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Photoionization cross sections and dynamic polarizabilities for the
lithium atom and positive ion using L basis sets and correlated wave functions
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The photoionization cross sections and dynamic polarizabilities for the lithium atom and its posi-
tive ion are calculated using a discrete basis set to represent both the bound and the continuum
states of these systems. Using this discrete-basis-set representation, we construct an approximation
to the complex dynamic polarizability from which both the photoionization cross section and the
frequency-dependent polarizability are extracted. The calculated results agree well with previous
theoretical calculations but differ with experimental results, in the case of the neutral atom. The
reason for the discrepancy observed among all the theoretical results and the experiments, in the
case of the lithium atom, can be established in terms of the sum-rule criterion. When examined un-
der this criterion, the experimental values furnish a total oscillator strength to the continuum states
that exceeds the limit imposed by the oscillator strength sum rule S(0), suggesting that the experi-
ments should be in error.

I. INTRODUCTION The dynamic polarizability is given by

In order to understand large number of important phe-
nomena, it is necessary to study photoionization cross
sections and dynamic polarizabilities. ' Therefore the
calculation of those properties has become an important
problem.

From the theoretical point of view, the main difficulty
in determining those properties resides in the need for the
continuum wave functions. To circumvent this problem
some methods have been proposed in the literature
that avoid the continuum wave functions by using a
discrete basis set (L ) to represent both the bound and
the continuum states of the system. As a consequence
these methods also avoid the need for explicit inclusion of
asymptotic boundary conditions. A further advantage of
using L basis sets to represent the continuum states is
that the complete methods commonly employed for cal-
culating bound states can be immediately transferred to
processes involving continuum states.

The alkali-metal atoms, Li and Na, provide an excel-
lent test for the method discussed briefly below, mainly
because none of the previous calculated cross sections,
for the neutral species, agree with the available experi-
mental results. For those relatively simple systems reli-
able wave functions can be constructed from which the
effects of electronic correlation and orbital relaxation on
the calculated properties can be well described. In the
present paper we examine the lithium atom and its posi-
tive ion. The sodium atom will be the subject of a future
publication.

II. METHOD

a(co)= f0
(e —co ) de,

with

coo„, fo„, and g(s) being the transition frequencies and
the oscillator strengths for the bound and continuum
transitions, respectively. Extending this definition to
complex frequencies leads to

a(z)= f (s —z ) de.

(4)

and since

+. ) + fon +p f g(E) d
itrg(co)

„~0 COO„CO I E, CO

as q~0, we obtain

The complex polarizability a(z) is analytical throughout
the complex plane except for an infinite number of poles
along the real axis and a branch cut in the photoioniza-
tion interval et ~Re(z) ( Oo, where et is the first ioniza-
tion threshold of the system. Since the cross section can
be written as'

The method has been described in detail in Refs. 10
and 14 and only a brief description will be presented here.

tr(co)= lim Im[ ( a+icons)]
4%67

g~O C
(5)

42 6608 1990 The American Physical Society



PHOTOIONIZATION CROSS SECTIONS AND DYNAMIC. . . 6609

and

a(co) = lim Re[ a( co+i')] . (6)

small values of X. Convergence of the Fade sequence is
also an indication of the quality of the discrete represen-
tation [Eq. (7)] to a(z). Pade type-II approximants were
used in all the calculations.

To make use of Eqs. (5.6), a(z) is first approximated by a
finite sum III. COMPUTATIONAL DETAILS

a(z)= On

COpn Z
—2 2

(7)

where fo„and coo„stand for the approximated oscillator
strengths and transition frequencies obtained from a
discrete-basis-set calculation. From Eq. (7) we calculate
a(z) at a number of different points in the complex plane.
The values of a(z) at these points are fitted by a Pade ap-
proximant, providing a representation of a(z) in the com-
plex plane. Using this representation we calculate a(z)
on the real axis where it equals a(co). The imaginary part
of a(z), on the real axis, thereby provides the cross sec-
tion through Eq. (5). Having the representation for a(z),
we can evaluate o(co) and a(co) at a very large number of
points with very little effort.

