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We describe strong-field effects in a class of collisional energy-transfer processes occurring among
atoms in a gas irradiated by a laser beam. The time evolution of the atomic system is evaluated by
solving a system of differential equations, and by using the Magnus-Light expansion of the scatter-
ing matrix. Results from the two methods are then compared. The resulting spectrum is shifted in
frequency towards the antistatic side, and the line shape becomes less asymmetric. All these
theoretical predictions are based on the assumption that the motion of the atoms during the col-
lision can be described by classical mechanics, with no appreciable change of the kinetic energy of

the atoms.

I. INTRODUCTION

The availability of tunable narrow-band laser sources,
emitting high peak power pulses in the visible region has
prompted, in the past decade, the study of laser-assisted
inelastic collisions of atoms or molecules in a gas. These
processes have been mainly studied in the absence of
reactive channels, and follow either path

A;+B;+nfiQ— A, +B,+(n — DAQ (1.1a)

or

A;+B;+nfiQ— A, +B,+(n + 1AQ, (1.1b)

depending whether the laser photon is absorbed (1.1a) or
emitted (1.1b). In (1.1) 4; and B, (4, and Bj) denote the
initial (final) states of atoms (or molecules) 4 and B, re-
spectively, and (1 is the frequency of the laser field. Pro-
cesses (1.1) include energy transfer,!~® charge transfer,®
or pair absorption.” Studies of reactive laser-induced col-
lisions have also been reported in the literature,® demon-
strating a potential interest they have for laser-assisted
chemical reactions.

Laser-induced collisional energy-transfer (LICET) pro-
cesses involve a second-order transition, induced by the
combined collisional and radiative interactions. Unlike
processes yielding collisional line broadening, in which
collisions just modify the spectroscopic properties of
atoms, the LICET processes can be viewed as radiative
transitions of the transient molecule (quasimolecule)
formed during the collision.

We are concerned here with the LICET process

A*+B+#Q—>A+B** (1.2)

where the asterisks denote excited or double excited
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states of the two atoms, and the laser frequency (1 is reso-
nant or quasiresonant with the interatomic transition fre-
quency Q,=[E(B**)—E(A*)]/#A. This process, pre-
dicted by Gudzenko and Yakovlenko in 1972,° and ob-
served for the first time by Harris and co-workers in
1977,'° has been extensively studied both theoretically
and experimentally. Transitions (1.2) are monitored by
recording the fluorescence from the excited state of atom
B at different laser detunings A=Q—,. The resulting
spectrum, peaked at A=0, is strongly asymmetric, with
the antistatic side falling off to zero very rapidly, and the
quasistatic side extending over a wide range of laser fre-
quencies.

In the first theoretical papers by Gudzenko and
Yakovlenko® and by Lisitza and Yakovlenko!! the main
properties of the spectrum were predicted: the width of
the line core, related to the inverse of the average col-
lision time; the cross section in the static wing, deter-
mined by the dominant R ~6 term in the multipole expan-
sion of the long-range interatomic potential; and the satu-
ration properties of the peak cross section in the strong-
field regime.

The first high-resolution measurements, performed by
Brechignac et al. in 1978-80,° revealed a discrepancy be-
tween theoretical and experimental spectral profiles in
the quasistatic wing: contrary to the predicted cross-
section behavior, decreasing to zero at increasing laser
detunings with a constant slope of L,(o ~|A[7!/?), they
found a different slope of 0.85. This discrepancy was ex-
plained in Refs. 12 and 13. In these papers it was shown
that, in certain cases, the original description® of the pro-
cess, based on a two-level model, is inadequate because of
the strong collisional interaction of the atoms. The
refined model included a third level and yielded a wing
falling off to zero with a double-slope behavior. Recent
measurements,'* have shown good agreement with these
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predictions, up to a laser detuning of 85 cm™ 1

Payne et al.'> have shown that a strong radiation field
does affect the spectral shape in its entirety: at increasing
field intensities, the spectrum becomes narrower and less
asymmetric, while its peak is displaced towards the anti-
static region as a consequence of the Stark dynamic shift
of atomic levels. However, in this work the collisional in-
teraction was treated to the lowest order in perturbation
theory.

Results for the high-intensity field regime have also
been reported by Geltman.!® In his paper, the use of a
first-order perturbative treatment in the atom field cou-
pling does not reveal the laser-induced shift of the peak
frequency.

Recent measurements performed on the lithium-
strontium system!” did not show any appreciable shift of
the peak frequency. Moreover, the full width at half-
maximum of the spectrum was found to increase at in-
creasing laser intensities. Both these results are in con-
trast with theoretical predictions in Ref. 15. The only
strong-field effect, predicted by existing theoretical mod-
els and experimentally observed, is the saturation effect of
the resonance cross section at increasing laser intensities.

