formalism existent for the
two-body off-the-energy-shell T operator. Although fully
quantal codes for the calculation of the off-shell T-matrix
elements for spherically symmetric potentials already ex-
ist, ' one would also like to have available a reasonable
semiclassical formulation, primarily because of the added
physical insight such an approach provides. In particu-
lar, the concept of far-wing (quasistatic) atomic absorp-
tion is well established in terms of a semiclassical descrip-
tion. In fact, the semiclassical description of quasistatic
absorption is often simple enough to allow for the direct
inversion of experimental data to yield interatomic poten-
tial energy curves. ' An additional advantage of develop-
ing the formalism for a semiclassical description of in-
complete collisions in terms of the off-shell T operator is
that one can then compare the resultant predictions

directly with existing fully quantal calculations.
Recently there have been several efforts at developing

such a formalism. "' ' The pioneering work was a
series of papers by Korsch and Mollenkamp, ' ' in
which they developed a semiclassical formula for off-shell
T-matrix elements using WKB wave functions. With this
approach, the start and finish of the incomplete collision
appear as stationary phase points which dominate the
generalized overlap integrals. Good agreement was ob-
tained in comparison with quantal calculations of Beard
and Micha' for H-H scattering, except for regions where
the stationary phase points approached either the classi-
cal turning points of the collision, or the asymptotic re-
gion, or each other. The breakdown near the classical
turning point is a familiar feature of the WKB approxi-
mation. Subsequently Burnett and Belsley' attempted to
develop a uniform generalization of this approach based
upon mapping the differential equation for the off-shell

propagator onto a comparison equation for an isolated
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FIG. 1. A schematic diagram showing how one can create an
"incomplete" collision through two photon absorption. The
first photon is absorbed at the point r'„where the electronic en-

ergy curves are shifted into resonance by the collisional interac-
tion. This creates a localized population which then propagates
up to the point r', where it is removed via absorption to a
higher-lying state.
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turning point. The purpose of the present work is to ex-
plicitly develop a formula valid in the classically accessi-
ble region, even in the limit for which the incoming and
outgoing momenta are equal. This is particularly impor-
tant for applications employing a multiple scattering for-
malism, since the total off-shell T-matrix elements are
often largest in the region of near elastic scattering. ' To
avoid complications due to higher-order effects, such as
the coalescing of three stationary points, we will limit our
treatment to a consideration of purely repulsive poten-
tials.

After a brief introduction to the relevant notation and
a description of the partial-wave expansions used in this
work, we outline the techniques used in the uniform eval-
uation of the off-shell wave function and T-matrix ele-
ments. We then compare the predictions of our develop-
ment directly against those of Korsch and Mollenkamp"
and the fully quantal variable phase and amplitude calcu-
lation of Beard and Micha' for the triplet H-H scatter-
ing described by a Hulthen potential. Specific con-
clusions are drawn regarding the applicability of this
work to more general scattering problems.

PARTIAL-WAVE DECOMPOSITION
OF THE OFF-SHELL T OPERATOR

In this section the standard formalism' used to ob-
tain the partial-wave off-shell T-matrix elements is briefly
outlined. Our starting point is the Lippman-Schwinger
equation ' for the two-body off-shell T operator describ-
ing the scattering of two particles at an energy E by the
interaction potential 0;

f'(E) =
II +P' f'(E)

E— 0+is

Here Pl are the Legendre polynomials. A similar decom-
position can be given ' for the coordinate-momentum
overlap in terms of the Ricatti-Bessel functions, ji(pr lk).
The resulting reduced radial equation is

d' A' l(l+1)
fg + E —V(r) —

z wi(r p;E)
dT 2mr 2

(pF p )ji(pr/A'), (6)

with pz =&E/2m . Using Eq. (2), the matrix elements of
the off-shell T operator can then be obtained from the
off-shell wave function. In terms of a partial-wave
decomposition,

(pq~ T(E)~p) ) = „g(21+1)ti(pq, p, ;E)Pt(pq p)),
1=0

the T-matrix element for an initial momentum p&, and
final momentum p2, is

2
I 2JI

77Ap )pp 0

X V(rz)tel(rz, p&, E)

where, in general, the momenta are off shell, i.e.,
p & &ps+pe.

