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We have solved the collisional-radiative equations for atomic hydrogen and hydrogenlike ions (of
nuclear charges 2 and 26) in a plasma and derived their excited-state populations for a wide range of
plasma temperatures and densities. The populations of the higher-lying levels are well described by

the Saha-Boltzmann equation. We refer to such plasmas as being in partial local thermodynamic

equilibrium (LTE), and it is the purpose of this paper to present expressions by which it is possible
to predict the lowest principal quantum number that meets the criterion of being within 10% of its
Saha-Boltzmann value. We treat the ionizing plasmas, the recombining plasmas, and the plasmas in

ionization balance as three separate cases. These criteria are then extended to the ground state to
cover plasmas in complete LTE. Finally we discuss briefly the effect of opacity on these results and

the extent to which they may be used for non-hydrogen-like systems. Throughout the paper care is

taken to present physical pictures to explain the numerical results and comparisons are made with

LTE criteria derived using more qualitative arguments by other authors.

I. INTRODUCTION

The concept of local thermodynamic equilibrium
(LTE) has been widely used to simplify the interpretation
of spectral line intensities from laboratory and some as-
trophysical plasmas. Thus it has been possible to develop
spectroscopic methods for the determination of electron
temperature T, and density n, . It is also important in ex-
perimental atomic physics, e.g., in the determination of
atomic transition probability from an observation of the
line intensity. Thus, there are many circumstances where
it is important to have rather precise criteria to identify
the plasma conditions under which it is safe to assume
LTE in order to carry out a successful analysis.

The standard definition of LTE i.s that the population
density of quantum level p should be described by the
Saha-Boltzmann equation, viz. ,

n»(p)=[n(g)] n,+ g(p)
2[g(g)]+ 2mmkT,

3/2

exp
kT,

= [n (g)]+n, Z(p),

where nsB(p) and g(p) are the Saha-Boltzmann popula-
tion density and the statistical weight, respectively, of
level p, [n(g)]+ and [g(g)]+ are the population density
and the statistical weight, respectively, of the ground
state g of the ion having charge greater than that of level

p by 1, X(p) is the ionization potential of level p, k is
Boltzrnann's constant, and the other symbols have their
usual meanings. We will refer to Z(p) as the Saha-
Boltzrnann coefficient and define complete LTE as the sit-
uation where the populations of all the levels of the atom
or ion are described by Eq. (1).

q (&p} q (&p)

For p much larger than 1 or for high temperatures, the
dominant collision processes are excitation, and Eq. (2) is
approximated to

n, )10 g A(pq)
q (&p)

C(p, q)n, .

q (&s»
(3)

Relation (3) is numerically given as

It is also useful to use the concept of partial LTE
where only a limited range of levels can be described by
the Saha-Boltzmann equation (1). It is well known from
the theory of collisional-radiative processes that the
upper levels of an ion reach a thermal distribution with
the continuum of free electrons more easily than the
lower levels. Thus, we will define the levels of the ion as
being in partial LTE from level p if Eq. (1) applies to it
and all higher-lying levels.

For the purpose of illustration, we take hydrogen
atoms or hydrogenlike ions as a model of atomic systems.
We assume the statistical population density distribution
among the different l and j sublevels (except where other-
wise stated), and p is used to denote the principal quan-
tum number of this level. Griem' proposed a criterion
for partial LTE. His argument was based on the compar-
ison between the radiative decay rate and the collisional
depopulation rate from the same level. Let A (p, q) be the
radiative transition probability from p to q, C(p, q) the
collisional excitation (q) p) rate coefficient, F(p, q) the
deexcitation (q &p) rate coefficient, and S(p) the ioniza-
tion rate coeScient. For level p to be in partial LTE, the
collisional depopulation rate should be greater than, say
by ten times, the radiative decay rate, i.e.,

[ g C(p, q)+ g F(p, q)+S(p)]n, )10 g A(p, q).
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p 82(T/z )' '(n /z ) (4)

where n, is measured in cm, T, is in K, and z is the nu-

clear charge of the ion under consideration.
Other workers have proposed criteria for partial LTE;

Wilson defined the thermal limit, which was equivalent
to the critical level for partial LTE, and gave a numerical
expression for the quantum number of this level.
McWirter started with a somewhat different reasoning
and derived a slightly different criterion. Drawin refined
the approximation to the excitation cross section or the
excitation rate coefficient in Eq. (3), and modified Eq. (4).

In discussing the rate of recombination of an afterglow
plasma, Byron et al. defined the "bottleneck" level as
the one that has the minimum of nsa(p)F(p, p —1). The
quantum number of this level is expressed by

s =(z R /3kT, )' (5)

where R is the ionization potential of the ground-state
hydrogen atom or the Rydberg constant, and the levels
lying higher than this level were assumed to be in LTE.
Thus, for level p to be in partial LTE,

p&s (6)

should be met. Hinnov and Hirshberg also proposed a
similar criterion to Eq. (5); the factor 3 is absent in their
criterion.