These novel difficulties in the analysis of the strong-
field effects on the LICET experiment demand further in-
vestigation. The question is whether the main approxi-
mations which have been made in the theoretical models
discussed so far are capable of a neat explanation of the
LICET spectral profile under strong-field excitation.

We have therefore extended and fully exploited the
model developed in Refs. 12 and 13 to test whether its
predictions for the high-field regime fit well with experi-
mental results. We show that, if the absence of the peak-
frequency shift at high-intensity fields will be confirmed
by experiments, then LICET processes in this regime do
require a novel approach in which the translational de-
grees of freedom are included to allow for changes in the
kinetic energy of colliding atoms.

In the next section we discuss the model and the main
approximations on which it is based. Section III deals
with the spectral profiles for the LICET process obtained
by direct integration of the ensuing two- and three-level
systems. In Sec. IV other methods for obtaining the total
cross section for the process are discussed. Conclusions
in Sec. V end the paper.

II. THE LICET PROCESS

A typical configuration of atomic energy levels in a
LICET process is shown in Fig. 1. Other configurations
are possible as well, as shown in Ref. 18. The transition
frequencies reported in Fig. 1 are those for the europium
and strontium experiment.

Compound atomic states are used throughout this pa-
per. The states relevant to the process are

[1Y=la)B*),
2)=la*)IB) , 2.1
3)=la)B**) .

The atoms enter the LICET reaction in state |2), in
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FIG. 1. The configuration of atomic energy levels of europi-
um and strontium atoms in the LICET experiment. Transition

frequencies are expressed in cm ™.

which strontium is in the ground state 8 and europium is
in the excited state a@*. During the collision, a photon
from a laser field, tuned at the transition |2)—|3), is ab-
sorbed, and the europium excitation energy is transferred
to strontium. Then the atoms leave the LICET reaction
with europium in the ground state a and strontium in the
double excited state B**.

It should be noted that the collisional interaction be-
tween the two atoms—a dipole-dipole interaction for eu-
ropium and strontium-—does not couple the two states
|2) and |3) directly; thus transitions between these two
states would not be allowed, in the absence of a laser
field, even if the energy mismatch were vanishingly small.
It is the simultaneous presence of a laser field that makes
the reaction possible, with the photon providing the
necessary energy to grant energy conservation.

When the laser frequency is tuned at the interatomic
transition frequency w,; between states |2) and |3), the
process is energy conserving, so that the kinetic energy of
the colliding atoms remains unchanged during the col-
lision. The situation is different, however, when the laser
frequency is detuned from resonance. For the
configuration shown in Fig. 1, a red detuning of the laser
frequency can be compensated by the collisional shift in-
duced on the initial state |2) by the state |1), whose en-
ergy level lies nearby. Transitions in this case occur in-
stantaneously, when the frequency difference between the
state |2) (displaced by the collision) and the state |3)
(undisplaced) is matched by the laser frequency. Since
this process is not energy conserving, the missing energy
must be supplied by the translational degrees of freedom
of the atoms: we expect the atoms to be cooled after an
off-resonance transition.

By detuning the laser frequency to the opposite side,
the transition probability falls to zero sharply, since no
frequency matching occurs on this side of the LICET
spectrum.

All these features have been found experimentally, but
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they can also be drawn from a simple model that evalu-
ates the time evolution of states (2.1) during the collision.

This model assumes the following.

(i) The colliding atoms are massive enough to prevent
any change in their trajectories, due to elastic (resonant)
or inelastic (off resonant) processes.

(ii) The light field is constant during the collisional in-
teraction. This can be justified even for pulsed-laser radi-
ation, since the collision times are much shorter than the
laser pulse length.

(i) The rotating wave approximation is used in
describing the atom-field interaction.

(iv) The process involves only two colliding atoms at a
time. The transition probability of the collisional event
must then be averaged over all collisional parameters to
get the cross section at any given laser frequency.

(v) Magnetic degeneracies of the states involved in the
transition are ignored.

Under these assumptions, the internal degrees of free-
dom of the atoms are not coupled to the external (i.e.,
translational) degrees of freedom, and the quantum-
mechanical amplitudes of the internal states suffice to de-
scribe the time evolution of the physical system.

The amplitudes of states (2.1) evolve with time accord-
ing to
i, =wa;+ Va,+xa,e',
ig,=w,a,+Va, , (2.2a)
iay=wa;+yae Y,

or, equivalently, in the interaction picture,

. 1w, —w,)t H(Q—w,+tw )t

i, =Vaye ' ' +yase M

.. —ilo;—w,))t

iac,=Vae ' 7, (2.2b)
. —i(Q—wytot

id;=xa,e .

In (2.2), V represents the collisional interaction poten-
tial, which, for the current case, is a dipole-dipole term of
the form V=V,/R 3, with

R=(b>+v*?)' % 2.3)

As usual, b represents the impact parameter and v the
relative speed of the colliding atoms. It is apparent from
(2.2) that transitions from the initial state |2) to the final
state |3) occur via state |1): the latter state is coupled to
state |2) by the collisional interaction, and to state |3)
by the field.