THE OFF-SHELL W'AVE FUNCTION

As in a previous paper, ' our approach will be to devel-
op an expression for the off-shell wave function in terms
of a Green's-function solution to the homogeneous
Schrodinger equation, i.e.,

where 80 is the kinetic energy operator for the relative
motion. It is convenient to introduce an off-shell wave
operator IV(E) via

~P d + E V( )

A' l(1+1)
dl 2 2m)'

p

g~(rz, r, ;E)

=65(r, r~) . —
1'(E)= f'k(E),

allowing us to rewrite (1) as

(E—Ho —f )k(E)=(E—Ho) . (3)

where m, r, and p are, respectively, the reduced mass, the
relative coordinate, and the relative momentum of the
two particles involved in the scattering event. A reduced
radial equation may then be obtained by introducing a
partial-wave decomposition for the off-shell wave func-
tion,

(r~ 1V(E)~p) =(2') pi'( i+21)P~(r p)wl(r, p;E) .
I

When this equation is projected onto a mixed
coordinate-momentum representation one obtains the in-
homogeneous Schrodinger equation,

$2E+ V —V(r) (r~ k(E)~p) = E — (r~p),
2m 2m

(4)

Given gl(r&, r, ;E) we can write a solution to (7) in the
form

2 2
pE pi p&~i

(r1z,p&,'E)= dr&gI(rz, r, ;E)j IZmk 0

for pEWp, . The partial-wave T-matrix element can then
be written as

ps pi
I (p2 ~p I ~ E )

M P,P2m

00 P2f2
X J dry J dr) JI V(rp )

0 0

Xgr(rz, ri ,E)ji'
We now go on to develop a simple WKB approxima-
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g(( r2, ( (', E )

=A'Sir( r2 } . —(12)

tion to the Green's-function propagator. Although it is
possible to develop a uniform version of the propagator,
valid for arbitrary r, and r2, our interest is in describing
incomplete collisions properly in the limit for which the
incoming and outgoing momenta are nearly equal. For
simplicity we assume that these are both well within the
classical region so that we need not consider complica-
tions due to the classical turning point. While this re-
stricts the validity of our development, for the descrip-
tion of incomplete optical collisions this restriction is
rather weak in practice; the vast majority of collisions in
a thermal environment have Condon points (stationary
phase paints) for absorption that are well separated from
the classical turning point of the motion. ' This allows
one to use primitive WKB solutions to the homogeneous
Schrodinger equation in constructing the propagator.
Our first step is to make the usual Langer substitution
for the angular momentum in Eq. (9) to give

d2 E —V(r2) —ri (1+—,
'

)
+

r2 2mr 2

is the relative radial momentum of the reduced scattering
particle and ro is the classical turning point of the
motion, i.e., p((ro) =0. One can then show by direct sub-
stitution into Eq. (9) that the propagator obeying outgo-
ing boundary conditions, consistent with the +i e
prescription in Eq. (1},is simply

g((ri, r, ;E)=— P (r )g+(r ),
PE

or

2m
gl(r2& rl IE )—

1/2[Pl(r( )Pl("2 ) )

X exp pI +-(r)dr

(r)dr ir
X sin pt +-

ra

where r, =max(r&, r2) and r & =min(r„r2). Under
these same restrictions we can obtain a WKB approxima-
tion for the Ricatti-Bessel functions,

P+(r) =
p((r)

exp —' f "dr'p((r')+ '
fg ro

1 4
(13)

and

We will need solutions both for outgoing wave P+ and
standing wave g boundary conditions at r= ~. These
may easily be shown to be

1/2

p;r
JI

pi

pl(r)
„ p/(r)dr

sin +-
h 4

and r;0 defined by

with

p~(r)=tp, —[ri(l+ —,')Ir)'I' '

(18)

(19)

P (r)=
p, (.)

1/2
1 r

sin — dr'pl(r')+-
rp 4

Here,

pl(r) = [2m [E—V(r)] —[(fi)(l+ —,
'

) Ir] $

'

(14)

(15)

p,j(r,~o)=0, i =1,2 .