The uncertainty in choosing the basis set concerns
which continuum functions to include. We cannot op-
timize the basis set as we do for bound-state calculations.
Instead, we want an expansion leading to a good descrip-
tion of (at least) the region of the continuum spectra most
involved in the process. As shown in Ref. 14 a basis-set
criterion can be established once we recognize that a(z) is
a Stieltjes series' and therefore can be written as

a(z)= g bk( —z)",
k=0

with bk being the moments of a given distribution, p(u),

b»= J» dp(»») . (9)
p

It can be shown that the moments bk are the moments of
the distribution of oscillator strengths and that they are
equal to

fon g(e)ds
k ~ k

n~p Npn I CO

(10)

From Eq. (10) we identify the moments of the distribu-
tion of oscillators strengths with the "sum rules" and
from this equality we obtain the desired criterion: the
basis set is to be chosen so as to generate a discrete distri-
bution of oscillator strengths capable of reproducing the
moments (sum rules) of the complete distribution of oscil-
lator strengths. Once this is achieved, and knowing from
the theory of moments' that a given distribution can be
reconstructed once its moments are known, we can say
that the finite sum [Eq. (7)] furnishes a good representa-
tion of a(z).

The crucial point in the process of calculating the cross
sections is the analytical continuation procedure. Once
more, the fact that a(z) is a Stieltjes series provides a clue
on how to proceed. For this type of series a sequence of
[N+J/N] Pade approximants (with J)—1) will con-
verge, as N goes to infinity, to the function a(z) in the
cut. ' Of course, we hope to achieve convergence with

where (t 1, , P2, $2, (t2, and $2 represent the five natu-

ral orbitals used to describe the 1s lithium pair. A simi-
lar wave function, omitting the P2, orbital in the Slater
determinants, was used to describe the Li+ species:

4('S)= c, p, +cz p2 I

+c ( l(t' I
+ l(t' I+ lg I

) .

As an approximation to the n P continuum states of
the lithium atom, we solved for the wave functions:

and similarly, for the continuum states of Li+,

4„('P)=A(P, ,(()„) . (14)

The shape of the P,, orbital for the Li+ was found to be
almost identical to the P&, of the neutral atom, indicating
that relaxation effects are negligible. The coeScients c;
of the multiconfigurational wave functions (11) and (12)
are shown in Table I.

The final wave functions were obtained from
configuration-interaction (CI) calculations. For the
ground state of the lithium atom we allowed all the possi-
ble excitations (single, double, and triple) among the nat-
ural orbitals, while for the continuum states we allowed
single and double excitations in the space of the natural
orbitals plus one electron in one of the np orbitals
representing the continuum. Similarly, for the Li+ sys-
tem, the ground-state CI wave function includes all single
+ double excited configurations constructed from the
natural orbitals, while for the continuum states we al-
lowed single excitations in the space of the natural orbit-
als plus one electron in the continuum np orbitals.
These CI wave functions were then used to evaluate the

TABLE I. CoeScients of the multiconfigurational wave func-
tions for Li [Eq. (11)]and Li+ [Eq. (12)].

Li Li+

0.998 575
—0.034040
—0.023 731

0.998 483
—0.036 683
—0.023 703

The ground state of the lithium atom was described by
the five-term multiconfiguration (MC) self-consistent-field
(SCF) wave function:

q'('S') = c
1

0', ,4~, +—c21&,
'

+c3 ( I (t',,— 0 2., I
+

I 0 '„- (( 2g I
+

I
@',,—'I))2, I )
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TABLE II. Dependence of the spectra of the lithium atom upon basis set. fp„ is the dipole length
oscillator strength and wo„ the transition energy (eV).