In principle, integration of system (2.2) for a given set
of collisional parameters allows us to find the probability
of transition to the final state |3 ) starting from the initial
condition in which state |2) has population 1. However,
closed-form solutions of system (2.2) are not known, and
one must resort to approximation schemes or numerical
integration. In view of these difficulties, it is expedient to
exploit all means to reduce the system to a two-level
problem, which in any case will be much easier to in-
tegrate.

The substitution needed to eliminate one state would
depend on the problem at hand. In a LICET process in

which the energy of state |1) lies far enough from the en-
ergy of state |2), the intermediate state will participate
only virtually to the process, i.e., we expect its population
to be very low at any time during the collision. Then it
can be eliminated from the set in (2.2b) by means of the
substitution

Vaz o) —wyt Xas

i~ o
M o —ay) ¢ H(Q—w;+o;)

i(Q—wytot

(2.4)

This approximation is justified if the highest rate of
change of the amplitude of state |1) is provided by the
exponential factors; this in turn determines the condi-
tions under which (2.4) is valid:

' 1%4 a,
mzwﬁ»{;, o |’ 2.5)
|Q—wy+ o, > |— (2.6)
3

Moreover, the right-hand side (rhs) of Eq. (2.4) should
remain small at any time, for the intermediate state to be
a virtual state, which requires

V] < |oy—awl , (2.7a)

x| <<|Q—w;i+ao,l . (2.7b)

There are other situations where, although the separa-
tion of energy levels 1 and 2 (in the present configuration)
is large enough for the adiabatic conditions (2.5)—(2.6) to
be valid, the strength of the radiative or collisional cou-
pling is too large to satisfy (2.7). This would certainly be
the case for extremely large field strengths. But also in
the low-field case, the collisional interaction may be
strong enough to make (2.7a) not valid, as shown in Refs.
12 and 13. In this case we may exploit the adiabatic con-
dition (2.5) to transform states |1) and |2) into two other
states |1') and [2'), “dressed” by the collision, among
which direct transitions are unlikely to occur.

To this end, we transform the original basis of (2.2a) by
the matrix 7, namely

b=Ta, (2.8)
with
cos@ —sin@ O
T= |sin@ cosO 0 (2.9)

0 0 eiﬂt

The transformed vector b evolves with time according
to
db _ dT .._
i——=T AT 'b+i—=T b,

Yar tET Ydr

where A indicates the time-evolution matrix of the vector
of quantum-mechanical amplitudes in Eq. (2.2a).

We now choose 0 so that T 4 T~ ! does not contain
coupling terms among transformed states |1’) and [2').
This yields

(2.10)



(2.11)

(2.12a)

0
0 0 X cosf
W, = 0 0 X sinf
x cos@ x sinf 0

(2.12b)

The eigenvalues A; and A, represent the instantaneous en-
ergies of the transformed states |1’) and [2'):

w,tow

}»1:—22 S — (w0 P +4V2]2, (2.13a)
o, tow

Az=—22—1+%[(w2“w1)2+4V2]1/2 ) (2.13b)

These eigenvalues show the repulsion of the two states
during the collision. For the present configuration, A,
gets lower than o, and A, gets higher than w,. As a re-
sult, their separation grows at small interatomic distances
during the collision.

Nonadiabatic transitions among transformed states are
induced by the term (dT /dt)T ! in (2.10). We can ig-
nore them and set

—0@sin® —6cosb 0
d—{= 6cos® —6sind 0]
0 0 iQe'
00 0
=~ 0 0 0 , (2.14)
0 0 iQe'™

since |A,—A;| > |o,—®,| >>6], as a consequence of (2.5).
Neglecting the nonadiabatic transitions does not pose any
problem, as will be shown in the next section.

Under this approximation, the states [1) and |2) are
dressed by the collision, and no transitions occur among
them in the absence of the laser field. The latter thus
couples each of these states to the final state.

This is best seen if we pass to the interaction picture to
describe the time evolution of the transformed set of
states. We have

. (¢, —3)
zc1=)((cos0)el b4 c; ,

i¢, =)((si119)e”d527¢3)c3 , (2.15)
i¢;=x(cosfle ' * %, +x(sinde T,
with
t
¢1—¢3=f_ Mdt'— (03— Q)¢ , (2.16a)
t
$r—d3= [ Aydr'—(w;—Q)r . (2.16b)

As is apparent from (2.13a), |A,—(w;—)| never gets
smaller than |0, —(w;—Q)| during the collision, if the
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laser frequency £ is tuned at resonance or in the quasi-
static wing of the spectrum. Thus the phase (2.16a) never
gets stationary, and no crossing occurs between levels 1’
and 3. This allows us to perform an adiabatic elimination
of state |1), with the same technique used to get (2.4).
We require, however, that the amplitude ¢, remains
much smaller than 1. This restricts the range of values of
the atom-field coupling y that can be used within this ap-
proximation:
[A;—(0;— Q)] >>|x cosb)] . (2.17)