Substituting these equations into the above expression for
the partial-wave decomposition of the off-shell wave func-
tion and writing out the terms explicitly, we obtain the
expression

2 2
PE P] i 177

exp —
PI r dr+ dr,

2ii(i[p((r2 )]'~ & "o 4 ro

P]

p((r ( )pli (r ( }

1/2

rl 7TX sin —f [p', (r)dr ]+-
r&1, 4

r

Xexp —' f p((r)dr+
'

rO 4

—f "dr, P1

p((r()p(I(r, )
sin —

p~1 r dr +-
r&(, 4

0

X exp —f p((r)dr ——f p((r)dr
ro $ ro

(20)

The first integral in this expression can easily be evalu-
ated using the standard methods of stationary phase.
The integral is dominated by the contribution near the
stationary point r1 defined by the relation

p~ —p, =2m V(r', ) . (21)

In the language of a semiclassical description"' r', is the
localized point signifying the start of the incomplete col-
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FIG. 2. One contribution to the off-shell T matrix comes
from trajectories for which the start and finish of the incomplete
collision are separated by the classical turning point. Shown

here is the situation for p I )p&.

COLLISION
TRA JECTORY

lision. Similarly the stationary point in the r2 integral
will represent the end of the incomplete collision. Since
there is no restriction on the relation between r', and r2,
this first integral represents the contribution to the
scattering process in which the start of the collision
occurs "on the way in, " while the finish takes place "on
the way out" of the collision volume (see fig. 2).

A proper evaluation of the second integral requires
more care. In essence it is really two distinct integrals,
depending on whether r, is greater or less than r~. In
these integrals the end point rz can come arbitrarily close
to the stationary point in r &, prohibiting one from consid-
ering the contribution from the end point separately from
that due to the stationary phase point. These two terms
represent contributions for collisions which both start
and end, either on the way in (r

&
) rz ), or on the way out

(rz ) r, ), as shown in Fig. 3. The evaluation of oscillato-

ry integrals for which the end point can lie arbitrarily
close to the stationary point is a standard problem that
has been treated by many authors.

To illustrate the method we consider explicitly a por-
tion of the second integral in w &,

(b) P~ )Pi

FIG. 3. A second contribution to the off-shell T matrix
comes form trajectories for which the start and finish occur on
the same side of the classical turning point. The interference
between this contribution and that from Fig. 2 is what gives rise
to the oscillatory structure of the T matrix in the classically al-
lowed region.

A uniform approximation to this integral can be
developed by mapping it onto the simplest comparison
integral with the same qualitative features, namely, the
Fresnel integral,

I(r& ) = dr|
"2

plr&p& r

1/2

l
X exp —— p, (r)dr

fg ro

X exp —f [pi| (r)dr ]+
4

(22)

A(, r~, ri ) i(x)J(A) = f dx exp (23)

where A(r~, r, ) is a mapping function which provides a
measure of the proximity of the end point r2 to the sta-
tionary phase point r', . The parameter P is equal to +1,
depending on whether r', corresponds to a minimum or a
maximum of the phase. Using this technique we can
evaluate Eq. (21), obtaining

Api
I(r~) =

p, (r', )im V(r', )i

1/2 ~[r, , r', ] i(x )
exp[ —i', (r', )] dx exp

oo 2

Pl(r2 )P l (r2 )

' 1/2
1

p, (r ) —p', (r )

1

A(rz, r', )[pi(r; )imV(r', )i]'
exp ig&(r &

)
—ig&(rz ) (24)
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Here we have introduced the notation

ri, («)= —f "p((«')d«' ——f "
pj((«')d«'

0 P'
p

(2&)

while

A(«z, «', )=+
f 2[viz(«z ) ri&(«—z )]j

'~, + for «z~w«'z . (26)

Since r, is a minimum of g„A is strictly real.
Because these terms are to be substituted back into the expression for t( and integrated over «z it is convenient to

rewrite the Fresnel integral in terms of the auxiliary Fresnel functions f and g,

A(r&, r'I ) +i(x )f dx exp =&2mexp
00 2

—&n.sgn(«z —«', ) g
A(«z, «'& )

+if
A(«z, «', ) i(A'(«z, «', ) )

exp
2

(27)

2 Tlap)

p((«', ) Im v(«', ) I

exp[ —iri&(«'( )]e(«z «&)—I(«z)=

1/2

Here e is the Heaviside step function, which is equal to 1 if its argument is positive, 0 if negative. In this manner, since

f and g are slowly varying functions of their arguments, all of the rapidly varying phase dependence is expressed as the

argument of an exponential. This makes explicit the phase dependence of the Fresnel integral, allowing one to again

use the generalized stationary phase procedure to evaluate the rz integral.
It is instructive to group the auxiliary Fresnel functions together with the uniform end-point contribution in I(«z ),