[10s/1 Ip;P = 1/1.5]
fo. won

[10s/10p;P = 1/1.75]
fo. Won

[10s/9p;P = 1.5],~,
'

fon ~on

1

2
3
4
5

6
7
8

9
10
11

0.7856
0.0042
0.0049
0.0042
0.0078
0.0159
0.0313
0.0492
0.0670
0.0449
0.0005

1.873
3.827
4.507
4.859
5.324
6.178
7.810

11.182
19.694
49.836

146.941

0.7911
0.0036
0.0036
0.0023
0.0038
0.0115
0.0289
0.0504
0.0701
0.0460

1.881
3.830
4.508
4.821
5.067
5.649
7.103

10.293
18.646
49.012

0.7897
0.0038
0.0036
0.0037
0.0079
0.0157
0.0356
0.0765
0.0727

1.876
3.827
4.507
4.858
5.320
6.197
7.904

13.061
35.554

[ ],~, derives from a basis set optimized for the P state of lithium (see text).

transition frequencies and oscillator strengths for the
various n P~ S and n 'P~'S transitions for the Li and
Li+, respectively. The spectra were used to compute the
sum rules and the approximated representations for a(z)
[Eq. (7)].

Most of the calculations have been carried out using
the Huzinga [9s/6s] expansion' of the ls orbital of the
lithium atom plus the (Sp) expansion of the 2p orbitals of
the boron atom. Another set of calculations has been
performed using a (5p) expansion of the 2p orbital for the
P state of the lithium atom. ' To these basis sets we

added diffuse s and p basis functions to represent the con-
tinuum states. The last basis set has been designated

[ ],„,(Table II).
It is important in this type of study to have a systemat-

ic way of varying both the number of basis functions and
the range of exponents of the basis sets. We accom-
plished that by considering each member of the diffuse s

and p basis sets to have orbital exponents as

that is, each orbital exponent being the geometrical factor
p times the preceding exponent. Different geometrical
factors p were used, with the exponents of the p diffuse
functions covering approximately the range 0.02-0.004,
in order to verify the inhuence of the basis set on the 6nal
results. The p, factor was taken' ' equal to 1/1.5

In Table II we show the spectra, obtained for the lithi-
um atom, resulting from three different basis sets cover-
ing the same range of exponents. It is clear from the ex-
amination of the Table II that the spectra are very similar
and should therefore produce comparable sum rules.
Table III shows that this is indeed the case but also that
all the spectra satisfy the sum-rule criterion. This same
behavior has been observed for the case of the Li+ sys-

TABLE III. Sum rules dependence on the basis sets used for the lithium atom. Sum rules are com-
puted in the dipole length approximation.

Basis sets

[10s/1 1p;P= 1/1.5]
[10s /10p;P= 1/1.75]
[10s/9p;P= 1/1.5], ,
Other results

Bounds

S(—4)

35 030
34 675
34 985
35 038'

S( —3)

2416
2401
2416
2385'

S( —2)

167.531
167.245
167.877
163.9'
164.3'
163 7
164.0'
164.0+3.4

S( —1)

11.868
11.952
11.970
12.14"
11.53'

~ 12.8+0.6~

S(0)

1.005
1.011
1.009

1h

'Reference 43.
Reference 44.

'Reference 45.
Reference 46.

'Reference 47.
'Reference 42.
'S ( —1) &S(0)S( —2).
"Only excitations from the 2s orbital have been considered.
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TABLE IV. Largest basis set used with P=P=1/1. 5. Ex-
ponents above the solid line are contracted together. Exponents
below the dotted lines are considered as diffuse functions (and
depend on the choice of P).

S exponents

921 ~ 1710
138.7300
31.9415
9.3432

3.1579
0.4446
1.1568

0.0766

0.0286
0.0191
0.0127
0.0085
0.0057

P exponents

11.3413
2.4360
0.6836
0.2134
0.0701

0.0467
0.0208
0.0092
0.0138
0.0092
0.0062
0.0041

tern. Consequently one expects that similar results of
cross sections and dynamic polarizabilities will arise from
calculations using any of those basis sets. This is exactly
what has been observed but for the purpose of future dis-
cussion we select the results obtained with the
[10s/10p, P=1.5] basis set shown in Table IV because it
produces the smoothest spectrum covering a larger range
of the continuum spectra. For the same reasons we
choose the [10s/10p, P=1/1.75] basis set in the discus-
sion of the Li+ system. Table V shows the sum rules ob-
tained with these basis sets.