In 1973 Fujimoto and Engelhardt independently
pointed out that there can be conditions under which the
criteria expressed by Eqs. (4) and (6) are fulfilled and still
excited-state populations deviate from the Saha-
Boltzmann values [Eq. (1)]. Their arguments are based
on the formulation of the collisional-radiative model as
follows: Let b(p) be the reduced population density
defined by

b(p)=n(p )/nsa(p)

In this model, the excited-state population is expressed as

or numerically,

n„=9.8X10' z (T, /z )'~ (in cm ) . (10)

In view of the practical importance of the concept of
LTE, it is necessary to establish a set of validity criteria
for establishing partial and complete LTE. In this paper
we first summarize the physical ideas behind these exist-
ing criteria and extend them into new areas before mak-
ing detailed comparisons with the results of full
collisional-radiative calculations for optically thin plas-
mas of hydrogen (z =1), helium ions of charge 1 (z =2),
and iron ions of charge 25 (z =26). In this way we will

be able to identify the limits of the ranges of LTE with
good reliability for hydrogen and hydrogenlike ions. We
start by discussing partial LTE and find it convenient to
divide plasmas into recombining, ionizing, and
ionization-balance plasmas. We also discuss complete
LTE. The application of the results to non-hydrogen-like
species is discussed brieAy as is the question of applicabil-
ity in optically thick conditions.

II. GENERAL CONSIDERATIONS

It is convenient to divide the plasmas that we are going
to be concerned with into three different classes depend-
ing on whether they are recombining, ionizing, or are in
ionization balance. ' We define a recombining plasma as
one where the population density of the ground state is
less than its value in ionization balance, n, B(1),as calcu-
lated by the collisional-radiative theory for the local
values of T„n„and n+ (which we use instead of
[n (g)]+) [see Eq. (22)]:

predominate over the competing radiative transitions, the
thermal population distribution is extended to all levels
including the ground state. Then, the critical density is
given by

F(2, 1)n, ~10A(2, 1),

b(p) =ra(p)+r, (p)b(1) (8) b(1) & biB( I ) =nin(1)/nsa(1) .

for p ~2, where ro(p) and r i(p) are called the population
coefficients which are determined from the collisional and
radiative atomic processes taking place in the plasma,
and are functions of n, and T, . There can be conditions
such that the second term is dominant, and the excited-
state populations are determined by this term which is
proportional to the ground-state population. Thus, de-
pending on the magnitude of b(1), the resulting popula-
tion can be much higher than Eq. (1), or b(p) ))1, even if
the criteria such as in Eq. (4) are met. The assertions of
Fujimoto and Engelhardt are supported by several exper-
iments: e.g. , even if Eqs. (4) and (6) are satisfied, the
excited-state populations in a positive-column argon plas-
ma are almost independent of n„obviously violating the
LTE properties, ' and the excited-state populations in a
transient plasma deviate appreciably from their LTE
values for a hydrogen plasma" and for a helium plas-
ma. "

Griem' also gave a criterion for complete LTE. When
all the collisional transitions between the ionic levels

When condition (11) is met the plasma is in a dynamic
state with the electrons recombining with fully stripped
ions to eventually form ground-state atoms or ions.

In a similar way we define an ionizing plasma as one
where the ground-state population is greater than what it
would be in the ionization balance:

b(1)) b,B(1) . (12)

When the plasma is in a steady state and uniform, the
ionization ratio of the plasma is determined solely by the
ionization-recombination rates of the plasma and is in
ionization balance; i.e., b(1)=b (ia1). In inany cases,
however, the plasma is not in a steady state and uniform,
and therefore, the ionization-balance plasma is a rather
exceptional case.

Since we confine ourselves at this stage to hydrogen
atoms and hydrogenlike ions, it is convenient to express
the results in terms of the reduced electron temperature
0 and electron density g as suggested by Bates et ah.
[see Eqs. (4), (5), and (10)],
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1O
5

FIG. 1. The temperature at which n+ =n»(1j for a plasma
in ionization balance. Electron density is g=10' cm '. Thick
curve: result of numerical calculation. Thin curve: approxi-
mate expression derived in Ref. 25. See Appendix A.

8=T, /z (in K), rl=n, /z (in cm ) . (13)

In this way the major differences between the ions are re-
moved and the results show more clearly the remaining
differences.

For a plasma in ionization balance having a constant
electron density, the condition under which the
emission-line intensities show maximum values is deter-
mined by its temperature. This temperature approxi-
mately coincides with the temperature at which the pop-
ulations of the ground-state and the fully stripped ions
are equal, ' or n (iB1)=n+. Figure 1 shows the appropri-
ate range of temperature 8 at which n i(Bl)=n+ holds
for ions of nuclear charge 1 z ~ 26 for a reduced elec-
tron density 7) =10' cm . (See Appendix A. ) These
values of 8 are relatively insensitive to the electron densi-
ty. For example, at g=10 cm and z =10, 8 is within
2% of the values at 10' cm, and at q=10' cm it is
within 25%. This suggests that it is necessary to cover
quite a wide range of temperatures 0 for the present
study to be useful. We have chosen the range 1 X 10 & 8
( = T, ) ~ 1.28 X 10 K for atomic hydrogen and
4X10 8~(=T, /z ) ~5. 12X10 K for hydrogenlike
ions.