' 1/2

~((«z) —ui(«z)P((«z )P'~ («, )

1

[p((«', )Imv(«', )I]'

1 A(«z, «', )

A(«z, «', )+i&r«sgn(«z «', ) &n. —
A(«z, «& )

+if exp[i'&(«& ) —iri((«z)] . (28)

Written in this way the uniform stationary phase approximation can be interpreted in terms of a pure stationary
phase term represented by the first term in Eq. (28) plus a uniform end-point contribution. The pure stationary phase
contribution turns on sharply if the integration interval contains the stationary phase point. Due to the Heaviside step
function the stationary term is present only if the integration interval contains the stationary phase point. The primary
contribution to the uniform end-point term comes from the pole [the second line of Eq. (28)]. This pole term represents
the isolated end-point contribution and is usually obtained by a simple integration by parts. Near the region for which
the end point rz coincides with the stationary point r &, the divergence due to the pole is canceled by the term involving
the mapping function A, and the sum remains finite. The auxiliary Fresnel terms then smooth the sharp turn on of the
stationary phase contribution. In the opposite limit when the end point is well separated from the stationary point, one
would expect the uniform end-point contribution to reduce to that of an isolated end point. Indeed, under these cir-
cumstances, one can show that the auxiliary Fresnel terms can be written as

A
i&msgn(«z «', ) g— +if A i(A ) i(x )=i sgn(«z «'( )exp — e—xp

2 )Al 2

1 f« IAI » I .
A

(29)

Hence in this limit the auxiliary Fresnel terms cancel the 1/A term, leaving only the pole contribution. The same gen-

eral procedures can be followed to evaluate the remaining integrals in Eq. (20). Collecting all of the resulting terms

yields the following expression:
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PF. P 1 2M
2m(&)

'

pt(r] )ImV'(r'] )I

dr] V(»2 ) fp fp
X f" . , exp —f pt(r)dr sin —f pz(r)dr+-

"] [Pt(rz)pz(»2)]'"

27ris

p, (r', )Im V'(r', )I

' 1/2

exp[ill, (r'] )]

r

~] drz V(rz)
X 1/2exp

—— pi ««»n — . p2 r r+—
"0 [Pt(»2)pz(rz)]'" fi r,o 4

dr, V(r, )
i A—f",sin —f pjz(r)dr+—"' [P](rz)pz(rz)] ~ "20 4

X exp —' f 'p~&(r)dr+
'

{0

p'(r, )
—p"(r, )

pi(»»
p, (rz)p, (r', ) Im V'(r', )I

' 1/2

X
1 —sgn(rz r] )V—n f

A(rz, r', )

A(rz, r', )
+lg

A(rz, r', )
+Q.Q.

THE PARTIAL-WAVE OFF-SHELL T-MATRIX ELEMENTS

(30)

To obtain the off-shell T-matrix elements the above expression for the off-shell wave function is inserted into Eq. (8).
The evaluation of the resulting integrals can be accomplished using either an integration by parts (when no stationary
points exist) or the uniform stationary phase approximation as is appropriate. Eventually one arrives at the following
form for the off-shell partial-wave T-matrix elements:

tt (Pz,P „E)
=— (PE P ] )(PE P2 ) l 7T . 7T

]&2 exp i' (r'& )
— sin 2)]&(r& )——

mfi[p]pt(r] )I2m V'(»'] )Ipzpt(rz )I 2m V'(rz )I ]' 4 4

PE P1 V(»2)
Re drz. . . exp[iriz(rz) —iri, (rz)]

[P ](»2)pz(rz)]'"

,'(rz) —p] (rz)

Jpj(rz) 1/2

pt(rz)pir] Im V'(r'] )I

2 2
PE

[Mp]pzpt(»'] )I2m V'(r] )I]'

A(rz, r', )

—sgn(rz r] )V'~ f—A(rz, r] )

v'7r
+lg

A(rz, r] )

XRe exP irtz(r] ) —i2)](r; )—

V(r', ) 1
X

[ (l ' i]'"
V(rz)

[p, (rz )Imv'(r', )I]'

1 —v'nsgn(p] —
pz )

A.(r'„rz )

A(»], »2 )f +lg
A.(r'], rz)

&m
(31)
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Here,

g&(r)= —f "pI(r')dr' ——f" p&(r')dr' .
p

A'
r2p

r' corresponds to max(r'„r2 ) while

A(r &, rz)=sgn(r', r2—)I2[riz(r', ) —rt2(r2)]J'

(32)

(33)

p2r pir
JI

&
VrJ

XP dr
0 PE~ p~i 2mV r

(34)

to tI(p, ,p2.E ). No justification was given for interpreting
this integral as a Cauchy principle-part-type integral.