This treatment is therefore valid only for moderately
strong laser fields. It should be noted that, at large in-
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FIG. 2. The displacement of energy levels of the LICET
transition during the collision. In both graphs the line labeled
by A, represents the eigenvalue of the dressed state |2') [Eq.
(2.13a)], augmented by the photon frequency . The other
three lines represent the shifted frequency of the final state for
different field amplitudes. (a) resonance () =w;—w,), impact
parameter b=19 A. (b) quasistatic wing (A= —28 cm™Y), b=12

A. In both figures, field amplitudes are expressed in cm ™.
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teratomic separations, condition (2.17) is the same as
(2.7a).

After the elimination of state |1), the LICET process
can be described by a simple two-state system.

ic“z=)((sin(9)el(¢2‘d’3)c3 ,
2 2 i _
i, =250 4 yisinge e, @18)
03— Q—A

while the other (intermediate) state follows adiabatically
the final state

o X(cos(?)e'w‘aw
icy= i[?&l—(m3—Q)]c3 . (2.19)

The energy shift that appears in the equation for c; in
(2.18) is a mixed Stark and collisional shift. Since for the
present configuration w;— Q— A, is positive, the final lev-
el is pushed upwards, with a resulting shift of the reso-
nance peak towards the antistatic side of the spectrum.
As a consequence, the spectrum should have its max-
imum at laser frequencies larger than the interatomic
transition frequency w,s, in agreement with the results of
Ref. 15. In Figs. 2(a) and 2(b) the displacement of the en-
ergy levels of states [2') and |3) is plotted against time
during the collision.

The shift depends also on the interatomic separation:
since cosf decreases and A, —(w;— () increases when the
two atoms come closer, level crossing becomes sharper
for laser frequencies in the quasistatic wing, as shown in
Fig. 2(b). This explains why the quasistatic wing is
lessened in the strong-field regime and the spectrum be-
comes less asymmetric.

These results are confirmed by numerical integration of
the system of differential equations, as shown in the next
section.

III. NUMERICAL RESULTS

We have developed several FORTRAN programs to
check the various stages of approximations discussed in
the previous section. These programs used a Runge-
Kutta-Gill method for the numerical integration of
differential equations for the three- and two-state prob-
lems. Atomic transition frequencies were those for the
europium and strontium configuration, shown in Fig. 1.
The collisional interaction potential was the dipole-dipole
potential ¥ ="V, /R>, with

%V =2.17X10"% ergcm® . (3.1

All interatomic distances in the graphs to follow are
expressed in units of 10 8cm (A) and frequencies in
cm™!. The field amplitude is expressed in terms of the
Rabi frequency related to the strontium transition B*-
Bi*'

In Fig. 3 we show the probability of the final state of
the LICET transition as a function of time. The solid
lines have been obtained from the solution of the three-
state problem, Egs. (2.2b), while the dotted lines are ob-
tained from Egs. (2.15). In the latter equations, the terms
containing 6, which are responsible for nonadiabatic

6633

transitions between the two lower states (dressed by the
collisional interaction), have been eliminated. As expect-
ed, even under strong-field excitation, the adiabatic ap-
proximation is valid. We have evaluated several graphs
under different field amplitudes or frequencies, and im-
pact parameters. In all cases, inclusion of the nonadia-
batic transitions does not alter appreciably the transition
probability for the LICET process.

The two-level approximation [Egs. (2.18)], on the other
hand, is not as good when the laser frequency is tuned to
the blue (antistatic) side of the spectrum: for laser-field
intensities large enough, the condition (2.17) for the adia-
batic following of state |1') [Eq. (2.19)] becomes ques-
tionable, and a correct description of the LICET process
requires the inclusion of this state as a real, i.e., not virtu-
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FIG. 3. Effects of nonadiabatic transitions in the LICET pro-
cess. The population of the final state is plotted against time for
a single collisional process. The dotted lines are obtained by
neglecting nonadiabatic transitions in Egs. (2.2b). The solid
lines are obtained by integrating the full system. (a) b=25 A,
A=0 (resonance). (b) b=10A, A=—55cm™".
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al, state. This is seen from the two graphs of Fig. 4. In
the quasistatic wing, the two-level approximation [Fig.
4(a)] is acceptable, but on the opposite side [Fig. 4(b)], it
yields incorrect results.