We illustrate the way in which the populations of the
excited states vary. In the formulation of the collisional-
radiative model the excited-state population is expressed
as a sum of the two terms given by Eq (8). For a recom-
bining plasma the value of b (p) lies between ro(p) and the
ionization-balance value b,B(p). In Fig. 2 we show exam-
ples of these values calculated by the collisional-radiative
treatment as described later, as a function ofp for various
temperatures and densities for atomic hydrogen and hy-
drogenlike ions. Except for cases of very high tempera-
ture the values of ro(p} are equal to or less than unity so
that recombining plasmas tend to have values of b(p)

that are closer to unity than this limiting value. Note,
however, that for values of O greater than about 2.5 X 10
K some values of ro(p) are greater than unity as illustrat-
ed in Fig. 2(c). This may be of importance for the recom-
bination of very highly charged ions (z 30). We note in
passing that the low-density limiting position of the ro(p)
curves is the so-called capture-cascade solution and de-
pends only on radiative processes.

For an ionization-balance plasma it may be seen that
b,B(p) is very close to or greater than unity and that at
large values ofp it always approaches unity asymptotical-
ly.

For an ionizing plasma b,B(p) represents the lower lim-

it of b (p) so that the population densities of the excited
levels of these plasmas depart from their Saha-Boltzmann
values, b (p) =1, to a greater or lesser extent depending
on the instantaneous population density of the ground
state, b(1). Thus, it is clear from these curves that the
criteria for partial LTE must, in addition to the electron
temperature and density, depend on the value of the
ground-state population.

It may also be seen that sometimes the population den-
sities of quite low levels may "accidentally" meet the re-
quirement of Eq. (1) because of the complex shape of the
curves, but this does not meet the spirit of our definition
of partial LTE. This point is illustrated in Fig. 2(a} by
the thick dotted curve for 8=4X10 K, q=10' cm
and b (1)=9 X 10 instead of b,a (1)= 1.7 X 10 . It shows
that although level p =3 meets the definition (1) this plas-
ma nevertheless does not meet the full requirement that
all levels above it should also satisfy Eq. (1). It is not un-
til level p = 11 that the criterion [see Eq. (15)] is satisfied.

Figure 2 includes the ground-state population b,a(1)
for the plasma in ionization balance. For sufficiently high
density, it is seen that all the discrete states (including the
ground state) enter into LTE, or b,B(p) =1 for p ~ l.
This situation is called complete LTE, as defined in Sec.
I.

III. PARTIAL LTE

A. Criterion for n,

According to our definition of partial LTE, the
excited-state population with which we are concerned
should be closely connected with the continuum-state
populations. More specifically, the populating process to
this level should start from the continuum states, and the
depopulating process terminate on these states, even if
these connections may be indirect as is almost always the
case. For this situation to be realized, the first require-
ment is that the collisional depopulating transition(s)
from this level should predominate over the radiative de-
cay from this level. This requirement is identical to that
proposed by Griem' and other workers [Eq. (2)], and
therefore, the specific formula for this condition should
be Eq. (4) or its equivalent.

B. Criterion for T,

In this high-density plasma that satisfies the first re-
quirement, it may be shown that the dominant collisional
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transitions from or to other levels are excitation or deex-
citation, both from or to the adjacent levels and that oth-
er transitions, such as the direct ionization from this level
and the three-body recombination to this level, are al-
ways unimportant compared with these transitions. (See
Figs. 3—7 of Ref. 15, Figs. 3—7 of Ref. 16, and Figs. 4—7
of Ref. 17.) Thus, there are four possible combinations of

the dominant populating and depopulating processes of
this level as schematically illustrated in Fig. 3. It is obvi-

1

ous that among these four cases only the case of F 3(b)1g.
eads to partial LTE, because only in this case is there a

possibility that this population is thermally related to the
continuum-state populations.

For this to be realized the dominant depopulating pro-
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C(p,p+1)~F(p,p —1) . (14)

This leads to an approximate analytical expression '
that is identical to Eq. (6) with Eq. (5), or

0& R /3k@ (14a)

cess should be the excitation p~p +1, rather than the
deexcitation p~p —1, or ' IV. SPECIFIC CRITERIA FOR PARTIAL LTE

In this section we perform a full collisional-radiative
model calculation for atomic hydrogen and hydrogenlike
ions, and use the result to derive a set of validity criteria
for partial LTE along the line outlined in the preceding
section. We define LTE as the situation in which the
population lies in the range of 10%%uo above or below the
Saha-Boltzmann value, Eq. (1), or the reduced population
b (p) must lie in the range

C. Criterion for b (1)
0.9 ~ b (p ) ~ 1. 1 . (15)

The above two requirements specify the population
scheme required for the case of Fig. 3(a) or 3(b). In order
to exclude the case of Fig. 3(a), we need a requirement
that specifies the ground-state population. This require-
ment is concerned with the overall ionization balance of
the system, or deviations from it, and is not expressed in
'terms of n, or T, . Instead, we have to consider to which
class of plasma this particular system belongs.

The above three requirements may be interpreted in
terms of the collisional-radiative model represented by
Eq. (8); for b (p) to be close to unity the third requirement
states that the second term r, (p)b(1) should be
sufficiently small compared with the first term ro(p).
Then, it is obvious that the first requirement is that the
electron density should be high enough so that ro(p)
reaches its limiting value. ' The second requirement
states that this limiting value should be close to unity. '

It is noted that the above requirements are adequate
only for partial LTE. For establishment of complete
LTE, it is not necessary to meet requirements (14) or
(14a). (See Sec. V.)

In the next section we discuss these requirements in a
quantitative way, and derive specific expressions.

p+1

p-1

p+1

A. Collisional-radiative model

For neutral hydrogen and hydrogenlike ions, rate con-
stants for radiative recombination and spontaneous radia-
tive decay are exact, and we installed these in our com-
puter programs.