In the present formulation the discontinuous behavior
near coincident momenta is smoothed by the presence of

is a measure of the proximity of the end point r', to the
stationary point in rz.

The expression for the partial-wave off-shell T-matrix
elements in Eq. (31) represents the main result of this
work. The first term in this expression coincides with the
formula of Korsch' in the classically accessible region.
As such it represents the contribution from isolated sta-
tionary phase points. Although continuous near pi =pz,
this term give rise to a discontinuous first derivative due
to the sharp switch between rt& and rt& in this region.
Right at p, =pz Korsch and Mollenkamp" suggested
adding an inhomogeneous contribution,

ui(pi p2 E)= 2'
~P iPz

two uniform end-point contribution terms [the two terms
containing a Re part designation in Eq. (31)], the first as-
sociated with the integral over r„which must be subse-

quently integrated over rz, and the second associated
with the rz integral over the stationary phase terms in r, .

Each of these end-point terms contains the subtle can-
cellation effects as mentioned above. In addition, there is
a strong cancellation between these two end-point terms.
This can be most readily seen by considering the contri-
bution from the auxiliary Fresnel functions, for values of
p, not too close to pz, to the integral over r2 [the first Re
part term in Eq. (31)). The auxiliary Fresnel function
term possesses a sharp discontinuity when rz =r', . Hence
one might expect that a reasonable approximation to
their contribution in the integral over rz could be ob-
tained through an integration by parts with the integra-
tion interval broken up at the point of discontinuity. If
such a procedure is carried out one obtains a term which
exactly cancels the pole in the last term of Eq. (31). One
could further argue that the main impact of the 1/A term
within the integral over rz is to cancel the divergence in
the isolated end-point term when rz is near r, . Similarly
the 1/A, term in the second Re part term of Eq. (31)
serves to cancel the divergence of the pole associated
with it near r', = r'2 (or p, =p2), which is when an integra-
tion by parts for the auxiliary Fresnel function term in
the integral over rz becomes suspect. It follows then that
the combined contribution of the uniform end-point
terms could be reasonably approximated by a Cauchy
principle-part integral over rz of the pole term. This
leads to the following simplified expression:

(pE p i )(p4 p2
—)—

t((pi, , 2mfi[p, pl(r', ) ~2m V'(r', ) ~p2pI(r2 ) ~2m V'(rz ))]'

X exp[irt, (r', )+i r)2(rz )]

A(r&, r2)
+exp i 7)&( r &

) —irt2( r z )— dx exp
4 v'p

i(x )

2

in 1 i(x )—exp —irt&(r& )+ig2(r2)+ dx exp
4 V2~ k(r~), r~2) 2

pz —p i „Vrz exp igz rz —ig, rz
2 2

+ P dr2
~«)(pip2)'" " [p'i(r2)p2(r2)]'" pi'(r2) —pi(r~)

(35)

This form is almost identical to the form of the semiclas-
sical off-shell T-matrix elements proposed by Korsch and
Mollenkamp with the inclusion of the inhomogeneous
contribution of Eq. (34). The sole difference is a smooth-
ing of the sharp turn on of the stationary phase terms in
their expression by the Fresnel integrals. However, this
difference is crucial to obtaining a smooth dependence
near the region of equal incoming and outgoing momen-
ta.

COMPARISON CALCULATIONS
FOR THE HUTHEN POTENTIAL

( ) V
exp( r/a)—

1 —exp( r /a )— (36)

In this section we follow closely the original test used

by Korsch and Mollenkamp for their formulation
through a comparison with the exact quantal results due
to Beard and Micha, ' for the Hulthen potential,
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We use the same potential parameters, +=0.9422 a.u.
and V0=1.469 a.u. , as did Korsch and Mollenkamp.
These parameters give a good description of the triplet
interaction of the H-H collisional system. We restrict
ourselves to the region of validity for our formulation,
that of the classically accessible region. This region is
defined by the limits placed on p, and p2 for a given value
of the collision energy E. The minimum value for the
momenta is given by the value of the momenta at the
classical turning point, ro, i.e.,

A'(1+ —,
'

)

pmin
=

while the maximum value of the momenta is pz. We note
that only the real parts of both Eqs. (31) and (35) differ
from the Korsch and Mollenkamp' results. Hence in
what follows we focus our attention on the real part of
t&(pi, p2', E).