To evaluate the spectrum around its peak (which in-
volves laser frequencies well outside the region of validity
for the two-level approximation), we were therefore
forced to use the three-level equations (2.15). Figure S
shows the plot of the spectrum at its peak, for several
values of the laser-field intensity. The cross section at a
given laser detuning A= —(w;—w,) and field amplitude
X was obtained by evaluating the transition probability
for collisions with varying impact parameters, and then
integrating over the impact parameter b,

o(8,x)=27 [ bP,(A,x)db . (3.2)
0.90 +
N
=
3
<
@
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FIG. 4. Comparison of three-level (solid lines) and two-level
(dotted lines) approximations. (a) quasistatic wing, A= —33
gmfl; (b) antistatic wing, A=+8 cm™'. In both graphs b=11
A.
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FIG. 5. The LICET spectrum near its peak for several values
of the laser field intensities: (a) y=2.65cm ™}, (b) y=53cm !,
(c)y=8cm ', (d)x=10.6cm !, (e) y=13.3cm .

The relative speed v was kept constant to its most likely
value 6.5X 10* cm's ! (corresponding to a temperature of
900 K, typical of these experiments).

The shift of the peak frequency, discussed in the previ-
ous section, is apparent from Fig. 5. The figure also
shows that, on the red side of the spectrum, increasing
laser intensity has the effect of reducing the transition
probability, as expected. The peak intensity is plotted
versus the laser intensity in Fig. 6. This graph shows the

10 -
°.
s 7] ,
Y
0 . R
0 1 2 3

1/ 1,

FIG. 6. The peak of the LICET spectrum plotted against the
intensity of the laser field. The intensity is measured relative to
the value at which saturation sets in, which in turn corresponds

to a Rabi frequency of 8 cm ™!
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saturation effect, which sets in when the field intensity
reac}]les a value corresponding to a Rabi frequency of 8
cm™ .

The quasistatic wing of the spectrum, on the other
hand, was evaluated by integrating the two-level system,
Egs. (2.18). We report in Figs. 7(a)-7(d) the wing of the
spectrum for different field amplitudes. The solid line in
these graphs is evaluated by minimizing the sum of quad-
ratic deviations from the formula

const

A ~
a(lah |AK (Al +0,— o))

(3.3)

by using the simplex algorithm.'®

The values of the parameters k and [/ found by this
method are reported in the figure captions. We see that
the double-slope behavior of the weak-field case is well
reproduced in Fig. 7(a), but loses significance when the
field amplitude grows.

We have also fitted the single-slope shape

const
|Al*

and the resulting values of k for different field amplitudes
are reported in Figs. 8(a)-8(d).

As discussed in the previous section, the cross section
of the LICET process does not increase linearly with the
field intensity, even in the wing. Moreover, its increase is
not uniform: in the near wing, the cross section grows
less than in the far wing, because saturation is reached
sooner. As a result, the line shape gets more and more
flat at higher field intensities. The four line shapes ob-
tained by numerical integration are collectively shown in
Fig. 9 on the same scale; these effects are evident in this
graph.

a(|A])~ , (3.4)
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FIG. 7. The wing of the LICET spectrum fitted by the
double-slope line shape [Eq. (3.3) in the text]. The values of the
parameters k and /, determined by the least-square-method de-
pend on the field amplitude. (a) y=2.65cm™', k=0.48, /=1.83;
(b) =53 cm™!, k=0.41, I=1.59; (c) y=8 cm™!, k=0.29,
1=131;(d) x=10.6 cm !, k=0.1, I=1.11.
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FIG. 8. The wing of the LICET spectrum fitted by the
single-slope line shape [Eq. (3.4) in the text]. The field ampli-
tudes in cases (a)-(d) are the same as in the corresponding
graphs of Fig. 7. The values of k are (a) k=0.89, (b) k=0.78, (c)
k=0.60, (d) k=0.38.

IV. THE MAGNUS APPROXIMATION

The numerical integration of the LICET equations can
be carried out by means of standard techniques, but does
not provide any physical insight into the behavior of the
spectral line shape, and, for high field intensities, it is
time consuming. A better alternative would be an ap-
proximation scheme to evaluate the final transition prob-
ability, to be thereafter integrated over the collisional pa-
rameters to get the cross section.
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00 t +
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FIG. 9. The four line shapes of Figs. 7 and 8, plotted on the
same scale. In the far wing, the cross section for y=13.3 cm™!
lies below the cross section for y=10.6 cm™".
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Standard perturbation theory is not applicable in this
case, since it yields inaccurate results when evaluated to
the first few orders, due to nonconservation of the total
population of the compound atomic states. Attempting
to evaluate the transition probability by means of the
Landau-Zener formula®® would not give satisfactory re-
sults, since it is known that this method may fail in cases
of strong coupling.?! Moreover, the Landau-Zener for-
mula applies only to transitions occurring at the level
crossings, thus leaving out the region of the spectrum
near its peak.