For ionization and excitation cross sections of neutral
hydrogen by electron collisions we relied primarily on the
experimental data whenever possible. We also relied on
the relationship between the cross section for excitation
from the ground state to Rydberg states, and that for ion-
ization. ' We slightly modify the structure of the sem-
iempirical formulas proposed by Johnson to fit the cross
sections which we believe to be the best choice at present.
The details are given in the Appendix B. The effect of
proton collisions is neglected. The excited states having
the principal quantum number smaller than 36 are in-
cluded in the calculation.

The collisional-radiative model developed for the hy-
drogenlike ions is called CQLRAD, and its details are de-
scribed in Refs. 21 —23. This can be applied to ions with
the nuclear charge z in the range 2~z &35. The atomic
parameters which do not exactly obey the z scaling, from
which Eq. (13) has been derived, are the excitation- and
ionization-rate coe5cients. The results of the calcula-
tions show some dependence on z. The number of excited
states included in the calculation may be chosen freely,
and sometimes excited states as high as p =100 are in-
cluded (usually p =50).

For p =2, 3, and 4 the I and j sublevels were calculated
specifically within the program, i.e., they were not as-
sumed to be populated statistically. In calculating the
rates of collisions between them account was taken of
proton collisions. In fact, for the conditions with which
this paper is concerned, departures from statistical popu-
lations for these levels made no significant difference.

B. Recombining plasma

p-1

FIG. 3. Schematic diagram of the four possible cases of the
dominant populating and depopulating processes of level p in
which we are interested, under high-density conditions where
the radiative transitions are neglected.

0.9 ~ ro(p ) ~ 1. 1 . (16)

In Fig. 2 we identify the quantum number p~ of the criti-
cal level which meets the requirement (16). In Fig. 4 we

First we consider a class of plasmas where the second
term of Eq. (8) is entirely neglected; this may be called
the completely recombining plasma. ' ' ' As has been
noted in Sec. II, ro(p) asymptotically tends to unity with
increasing p. The validity criterion may be expressed as
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plot pz for a wide range of temperature with density as a
parameter. We give noninteger values of pR because of
the continuous properties of ro(p) as a function of p, and
the values close to pz =2 may contain some ambiguities.
The salient features are (i) with the exception at tempera-
tures about 8=2.5X10 K, p„depends only slightly on
8 but strongly on g. (ii) At temperatures around
2.5 X 10 K, all of the excited states satisfy Eq. (16) even if
density is very low. This is a result of a coincidence be-
tween the magnitudes of the populating flow to level p,
i.e., g ~& ~n(q)A(q, p)+P(p)n+n„and the depopulat-
ing flow, i.e., g ~ &~~ A(p, q) as discussed in detail in Ref.
16 (p. 1563). Here P(p) is the radiative recombination
rate coefficient to the level p. (iii) For low temperatures
low-lying levels never enter partial LTE even if the densi-

ty becomes high. This may be understood from the dis-
cussion in Sec. III B that in high-density plasma the re-
quirement (14) or (14a) should be met for temperature.
For lower temperatures, the electrons do not have
enough collision energies to return the electron bound in
level p to level p +1; rather, the dominant process is the
deexcitation p ~p —1 as schematically illustrated by Fig.
3(d) (see also Fig. 7 of Ref. 17). In Fig. 4 we also give the
lower end of the levels for which Eqs. (3) and (4) hold, for
g=10 cm, as an example for atomic hydrogen. The
original LTE criterion describes the overall feature of
ro(p) rather well except at low temperatures.

We now try to establish an empirical formula which
expresses the above results more exactly. From numeri-
cal fitting we find that the values of p that satisfy condi-
tion (16) may be represented by

and

p—~ 118/8 +279/vP' (17)

p ~282/0 (17')

In Fig. 4 the critical level given by Eq. (17) and (17') is
shown with the thin solid curves and the thin dotted line,
respectively. It is interesting to note that the density
dependence of Eq. (17), ~7) ', is similar to the criteria
such as Eq. (4), ~g " and discussed in Sec. I. The re-
lationship of Eq. (17') has a similarity to Byron's expres-
sion, Eqs. (5) and (6); the right-hand side of Eq. (17') may
be expressed as (R/2k8)'~ where the factor 2 is
different from his value of 3.

As can be seen from the comparison of Eq. (17) and the
result of the numerical calculation in Fig. 4, this equation
gives a rather conservative estimate. If our plasma has a
high temperature such that the second term of Eq. (17) is
the decisive term, the lower end of the LTE levels would
be lower, and Eq. (17) should be accordingly relaxed by a
certain amount.

Figure 5 is another plot of the same data as Fig. 4 and
is constructed from the three cases of z =1, 2, and 26. It
identifies the region of 8 and g for various pz. The re-
gion to the right of each curve corresponds to the range
of 8 and g in which the levels lying higher than pz are in
partial LTE.
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FIG. 4. The principal quantum number of the critical level

pz for establishment of partial LTE in recombining plasma for a
wide range of temperature. The thick curves are the result of
numerical calculation. : z =1. ----: Z =2.
z =26. : Eq. (17). ----: Eq. (17a). ———:critical level
for which Eq. (3) holds for atomic hydrogen. —~ ——.: Eq. (4).
The numbers in the figure indicate the power of 10 of reduced
electron density g in units of cm

FIG. 5. The principal quantum number of the critical level

pz in the g-8 plane for recombining plasma. The region to the
right of a curve is the region of density and temperature in
which the higher-lying levels than the critical level are in LTE.
This figure is constructed from the three cases (z =1, 2, and 26)
in Fig. 4, and therefore only approximate.
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C. Plasma in ionization balance

We start with the plasmas of low density; this is for the
purpose of understanding the population characteristics
in these plasmas in relation to the Saha-Boltzmann distri-
bution.