The quality of the wave functions describing the
ground states of lithium and lithium iona [Eqs. (11) and
(12)], and also the ones describing the first discrete excit-
ed states, can be assessed from calculations of properties
like ionization potentials, transition energies, and intensi-
ties. Table VI shows our results compared to some more
elaborate calculations. From Table VI it is clear that the
wave functions used, although structurally simple, are
quite accurate for the present purposes.

IV. RESULTS AND DISCUSSION

A. Lithium atom

The first theoretical predictions about the lithium pho-
toionization cross section has been made as early as 1929,
by Hargreaves and Trumpy. ' Much later, experiments
conducted by Tunsted confirmed those predictions that
the cross sections should exhibit a maximum value of
about 2.4 Mb at a photon energy very close to the photo-
ionization threshold (2200 A). On the other hand, more
elaborate calculations, performed by Stewart and also
by Burgess and Seaton, indicated a much lower max-
imum value (1.16—1.4 Mb) at a higher photon energy
(1800 A). The experimental results of Tunstead have
been corrected " and extended to the vacuum uv
region ' ' by Marr, using new data for the vapor pres-
sure of the atomic lithium. Marr's experimental results
showed a much better agreement with the calculations of
Stewart and Burgess and Seaton, although the experi-
mental maximum cross section still remained somewhat
larger than the theoretical predictions. The latest experi-
mental results were obtained by Hudson and Carter,
and covered the region from 600 to 2300 A. These au-
thors obtained a maximum cross section of 1.86 Mb at a
photon energy of 7.34 eV and these results are the ones
used in literature as the standard for comparison pur-
poses.

In the last 20 years several theoretical calculations, us-
ing various techniques, have appeared in the literature.
They all predict the position of the maximum cross sec-
tion very close to the photon energy value obtained by
Hudson and Carter. On the other hand, all the calcula-
tions disagree with the experiments on the maximum
value of the cross section. Matase and La Bahan, using
the method of polarized orbitals, obtained a value of 1.48
Mb for 0. ,„;Chang and Poe, using the many-body per-
turbation theory (MBPT) approach, obtained 1.68 Mb;
Amusia et al. , using the random-phase approximation
with exchange (RPAE), obtained 1.6 Mb and, more re-
cently, Serrao obtained a maximum cross section of
1.72 Mb. Besides that the theoretical photoionization
curves fall off faster than the experimental curve of Hud-
son and Carter.

TABLE V. Sum rules with selected basis sets. Sum rules are computed in the dipole length approxi-
mation.

Basis sets

Lithium atom
[10s/10p; P= 1/1.5]

Lithium ion
[10s /10p;P= 1/1.75]

Bounds
Li
Li+

S( —4)

35 030

0.0253

S( —3)

2413

0.0674

S( —2)

167.254

0.188

164.0+3.4
0.195'

S( —1)

11.874

0.572

~ 12.8+0.6
~ 0.624b

S(0)

1.001

1.989

'Reference 41.
See footnote (g) on Table III.
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TABLE VI. Ground-state energy, first ionization potential, transition energy, and intensity for the
first discrete dipole allowed transition for lithium and lithium ion. Ground-state energies (GSE) are in
hartrees, ionization potentials (IP), and transition energies (w,„) are in eV, and fp„ is in the dipole
length approximation.

Calculation GSE IP On on

HF
MCSFC
MCSCF+ CI
James and Coolidge
Weiss'
Expt.

Lithium atom'
—7.423 964 5.104
—7.462 950 5.308
—7.464 106 5.338
—7.47608
—7.477 10

5.392
Lithium Ion'

1.873

1.848'

0.7856

0.753
0 753'

HF
MCSCF
MCSCF+ CI
Sabeli and Hinze
Weiss
Expt.