An approximate method of solution for a linear, first-
order system of differential equations such as the ones of
the LICET process is known under the name of Magnus-
Light expansion.’?* This method retains its validity in
both the resonant and off-resonant cases, and has the
added favorable feature of conserving the total popula-
tion of states. For the system of linear equations

4X _ g(oxn) (4.1)
dt
the Magnus-Light expansion reads?*
x(t)=exp[U(t,— 0 )]x(— ), 4.2)
with
Ult,— )= 3 UMt,— ), 4.3)
n=1
U, —w)=[" A(endr, (4.4)
U, —o)=2 " ar, [' dr[A(1),4(1)]. 4.5)

The nth term in this expansion would involve n integrals
of n-fold commutators of the evolution matrix 4, evalu-
ated at different times.

In our case, the matrix A4 is of the form

A=—iH , (4.6)
in which H is a Hermitian matrix [see Egs. (2.15) and
(2.18)]. The first-order Magnus-Light expansion then be-

comes
x(t)=exp

xX(—o), 4.7)

—if_' H(t')

which preserves the total population of the states,
pHEAR

To evaluate transition probabilities, we must choose a
state representation for which the matrix elements are in-
tegrable from — o to + «. We need therefore to trans-
form our equations in order to fulfill this requirement.

However, this transformation is not unique. For in-
stance, the two-level equations (2.18) could be
transformed either into the system
iX,=(Ay—w,)x, +x(sin@)exp[i (A—s)t]x; ,
(4.8)
2.2
iXy= Z)f(—c—;s—e—k,_s x3+x(sinf)exp[i (s —A)t]x, ,

with
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2

- X

= 4.9
s 0w (4.9a)
A=a)3—w2—ﬂ ’ (4.9b)
or into the system

ix,=x(sinf)exp(iy)x; ,

ix,=x(sin@)exp( —iy)x, , (4.10)
with
2.2
i X“cos“0
=\+Q—w;———. 4.11
1)[} 2 w3 0)3—0_)\1 ( )

Both (4.8) and (4.10) are eligible for the Magnus-Light
expansion, but they do yield quite different results. The
choice of the representation must therefore be made on
the basis of its aptness.

For the description of the quasistatic wing, we choose
to work with (4.10). This choice is suggested by the fact
that the transition probability evaluated by using the
Magnus-Light expansion of (4.10) goes into first-order
perturbation theory used in Refs. 12 and 13. In fact we
have, using (4.7),

o0 e
x(+ oo )=exp | —ip e-ir 0 X(—o), (4.12)
with
—i +ooo .
pe ’7’=Xf [sin6(2’)]exp(—iy)dt’ . (4.13)
Denoting by " the matrix
0 e
..I::' e —iy O ’ (414)
and using the expansion
2 3
—ipL—1 i 7 P~ Y 2 ...
e 'P-=1—ipl’ 2!_l_+l3!L+
=1cosp—iLsinp , (4.15)
where 1 represents the unit matrix, we find
x(t)=(cosp)x(— oo )—i(sin)pLx(— ) . (4.16)
Since at t = — o« the lower state is fully populated, the
vector of amplitudes is
1
X(—o0 )= K (4.17)

which, used in (4.16), yields for the probability of the final
level, at t = + o0, i.e., after the collision.

|x,|>=sin%p . (4.18)
At low values of y, this equation becomes
—w 2
;x3|2zp2z)(2‘f (sin@lexp(—ig)dt| ,  (4.19)
with
d=A+Q—0w;, (4.20)
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which has been used in Refs. 12 and 13 to derive the
cross section of the LICET process at low laser intensi-
ties.

Equation (4.18) introduces some improvement over Eq.
(4.19), but it does not cover the whole range of validity of
our model, expressed by (2.17). This is shown by the
graphs of Fig. 10. Carrying out the calculation for the
second-order Magnus-Light approximation, we find that
the final value of the amplitude vector, x(+ « ), is given
by

x(+ o )=exp[—i(pL+v&,)]x(— ), (4.21)

where &, is the Z component of the Pauli spin vector
operator, and v is given by

0 t
v=2x* [ "“dt, [ 7 dr,sin[6(t))]sin[6(r,)]
Xsin[9(z,)—y(¢,)] .

Since the exponent in (4.21) can be expressed in terms
of the scalar product

(4.22)
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FIG. 10. Comparison between the first-order Magnus-Light
approximation (dotted lines) and numerical integration (solid

pL+vé,=R-o , (4.23) , ) S
lines) in the two-level approximation. The graphs show the
with transition probability vs the impact parameter, with A=10.6
) cm ™! for all graphs. The two methods give the same results for
R=(pcosy,psiny,v) , (4.24) field amplitudes up to 5 cm ™.
we find, using an expansion similar to (4.15),
exp(—iR-0)=cos|R| —i%sianl
R R R
cos|R| —i—=sin|R| —i——+—% l|sin|R|
IR| IRl IR
e 4 y . . z .
—j————=|sin|R|  cos|R|+i+=rsin|R]|
IRl IR R|
[
which leads to the transition probability we find, to the lowest-order approximation,
c20 24 23172
(p=+v7) 5, W
|x3| =p2 20 : (4.26) —exp | —i [T _
317P P2 x(+ 0 )=exp lf—oc we s, dt |[x(—w). (4.29)

Equation (4.26) introduces a slight improvement over
Eq. (4.18), but still we cannot cover the whole range of
validity of our model. Use of higher-orders terms would
be prohibitive, however, since the calculation of multiple
integrals becomes soon more lengthy than the numerical
integration of the original Eqgs. (4.10).