We first consider the plasmas with high temperatures.
The first term of Eq. (8), ro(p), is, at low densities, close
to unity. [See in Fig. 2(c) the case of 10~p ~20 for
q=10 cm . See also the numerical tables in Refs. 9,
18, or 24 and the discussion in Refs. 7 and 16.] This is
the reason why the lower end of partial LTE, ps, for the
recombining plasma goes down for 8=2.5X10 K. It
was also shown' (see also Appendix A) that the ratio of
the two terms [r, (p)b,B(1)/ro(p)] is of the order of 10.
Thus, in the high-temperature cases, the population is
larger than, but not far from, the Saha-Boltzmann value.
Figure 2(c) shows an example.

We next consider a very-low-temperature atomic hy-
drogen plasma. In Appendix B we show that the thresh-
old value of the excitation cross section is closely related
to the slope of the ionization cross section just above the
ionization threshold. We also note that the radiative de-
cay probability from very-high-lying levels is also related
to the radiative recombination of low-energy continuum
electrons. It then follows that the population density of
very-high-lying levels, represented by r, (p)b, a(1) in Eq.
(8), is close to —', . The first term, ro(p), is about —,'. (See
the numerical tables of Refs. 9, 18, or 24.) Therefore, the
resulting population b,B(p) is close to unity. Figure 2(a)
contains examples (see the case of 10 Sp ~ 20 for n, = 10
cm ).

Thus, for practically any temperature, the populations
of high-lying excited states in the low-density limit are

not far from the Saha-Boltzmann values, and when the
electron density is finite, these populations are brought
close to the equilibrium values, b,s(p)=1, starting from
higher-lying levels. Figure 6, which corresponds to Fig.
4, shows the critical level p,B for partial LTE as deter-
mined from Fig. 2. It is seen that for temperatures lower
than 3 X 10 K the critical level p&B is 1ower than that for
recombining plasma pz. This is understood as follows:
For low temperatures, ro(p) is smaller than unity. The
second term r, (p)b, B(1) tends to help b,s(p) come close
to unity. On the other hand, for higher temperatures the
critical level is higher than that in the recombining plas-
ma. This is because, in these cases ro(p) is rather close to
unity for any temperatures and densities, and for
8)2.5X10 K they are even larger than unity. [See
Figs. 2(b) and 2(c).] The addition of the second term
makes it more diScult for b&a(p) to be close to unity than

ro(p) itself. Figure 7, which corresponds to Fig. 5,
shows the region of density and temperature for estab-
lishing LTE. From numerical fitting we find a formula
for p that satisfies the LTE condition

) 85O0. 1 y 0. 133 (18)

The lower end p,a determined by Eq. (18) is shown in
Fig. 6 by the thin solid lines. In Fig. 6 the lower end for
the LTE criterion, Eq. (3) or (4), is shown for r)=10
cm as an example. It is seen that these formulas are
reasonably good.

D. Ionizing plasma

As has been mentioned in Sec. II, the second term of
the right-hand side of Eq. (8) could be the dominant term,
and b(p) could be much larger than unity as suggested
from Fig. 2. When the electron density is high, this situa-

50

P(

20

10—

~~e

L I

8 (10 K)

15

10 12

"%o')
14 16

FIG. 6. The critical level for partial LTE in ionization-
balance plasma, corresponding to Fig. 4. The explanation is the
same as for Fig. 4.

FIG. 7. The same as Fig. 5, but for ionization-balance plas-
ma.
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tion corresponds to the population scheme as depicted by
Figs. 3(a) or 3(c). However, if the ground-state popula-
tion, or b(1), is not large enough, b(p) for large p still
could lie within the LTE criterion [Eq. (15)].

We start with the assumption that our plasma has high
temperature, i.e., 8~3X10 K, and high density, i.e.,
g & 1X10' cm . Under these conditions we have ap-
proximations of ro(p) =1 within 30% and

ri(p) =p (19)

within a factor of 2. (See the numerical tables of Refs. 9,
18, or 24 and the discussion in Refs. 7, 16, and 18.) Fig-
ure 8 shows examples of r&(p) for several cases including

those violating the above assumption of high temperature
and density. This simple minus-sixth-power distribution
of the excited-state population is a result of the establish-
ment of the multistep ladderlike excitation-ionization
scheme among the discrete levels. " (See Fig. 7 of Ref.
15.) Roughly speaking, n (p)C(p, p+1)n, is independent

of p, and the p dependence of C(p,p+1) ~p makes the
population n(p)~p, or n(p)lg(p)~p . In order for
level p to be in LTE, it is obvious from Eq. (8) and from
the discussion in Sec. III C that the contribution from the
second term should be sufficiently small, or specifically

r)(p)b(1) ~0. 1 (20)

should hold. In approximation (19), requirement (20) is
expressed as

TABLE I. The critical level pi for establishment of partial
LTE in ionizing plasma. Numbers in brackets denote powers of
10.