—7.2364
—7.267 881
—7.267 881
—7.279 91
—7.2781

75.383

75.619"

63.658

62.254"

0.4537

'P= I/1. 5. wp and fp„ for the 2s~2p transition.
Reference 48.

'Reference 49.
4Reference 50.
'Reference 31.
P= 1/1.75. wp„and fp„ for the ls~2p transition.
~Reference 51.
"Reference 41.

df2, k =9.10728X10 o(s)de . (15)

of Hudson and Carter.
The fact that calculations using different techniques ex-

hibit a fair agreement among themselves but consistently
give rise to lower cross sections than experimentally ob-
served motivated us not only to reexamine the problem
from the theoretical point of view but also to examine the
experimental results in the light of the sum-rule criterion.

Using the method described in Sec. II and the wave
functions from Sec. III, we computed photoionization
cross section and dynamic polarizabilities.

Figure 1 shows the results of three distinct analytical
continuations' ' compared to the experimental results
of Hudson and Carter. The figure clearly indicates the
convergence of the present calculations, but also, in
agreement with the previous calculations, a lower value
for o. ,„and a faster falloff for the photoionization cross
section when compared to the experiments.

At this point it would be appropriate to test the accu-
racy of the experimental results. Using the sum-rule cri-
terion and the experimental values of the oscillator
strength for the 2s ~np discrete transitions, one can cal-
culate how much intensity is left to the continuum transi-
tions, 2s ~kp. Since the integrated photoionization cross
section is proportional to the sum of the oscillator
strengths for the transitions to the continuum, one could
try to extract this number from the experimental curve
and compare it to its value as predicted by the sum rule
&(0).

Using Eq. (4) and expressing the photoionization cross
section in Mb and the energy in eV we obtain

From the experimental results of Hudson and Carter,
an analytical expression for cr(e) was derived in the form
of a polynomial in (e —el ) times a decreasing exponential
in order to assure the correct asymptotic behavior:

X „—a(~ ~1)cr(e)= g c„(e—ei)"e
n=1

(16)

where el is the first ionization threshold and c„and a are
adjustable parameters. The best fitting was achieved with

0.50
5.00

I

800
I

II.OO

Energy (eV)

1

14.00 IT.OO

FIG. 1. The dependence of the calculated Li photoionization
cross section on diferent analytical continuations: ( ) Fade
[4/5]: (. . . ) Pade [3/4]; ( ———) Pade [2/3]. The dots
represent experimental points (Ref. 26).
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0.=0.185, n=5, and the resulting cross section is shown
in Fig. 2. Equations (15) and (16) furnished an integrated
oscillator strength equal to 0.2667. From the S(0) sum
rule the total oscillator strength for the transitions from
the 2s electron to all the allowed bound and continuum
states must be equal to 1. Since the contribution to S(0)
from the discrete transitions, known experimentally, ' is
equal to 0.7685, the total integrated oscillator strength
for the transitions to the continuum states, g(e), must
have a maximum value of 0.2315, which is 1ower than the
value extracted from the Hudson and Carter experi-
ments. Also, a value of g(e) higher than the limit im-
posed by S(0) is obtained from the Hudson and Carter
data even if we stop the integration at the last experimen-
tal point. It is interesting to notice that even if we con-
sidered a single sharp transition, at the energy corre-
sponding to the maximum value of the cross section, and
carrying all the oscillator strength available to the contin-
uum states, we should not get a cross section as large as
the maximum cross section obtained by Hudson and Car-
ter. Therefore the sum-rule criterion indicates that the
experiments should be in error and that the maximum
value of the cross section should be lower than the one
determined experimentally.

For the experiments to satisfy the sum-rule criterion,
we renormalized the Hudson and Carter results such
that their integrated oscillator strength was given by the
value of g(e) above. Figure 3 shows the results of the
present calculations compared to other theoretical results
and the renormalized experimental data. A much better
agreement is now observed, although the experimental
curve still exhibits a slower falloff.