To evaluate transition probabilities in the core of the
spectral line shape it is expedient to start the Magnus-
Light expansion from Egs. (4.8). Setting

8,=\—w,, (4.27a)
2.2
__XcosB
83 Q)3—Q-)\,1 s, (427b)
and
W (t)=x(sin@)exp[i(A—s)t] , (4.28)

Using the expansion (4.25), this equation yields for the
transition probability the expression

IxﬁE%sinzs : (4.30)
where

a—ip=[Wdr', 4.31)

n=1[(8,—8ydr", (4.32)
and

S=(a2+B+n)2 . (4.33)

It should be noted that, as stated earlier, Eq. (4.30) pro-
vides a different transition probability than Eq. (4.18).
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For instance, Eq. (4.30) does not allow for a total transfer
of population from the lower to the upper state (for
which we would have |x;|2=1), while Eq. (4.18) does.

The choice of the representation (4.8) leads to a formu-
la for the transition probability that can be readily inter-
preted: the transition probability depends on a’+p?
which is the square modulus of the Fourier transform of
x sinf evaluated at A—s. This in turn is the effective de-
tuning of the laser field from the LICET transition at
large interatomic distances. This formula is therefore ap-
propriate for cases in which no level crossing occurs, i.e.,
at (or near) resonance. On the contrary, Eq. (4.18) con-
tains the integral of sin@ exp( —i) which is rapidly oscil-
lating everywhere, except at those points in which the
phase ¥ is stationary. Thus, Eq. (4.18) is more appropri-
ate for evaluating transition probabilities in spectral re-
gions where leading terms come from level crossing.

Formula (4.30) can be even evaluated analytically for
the case of exact resonance A=s (when the shift s of the
final level is compensated by the laser detuning A), and
for large impact parameters b, for which the collisional
interaction V is small enough compared to |w,—o,|. We
find

, S
n=1[8,dt B kAP (4.34)
and
+o Wt 2XVo 1
a= [ I(L))(z—wll ool %7 (4.352)
B=0. (4.35b)

Averaging over the impact parameter b requires a sin-
gle integration to get the cross section at the resonance
peak.

The two-level approximation, however, is slightly inac-
curate near the central region of the spectrum, particu-
larly in the antistatic side of the line shape, and the
three-level approximation may be needed in some in-
stances. The Magnus-Light expansion can be carried out
for the three-level case, too, although we lose the simpli-
city brought in by the use of the Pauli o spin matrices.
We give here a few hints on how to evaluate the
Magnus-Light expansion in this case.

Equations (2.15) or their counterparts in the
Schrodinger representation are not suitable for this pur-
pose, since the matrix element that couples state |1') to
state |3) does not vanish at =+ c, due to our assump-
tion of a constant field amplitude y. )

We rewrite Egs. (2.10), omitting the O terms, in the
form

.db
l_dt_=(£°+£” b, (4.36)
with
o; 0 X
B,=10 o, 0 , (4.37a)

X 0 (03"(2

A. BAMBINI, M. MATERA, A. AGRESTI, AND M. BIANCONI 42
A —oy 0 x(cos6—1)
B, = 0 Ah—w,  xsinf , (4.37b)
x(cos6@—1) xsinf 0
and we transform b by means of
d=Ub, (4.38)
choosing the transformation matrix U such that
UBU™'=F,, (4.39)

with F, diagonal. The transformation matrix U has the
form

cos§ 0 sing
U= 0 1 0 , (4.40)
—siné 0 cosé

with £ constant. It should be noted that B, and its trans-
form F,=U B, U ~! vanish at ¢+ c0, as required.
The vector d then evolves with time according to

.dd
l'd—t =E0d+£cd .

(4.41)

By means of further transformations, we may either
pass to the interaction picture, in which the diagonal
terms are missing, or make the diagonal terms vanishing
just at t =1 o0, in a form that parallels Eqs. (4.8) for the
two-level problem. In the first case, we have to remove
the diagonal terms in both F, and F,, while in the second
case we have to remove just the constant parts of the di-
agonal terms in F;. Here, again, we have the ambiguity
in the choice of the equations to use, as discussed above.