(a) 8=3.2X10 K, g=10" cm
z=l z=2 z =26

b(1) b, B(l)=8.53[1] b,s(1)=3.78[1] b,B(1)=2.58[1] Eq. (21)

10
104

10'

2.6
6.4

13.2

2.9
7.2

15.1

3.2
7.3

16.2

3.2
6.8

14.8

(b) 8=3.2X10 K, g=10" cm
z=l z=2 z =26

b(l) b,s(1)=1.71[0] b,B(1)=1.33[0] b,B(1)=1.22[0] Eq. (21)

Table I compares Eq. (21) with the results of numerical
calculations for several plasma conditions which include
those violating our requirements. For plasmas meeting
our requirements, levels lower lying than Eq. (21) have a
population density distribution of n (p)/g(p) ~p

For densities lower than 1X10' cm, r, (p) becomes
smaller than p [see Fig. 8 of this paper and Fig. 1 of
Ref. 15; remember that, for low densities, the excited
states are in the corona phase and r, (p) is proportional to
ri], and criterion (21) gives too stringent an estimate.
Table I(e) gives an example. For lower temperatures
r, (p) becomes larger than p as seen in Fig. 8, and Eq.
(21) is too relaxed. Table I(f) gives an example. Howev-

~ [10b(1)] ' (21) 10
10'
10'

2.2
4.9

10.1

2.2
5.3

11.1

2.3
5.3

11.6

2.2
4.7

10.0

(c) 8=5.12X10 K, g=10' cm
z=l z=2 z =26

b(1) b,B(1)=1.49[2] b, B(1)=1.35[2] b&B(1)=1.31[2] Eq. (21)

10'
10'
10'

4.2
9.4

21.5

4.3
9.7

22.5

4.3
9.8

22.6

4.7
10.0
21.7

CL 3
L

C)
Qlo -4

(d) 0=5. 12 X 10 K, g = 10" cm
z=1 z=2 z =26

b(1) b&s(1)=2.24[0] b&B(1)=2.12[0] b&s(1)=2.09[0] Eq. (21)

10
10'
10'

2.0
4.4
9.8

2.0
4.5

10.1

2.0
4.5

10.1

2.2
4.7

10.0

(e) 0=2.56X10 K, q=10' cm
z=l z —2 z =26

b(1) b,~1 1)=2.12[4] b,B(1)=1.88[4] b,B(1)=1.82[4] Eq. (21)

-8
2 20

10'
10
10'

7.0
15.6
36'

7.2
16.5
39.0

7.3
17.0
41.0

10.0
21.7
46.8

FIG. 8. The population coefficient r, (p) against p.
z =1,g=10' cm, and 0=3.2X10 K. : z =1, g=10'
cm, and 0=1.28X10 K. : z =2, q=10' cm, from

top to bottom 0=8X10', 1.6X10, 3.2X10, and 5.12X10' K.
z =2, g=10' cm, and 0=5.12X10 K.

z=2, g=10" cm ', and 0=5.12X10' K. —.—- —-: p X2
and p /2.

10
10'
10

2.7
6.0

12.2

2.6
6.5

13.7

2.7
6.5

14.5

2.2
4.7

10.0

'Extrapolated.

(fj 8=1.6X10 K, g=10" cm
z=1 z —2 z =26

b(1) b,B(1)=1.60[0] b,B(1)=1.25[0] b,s(1)=1.15[0] Eq. (21)
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er, such a low-temperature case is unlikely to be realized
in actual ionizing plasmas.

V. COMPLETE LTE

n '/n„(1) =S,„/a,„. (22)

In the high-density limit these rate coefticients are in the
internal relationship

a&&=S&&Z(1)n, . (23)

The concept of complete LTE implies that the plasma
is in a temporal steady state and that it is uniform. Later
in this section we will examine the extent to which these
requirements may be relaxed and still meet the criterion
that we adopt, i.e., that all values of b (p) lie in the range
of 0.9 & b(p) ~ l. 1 including now p = l.

In the theory of the collisional-radiative model, the
effective rates for ionization and recombination of the
system are described by the collisional-radiative
ionization-rate coefticient Scz, and the recombination
rate coefficient acR, both being functions of n, and T, .
The ionization balance relation is then given as
I

must establish practical limits. We first consider a time-
dependent plasma. In order for this plasma to be in com-
plete LTE, the "time lag" of n (1) from nsB(l), which is
determined by the instantaneous values of n„n+, and
T„should be small. In view of the practical importance,
we first assume a pure hydrogen plasma, that is, n + =n,
and n(1)+n+ =N The above requirement [Eq. (25)] is
assumed for electron density. The rate equation for
ionization-recombination is

n(1)= —Sc„n(1}n,+ac„n+n, .
dt

(28)

It is straightforward to show that the relaxation time ~
for this system is given by

(Sca +acR )n (29)

We envisage a situation in which the number density N
and T, vary with time and deviation of the densities from
their stationary values is small. It is straightforward to
show that the temporal variation of nta(1), or that of
n+ =n„ is given as a sum of two terms which stem, re-
spectively, from the temporal variation of N and that of
T ~

It has also been shown that in this high-density region
the population coefficients ro(p) and r&(p) are in their
high-density limits and they are in another internal rela-
tionship (Refs. 7, 13, and 18; see also tables of Refs. 9, 18,
or 24),

dn

dt
1

2Z(1)n, +1
3 z~R Z(l)n, dT,+ —+

dt 2 kT, T, dt

(30)

ro(p)+r((p)=1 . (24)

This relation together with Eqs. (22) and (23), or
b,a(1}=1,substituted into Eq. (8) leads to b,a(p) =1 for
all p( ~ 2). Thus, cotnplete LTE is established.