The presence of lithium dimer in the experimental
beam, as recognized by Hudson and Carter, is most cer-
tainly the reason for the discrepancies observed between
the experiment and all the theoretical results. Prelimi-
nary calculations indicate a quite large ( —5 Mb) photo-
ionization cross section for the lithium dimer at a thresh-
old energy practically equal to the one for the atomic
case. Based on these preliminary data the presence of
10%%uo of the dimer in the experiment should suffice to ex-

2.00

c &.50—

0.50
5.00

I

8. 00
I

11.00

Energy (eV)

I

14.00 1 7.00

FIG. 3. Comparison of theoretical and experimental photo-
ionization cross sections for lithium atom. Present results in di-
pole length form (solid line) and dipole velocity form (dashed
line). Experimental points (~ ) are the renormalized results of
Hudson and Carter (Ref. 26); (0) Ref. 29; (Cl) Ref. 28; (6) Ref.
30; (+ ) Ref. 28; ('7) Ref. 27.

B. Lithium positive ion

The cross section for the photoionization of the Ii shell
of the neutral atom has been measured by Baker and
Tomboulian and more recently by Mehlman, Cooper,

plain the larger values of cross section obtained by Hud-
son and Carter.

Several calculations of the dynamic polarizability of
the lithium atom have been published, the most so-
phisticated one by Muszynka et al. , who used an 85-
term, explicitly correlated, variational wave function.
Figure 4 shows our results for the dynamic polarizability,
in the normal dispersion region, compared to the
Muszynka et al. calculations. The excellent agreement
between the two calculations is another indication of the
good quality of the discrete representation [Eq. (7)] to
a(z)

460.00

360.00—

o 0667
8 260 00—

0,000
I

18.75
I

32.50

Energy {eV)

I

46. 25
160 00

I

0.00
I

0.45
I

0.90

Energy (eV)

I

1.35 180

FIG. 2. The best fitting (see text) of the experimental (Ref.
26) photoionization cross section of lithium atom.

FIG. 4. Theoretical dynamic polarizabilities: solid line,

present results; (E ) Ref. 36.
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and Soloman. Although these results refer to the neu-
tral species, they are usually compared to the theoretical
calculations on the positive ion, following the suggestion
by Bell and Kingston that due to the large difference in
the binding energy of the ls electron relative to the 2s
electron, the inner-shell photoionization cross section
should not be perturbed by the presence of the 2s elec-
tron.

The first theoretical calculation of the photoionization
cross section for the positive lithium ion was carried out
by Bell and Kingston. Their results showed qualitative

agreement with the available experiments but predicted
a higher value of O. ,„and a much larger ionization
threshold than observed experimentally. Bell and
Kingston attributed the large discrepancy to the fact that
Baker and Tomboulian have used a film of metallic lithi-
um to perform the experiments. The strong absorption
(1.5 Mb), observed by Baker and Tomboulian at energies
below the 1s ionization threshold of the lithium vapor
was pointed out by Bell and Kingston as an indication of
the effect of the state of aggregation of the lithium on the
photoionization cross section. Thus the proper compar-
ison should be made between the theoretical calculations
and experiments performed with lithium vapor.

Amusia et al. , using the RPAE approach, calculated
the photoionization cross section for the positive ion and
obtained excellent agreement with the results of Bell and
Kingston. The agreement between the two theoretical
calculations gives strong support to the observations of
Bell and Kingston about the influence of the state of ag-
gregation of lithium on the value of the cross section.