We show here the final result for the second case only.
The vector d at t =+ o is expressed in terms of the vec-
tor d at t = — o by the relation

d(+)=Y lexp =i [ ""G(ndr |Yd(— ), @42

in which we have set

M0 o
y=|0 " o |, (4.43)
0 0 ™M
with
=(1)1+CL)3_Q
231 )
wtw;—Q 2 ) 12
- D) _CL)I(CO3—Q)+X N (4443)
=0, , (4.44b)
_(1)1+0)3"—Q
H3= D)
o, +o;—Q NhE
77 | Teles— )ty ,  (4.44¢)

and the matrix G given by
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G, =hcos’é—k sin2¢ ,
G,=-1 singe' "1 1"

G;=(hsin§ cosé +k 0052§)ei(“‘—“3“ ,

(4.45)
Gp=h,,
G, =1 cos§eiw2_p3)t ,
G,; =h;sin’+k sin2¢
ij=Gk*, ,
with
w1y
tanf=———
§ X
hy=A—o,
(4.46)
hzz)\«z_wz 5
k=x(cos6—1),
I=yxsinf .

It should be noted that the initial conditions for d are
the same as those for b, if the LICET process starts with
state |2) populated (direct LICET process), but, for the
inverse LICET process in which state |3) is initially pop-
ulated, they are different.

The first-order Magnus-Light expansion for the three-
level process involves three or five integrations of rapidly
oscillating functions and the numerical process of di-
agonalizing a 3X3 Hermitian matrix, but still calcula-
tions are faster than the numerical integration of the orig-
inal system. The second-order expansion, which involves
double integrations, is prohibitively longer and does not
provide, as for the case of the two-level system, any great

0015 0351
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FIG. 11. Comparison between the first-order Magnus-Light
approximation (dotted lines) and numerical integration (solid
lines) in the three-level approximation. The graphs show the
transition probability vs the impact parameter, with A=0.
Here, too, the two methods give diverging results as the field

amplitude grows over 5cm ™.

improvement over the first-order expansion.

In this work, we have tested all the formulas given in
this section and compared the results with those obtained
by numerical integrations. In Fig. 11 we show the plots
of the transition probabilities versus the impact parame-
ter b for several cases. As with the two-level problem,
the three-level Magnus expansion provides some im-
provement over first-order perturbation theory, but be-
comes soon unreliable for laser field amplitudes of the or-
derof 8 cm .

V. CONCLUSIONS

In this paper we have extended the model developed in
Refs. 12 and 13 to treat the effects of high-intensity laser
fields on the LICET spectrum. We have also discussed
several approximation formulas, based on the Magnus-
Light expansion, that may prove useful in obtaining
directly the cross section of the process, avoiding the nu-
merical integration of the two- or three-state systems of
differential equations.

The results discussed in this paper show that, in con-
trast with experimental findings, the LICET spectrum is
shifted in frequency, as an effect of the strong laser field,
towards the antistatic side. Moreover, the spectral line
shape tends to lose asymmetry, because the cross section
in the quasistatic wing is lowered by the presence of a
combined light and collisional shift that reduces the
effective time for level crossing. At high fields, the wing
of the quasistatic region loses the double-slope feature
that characterizes the low-field regime, and tends to be-
come more flat. The average slope passes from 0.85 at
low fields to 0.4 at high fields.

These results confirm that theoretical predictions,
based on the assumptions described in Sec. II, are in
conflict with existing experimental results.!” If the latter
will be confirmed, then the assumptions that are usually
done in the theoretical description of these processes
must be scrutinized with care. We outline here the possi-
ble weaknesses of the model.

(i) The interatomic, collisional potential does not affect
the atomic motion: the atoms do not deviate from a
straight trajectory and move with a constant velocity.
This assumption notably simplifies the treatment. But if
it fails, then we must consider that the interatomic poten-
tial does depend on the state in which the system is, in
view of the appreciable population the upper state gets
during the interaction. Thus, atomic trajectories cannot
be considered as classical trajectories any longer.

(ii) Magnetic degeneracies may play a role in the pro-
cess as well. Each magnetic sublevel has its own energy
shift during the collision, and frequency matching occurs
on a wider time interval, thus affecting the transition
cross section.

(iii) For close collisions, the spin-orbit energy splitting
in the europium atoms is of the same order as the col-
lisional potential. Thus, the J=7 and % states of the eu-
ropium might be involved in the transition process.

The achievement of an acceptable agreement between
theoretical and experimental results in this field is not
only an academic exercise. Because of their inherent
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feature of tunability, and the possibility of controlling the
process via laser intensities, the LICET processes (or oth-
er, related processes) might play a role as a tool for cool-
ing colliding atoms confined in a trap. The mechanism is
much more efficient than optical cooling obtained by
means of quasiresonant laser beams, since for each col-
lisional event followed by the absorption of a photon, we

A. BAMBINI, M. MATERA, A. AGRESTI, AND M. BIANCONI 42

can subtract an energy as large as 5—10 cm !, contrasted
to an energy of #kp /m =~3X 1072 cm ™! that can be sub-
tracted in each elementary process via optical cooling.
Selective cooling of the translational degrees of freedom,
on the other hand, might prove an efficient mechanism
for the enhancement of molecular reactions in the pres-
ence of a laser field.
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