We first investigate the momentum dependence of
tt(p„p2, E) on p2. To begin, we choose a value for p, of
4.0 a.u. , while for E we take 0.01 a.u. , which gives

pz =4.27 a.u. This choice is somewhat unfavorable for a
semiclassical formulation since p, is nearly on shell
where the stationary phase evaluation breaks down. We
also choose to focus on the I =0 partial wave which often
presents diSculties for semiclassical formulations. One
expects then that these values will provide a good test of
our formulation.

Figure 4 displays the results of the three different for-
mulations. As expected, far from the point at which

15
I

x(r2)
(r2)

PI

X[Bi( x(r, ))+i—Ai( —x(r, ))]

X Ai( x( r &
—

) ) . (37)

However, to follow the development in this paper using
such a propagator one would need to develop functions
analogous to the auxiliary Fresnel functions f and g for
the incomplete Airy integral.

In Fig. 5 we present a comparison between the various
formulations for equal incoming and outgoing momenta
as a function of incident energy, again for the I =0 par-
tial wave. Right at the point of equal incoming and out-
going momenta the purely stationary phase version of the
Korsch and Mollenkamp formulation can be patched up

p2=p, our results coincide with those of Korsch and
Mollenkarnp. The closeness of the uniform semiclassical
results to those of Korsch and Mollenkamp in this region
is a measure of the degree of cancellation present between
the two uniform end-point terms in Eq. (31). As noted by
Korsch and Mollenkamp, ' the agreement with the quan-
tal variable phase and amplitude (VPA) results is fair,
and in particular the agreement in phase is very good.
Near the point of equal momenta our results reproduce
the quantal result quite nicely. Away from this point the
semiclassical amplitudes tend to be too large. This may
be due in part to the use of a WKB propagator, which
diverges for portions of the collision trajectory near the
classical turning point. In principle this question could
be resolved by replacing the WKB propagator used in
our development by a uniform Airy version, '

' 1/4 x(r, )
' 1/4

g & ( r2, r ~,'E ) = —2m m. (r))
pt

10— KM
Eq 31

PA
q 35

40

o)

C)

0. 0

— - KM+Uo-- Eq 31
=- KM-- VPA

—10'
0
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FIG. 4. The real part of to(p&,p2', E) for the triplet H-H
Hulthen potential with E=0.01 a.u. and pl =4.0 a.u. The
primitive semiclassical approximation due to Korsch and

Mollenkamp (labeled KM) breaks down for both p, =pz =4.27
a.u. and for p2 =pl. Both semiuniform approximations smooth
the singularity present at p2 =pl. The curve labeled VPA is the
fully quantal variable phase and amplitude results due to Beard
and Micha.
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FIG. 5. A study of the diagonal term of the off-shell partial-
wave T-matrix elements as a function of the energy with

pl =p2=4. 5 a.u. The primitive semiclassical curve can be im-
proved by adding the inhomogeneous contribution uo from Eq.
(38).
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In fact for values of p, large compared to p;„ formula
(35) is almost identical to the above expression. This sug-
gests that it may be possible to develop a semiuniform ap-
proximation which is valid, both in the region of equal in-
coming and outgoing momenta, as well as near the half-
shell limit. The discrepancy near p& =p;„ is most likely
due once again to the breakdown of both formulations
near the classical turning point as commented on above.
A formulation which is based upon a uniform propagator
as in Eq. (37) should be able to resolve this point.

In conclusion we have presented a development of a
semiuniform semiclassical formulation for fully off-shell
partial-wave T-matrix elements. Our formulas remain
valid in the limit of equal incoming and outgoing momen-
ta, but suffer from the usual breakdown of primitive semi-
classical formulatinns for momenta close to values of the

radial momentum at the classical turning point of the
motion. Future work will be focused on attempts to ex-
tend this general procedure to uniformly valid forms of
the propagator.
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