Further evidence in favor of Bell and Kingston's inter-
pretation has been provided by the experiments of Mehl-
man, Cooper, and Soloman and the recent calculation
of Daskan and Ghosh. Mehlman, Cooper, and Solo-
rnan measured absolute photoionization cross section
for the K shell of the lithium vapor and found very good

0. 90

0.60—

C3
IV

o
CL

0.50—

0.00
0.00

I

15. 00
I

50.00

Energy (eV)

I

45.00 60.00

FIG. 6. Theoretical dynamic polarizabilities. Solid line,
present results; (0 ) and (6 ), results by Chung (Ref. 41).

agreement with the previous theoretical calculations
and also with the recent theoretical results of Daskan and
Ghosh. ~

Figure 5 shows our results obtained with two different
analytical continuations compared to the experiments of
Mehlrnan, Cooper, and Soloman and other theoretical
calculation. As in the case of the neutral atom, our cal-
culation exhibits excellent convergence and also very
good agreement with the available theoretical and the va-
por phase experimental results.

The dynamic polarizability is shown in Fig. 6 together
with the results of a much more sophisticated treatment
by Chung, ' who used a 52-term Hylleraas-type wave
function in a variational-perturbation calculation. Once
more, the excellent agreement between the two results is
a good indication of the validity of the discretization pro-
cedure implied in Eq. (7).

V. CONCLUSIONS

I
44.00 97.00

E ne-r g y (P()

I
104.00 119.00

The results obtained allow us to conclude that a
discrete-basis-set expansion can be effectively used to
represent the continuum wave functions. This "discreti-
zation" of the continuum, together with techniques of
analytical continuation, can be efficiently used to calcu-
late cross sections for photoionization once an adequate
basis set is chosen.

Besides that, the sum rules can be used not only as a
criterion to select the basis sets representing the continu-
um states but also as a method to assess the quality of the
experimental results. As applied to the neutral lithium
atom, the sum-rule criterion strongly suggests that the
experiments should be reviewed.

ACKNOWLEDGMENTS

FIG. 5. Comparison of theoretical and experimental photo-
ionization cross sections for Li+. Present results in dipole
length form (solid line) and dipole velocity form (dashed line).
Experimental points ( ) of Mehlman, Cooper, and Soloman
(Ref. 38};{6 ) Ref. 39; {o ) Ref. 40.

The authors acknowledge Conselho Nacional de
Desenvolvirnento Cientitifico e Tecnologico and Finan-
ciadora de Estudos e Projetos for financial support and
Laboratorio de Computaqao Cientifica for the computa-
tional facilities.



42 PHOTOIONIZATION CROSS SECTIONS AND DYNAMIC . . ~ 6615

S. A. Korff and G. Breit, Rev. Mod. Phys. 4, 471 (1932).
~R. Sorber, Phys. Rev. 41, 489 (1932}.
sI. L. Fablensky, Molecular Scattering of Light (Plenum, New

York, 1968).
4H. B.G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
5G. E. Hunt, Annu. Rev. Earth Planet. Sci. 11,415 (1983).
A. Bienenstock and J. Winik, Phys. Today 36, 48 (1983).

7W. P. Reinhard, Comput. Phys. Commun. 17, 1 (1979).
P. W. Langhoff, in Electron-Molecule and Photon-Molecule Col-

lisions, edited by T. Rescigno, V. McKoy, and B. Schneider
(Plenum, New York, 1979), and references therein.

P. W. Langhoff, C. T. Corcoran, J. S. Sims, F. Weinhold, and
R. M. Glover, Phys. Rev. A 14, 1042 (1976).
M. A. C. Nascimento and W. A. Goddard III, Phys. Rev. A
16, 1559 (1977).
C. W. McCurdy, Jr., T. H. Rescigno, D. L. Yeager, and V.
McKoy, in Methods of Electronic Structure Theory, edited by
H. Schaeffer III (Plenum, New York, 1979), Vol. 3, p. 339.

' L. A. Collins and B. I. Schneider, Phys. Rev. A 29, 1695
(1984).

~R. R. Lucchese and V. McKoy, Phys. Rev. A 24, 770 (1981).
' M. A. C. Nascimento, J. Mol. Struct. 120, 227 (1985).
' See, for instance, A. C. G. Mitchell and M. W. Zemansky,

Resonance Radiation and Excited Atoms (Cambridge Univer-
sity Press, New York, 1971).