In Fig. 9, the critical density g„at which b,a(1)=1.1

holds, is given as a function of temperature for z =1, 2,
and 26. The criterion [Eq. (10}]gives a reasonably good
estimate for ions, but a gross underestimate for atomic
hydrogen. We define the criterion as

Now we require that the temporal variation of the sta-
tionary quantities should be su%ciently slow as compared
with the relaxation time of this system:

10

9 —Qs
)

with

g, = 1.5 X 10' ( 8/10 )'

and

a =0.55 —(0.49/z )
'

(25)

(26)

(27)

The critical density is shown by the thin solid lines. The
densities corresponding to 103(2, 1)/F(2, 1) and
10P(1)/a(1) are also given for atomic hydrogen for the
purpose of comparison. For lower temperatures the criti-
cal density is determined by the former quantity through
the density dependence of SCR, because acR reaches its
limiting value at much lower density. ' For higher tem-
peratures g, is determined by the latter through acR, be-
cause the critical density for Scz is determined by the
former quantity which is smaller.

As noted above, for a plasma to be in ionization bal-
ance it should be uniform and steady state. In practice,
however, thes~ ideal requirements cannot be met, and we

r'I~lI il I

tQ

e (10 K)

FIG. 9. Critical electron density for establishment of com-
plete LTE. Thick curves show the results of numerical calcula-
tion. : z =1. —:z =2. ———:z =26. Eq.
(25) with Eq. (26). ———: Eq. (10).
IOA(2, 1)/F(2, 1). —"—"—:10P(1)/a(1).
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~n, ~/n, &O. lr (31)

where the dot denotes the time derivative. We assume
Eq. (25) is already met and use Eq. (23), where we adopt
the approximate expression for Scz in this high-density
limit,

ScR-1X10 exp( —3z R/4kT, )/z3, (32)

Xexp( —3R/4kT, ) . (34)

When our system is a minority component such as an
impurity in a plasma a change in plasma parameters
should be slow enough for our ions to be in complete
LTE. We define the reduced Saha-Boltzmann coeScient

Z'(p) =Z(p)z

g(p) h

2[g (g)]+ 2nmk8'

' 3/2

exp (35)
p k8

then the following conditions should be met:

~ri, ~/n, &1X10 [z Z'(lip+1]

X Z'( 1 ) 'exp( —3R /4k 8 )

and

(36)

~ T, /T, & 1 X 10, , exp( —3R /4ko)[z Z'( I )rl+ I]
2+

(37)

We now consider a plasma which is steady state but
not uniform. Here again we assume the situation in
which deviation of the plasma from complete LTE is
small. In the preceding equations we may simply replace
the time derivative d /dt by the spatial derivative
v(d/dr), where v is the average speed of the diffusion
motion of the particles of the system under consideration.

VI. DISCUSSION

In the majority of the foregoing calculations we have
assumed the statistical population distribution among
different l and j sublevels of a given p. The validity cri-
terion for this assumption has been discussed by several
workers, and numerical expressions are given in Ref. 26
for various conditions. An example of the formula is

59z0 059/ 0118 (38)

which assumes light ion (proton) collisions and is valid

which is valid for 0) 1 X 10 K. We require that Eq. (31)
be met by the time variations of X and T, independently.
Then we have

~N
~
/N & 1 X 10 [2Z(1)n, +1]exp( 3R /—4kT, )n, (33)

and

[2Z(1)n, + 1][Z(1)n,+1]
T, /T, &1X10-'

( —,'+R /kT, )Z(1)

for p &5 and ions with Z &25. When Eqs. (17) and (18)
are compared with Eq. (38) it is seen that, under plasma
conditions at which Eq. (17) or (18) is crucial, Eq. (38) is
well satisfied in almost all cases. An example is seen in
Fig. 2(b).

So far we have assumed that the plasma is optically
thin, or more specifically, reabsorption of emission radia-
tion does not affect the population dynamics of the atoms
or ions. In this section we consider the cases in which
this assumption breaks down and discuss necessary
modifications to the results derived in the previous sec-
tions.

For optically thick plasmas, the equation of radiation
transport should be solved simultaneously with the rate
equations for the population densities. However, some-
times it is adequate to adopt an approximation that a re-
duced transition probability for the spontaneous transi-
tion describes the effect of reabsorption of the line. In the
following we proceed in this approximation.

Optical thickness of an absorption line is proportional
to the lower-level population, the absorption oscillator
strength, and the dimension of the plasma, and inversely
proportional to the line width. A common situation
would be that the resonance line, the Lyman-a line, is op-
tically thick or has a high optical thickness, and other
members of the Lyman-series lines and the Lyman con-
tinuum are optically thick to some extent. In some cases
the lines terminating on excited states, especially the first
excited state, are also optically thick.