'sG. A. Baker, Jr., Essentials of Pade Approximants (Academic,
New York, 1975); Adv. Theor. Phys. 1, 1 (1965).
N. I. Akhiezer, The Classical Moment Problem (Oliver and
Body, London, 1965); J. A. Shoat and J. D. Tamarkin, The
Problem of Moments (American Mathematical Society, New
York, 1943).
S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

' M. A. C. Nascimento (unpublished).
J. Hargreaves, Proc. Cambridge Philos. Soc. 25, 75 (1929).
B.Trumpy, Z. Phys. 47, 804 (1928).
J.Tunstead, Proc. Phys. Soc. London Ser. A 66, 304 (1953).
A. L. Stewart, Proc. Phys. Soc. London Ser. A 67, 917 (1954).
A. Burgess and M. J. Seaton, Mon. Not. R. Astron. Soc. 120,
121 (1960).

(a) G. V. Marr, Proc. Phys. Soc. London 81, 9 (1963); (b) G. V.
Marr, Photoionization Process in Gases (Academic, London,
1967).

R. D. Hudson and V. L. Carter, J. Opt. Soc. Am. 57, 651

{1967).
J.J. Matase and R. W. La Bahan, Phys. Rev. 188, 17 (1969).
T. N. Chang and R. T. Poe, Phys. Rev. A 11, 191 (1975).
M. Y. Amusia, N. A. Cheepkov, Z. Djzivanovic, and V. Rado-
jevic, Phys. Rev. A 13, 1466 {1976).
J. M. P. Serrho, J. Phys, B 15, 2009 (1982).
G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data 5, 3
(1976).
E. Hollauer and M. A. C. Nascimento (unpublished).
A. F. Shestakov, S. V. Kchristenko, and S. I. Vetchinkin, Opt.
Spektrosk. 33, 413 (1972) [Opt. Spectrosc. (USSR) 33, 223
(1972)].

s4R. K. Moitra and P. K. Mukheijer, Int. J. Quantum Chem. 6,
211 (1972).
N. L. Manakov and V. D. Ousiannikov, J. Phys. B 10, 569
(1977).
J. Muszynska, D. Papierowska, J. Pipin, and W. Woznicki,
Int. J. Quantum Chem. 22, 1153 (1982).
D. J. Baker, Jr., and D. H. Tomboulian, Phys. Rev. 128, 677
(1962).
G. Mehlman, J. W. Coooper, and E. B. So1oman, Phys. Rev.
A 25, 2113 (1962}.
K. L. Bell and A. E. Kingston, Proc. Phys. Soc. London 90,
337 (1967)~

~M. Dasken and A. S. Gosh, Phys. Rev. A 29, 2251 (1984).
K. T. Chung, Phys. Rev. A 4, 7 (1971).
R. W. Molof, H. L. Schwartz, T. M. Miller, and B. Bederson,
Phys. Rev. A 10, 1131 {1974).
G. D. Zeiss and W. J. Meath, Mol. Phys. 33, 1155 (1977).

~G. D. Zeiss, W. J. Meath, J. C. F. MacDonald, and D. J.
Dawson, Can. J. Phys. 55, 2080 (1977).

45F. Meader and W. Kutzelnigg, Chem. Phys. 42, 95 (1979).
H. J. Werner and W. Meyer, Phys. Rev. A 13, 13 {1976};W.
Muller, J. Flesh, and W. Meyer, J. Chem. Phys. 80, 3297
(1984).

47G. Lamm and A. Szabo, J. Chem. Phys. 72, 3354 (1980).
P. James and W. Coolidge, Phys. Rev. 49, 688 (1936).
A. Weiss, Phys. Rev. 122, 1826 (1961);Astrophys. J. 138, 1262
(1963).
C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand (U.S.)
Circ. No. 467 (U.S. GPO, Washington, D.C., 1949).
N. Sabeli and J. Hinze, J. Chem. Phys. 50, 684 (1969).