For a recombining plasma the effect of reabsorption of
Lyman lines is rather simple. An extreme case, the case
B, is sometimes considered in which the Lyman-series
lines are completely optically thick, and the transition
probability A(p, 1) is assumed to be 0 for all p. In this
case, two effects result: (i) The critical density corre-
sponding to Eq. (3), or the second term of the right-hand
side of Eq. (17), decreases owing to the effective decrease
in the radiative decay probability of the excited level; (ii)
the value of ro(p) increases in the lower-density regions
as a result of the decrease in the radiative decay rate and
an increase in the populating rate from other excited lev-
els. For large p the decrease in the critical density is
about 25%, and in Eq. (17) we may replace the factor 279
by 270, i.e., the effect is minimal. When the lines ter-
minating on excited states also become optically thick the
above two effects become larger, and the criterion on den-
sity is further relaxed.

In the optically thick plasma, the value of r &(p) also in-
creases by the similar effects to those for ro(p). The ion-
ization rate coefficient SCR also increases as a result of
the enhanced r, (p) for excited levels. ' Therefore, for an
ionization-balance plasma the effect of radiation reab-
sorption is complicated; necessary modifications to the
criterion depend on to which lines and how strongly the
radiation reabsorption takes place.

The effect of reabsorption of radiation in high-
temperature plasma helps the critical density decrease
above which the approximation r, (p)=p is valid, and
the criterion [Eq. (21)] becomes valid for lower densities.

As is easily seen, the validity criterion for complete
LTE [Eq. (25) with Eq. (26)] is relaxed. However, its ex-
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tent depends on to which lines and how strongly the radi-
ation reabsorption takes place.

We now consider cases of atoms and ions that are not
hydrogenlike. It is a well known fact that, for high-lying
states in a series and having different principal quantum
numbers, the energy-level structure is well approximated
with the hydrogenic energy levels with an effective
(noninteger) principal quantum number p'. Various
characteristics of the atomic states are sometimes ap-
proximated fairly well by those of the hydrogenic states,
and the population characteristics are also expected to be

approximated by those of the hydrogenic atoms and ions,
with which we have been concerned. However, it is more
difficult to realize the statistical population distribution
among the different l, j, and core states in these cases,
and the critical density for the statistical distribution is
higher than that given by Eq. (38). This critical density,
however, is usually lower than the density given by Eq.
(3), because this statistical equilibration is established
mainly through dipole transitions between the states ly-

ing rather close in energy. Therefore, for densities higher
than the critical density given by Eq. (3) the population
coefficient ro(p

'
) is expected to be well approximated by

the hydrogenic ro(p), which is exemplified in Fig. 2. For
a recombining plasma the criterion [Eqs. (17) and (17')] is
expected to be approximately valid for non-hydrogen-like
cases.

For lower densities than the above critical density, the
population coefficient r, (p ) and the collisional-radiative
ionization coefficient Sc„,as well as their relationships in
magnitudes, are different from the hydrogenic case. For
instance, in the case of neutral helium in a low-density
plasma the contribution from the metastable- to excited-
state populations is sometimes much larger than that
from the direct excitation from the ground state. There-
fore, for the ionization-balance plasma the LTE criterion
would strongly depend on the species with which we were
concerned.

Several experiments appear to support that, for higher
densities than the critical density, the p dependence of
r, (p

'
) 0: (p

'
) is well obeyed for atomic species other

than hydrogenic ones. ' ' ' ' Furthermore, Fig. 3(a) of
Ref. 12 indicates that, for neutral helium of an ionizing
plasma with T, =4. 5 X 10 K and n, = 1 X 10' cm, the
experimentally determined population coefficient is
ri(n D)=0.047(p'), which compares with
0.17(p'), where the factor 0.17=[R/y(1'S)) ac-
counts for the nonhydrogenic ionization potential of the
ground state. This deviation by the factor 3.6 may be at-
tributed to the fact that the density of this plasma is rath-
er low (1X10' cm ) for the establishment of Eq. (19)
(see Fig. 8). Therefore, in many atomic and ionic systems
in a high-density plasma the population coefficient r, (p )

appears to be well approximated as r i (p
'

) =
[R /y(g )] (p*), where g denotes the ground state. If
this were the case, the criterion [Eq. (21)] with a neces-
sary modification is applicable to these atomic and ionic
systems. It is strongly hoped that experimental and
theoretical investigations are done that examine whether
the above approximation is valid for many atomic and
ionic systems.

VII. CONCLUSION

In this paper we have presented practical expressions
by which it is possible to predict if the populations of the
excited states of hydrogen atoms or hydrogenlike ions
contained in a plasma can be adequately described by the
Saha-Boltzmann equation. We distinguish the situation
where only a limited number of upper levels fall within
this regime and the other where it applies to all states in-
cluding the ground state. The first we call partial local
thermodynamic equilibrium and the second complete
LTE. Since LTE is a theoretical concept that can never
be exactly met in practice we have chosen the practical
condition for our atoms or ions to fall within the
definition of LTE: i.e., their populations must be within
10% of the corresponding Saha-Boltzmann values. The
criteria have been calculated by solving the collisional-
radiative equations for atomic hydrogen on the one hand,
and hydrogenlike ions of nuc1ear charge 2 and 26 on the
other, and comparing the results with the corresponding
Saha-Boltzrnann values. On this basis we have derived
formulas that represent the validity criteria. For partial
LTE it has been convenient to divide plasmas into three
classes where (i) it is in a state of active recombination,
(ii) it is in ionization equilibrium (i.e., steady-state ioniza-
tion balance), and (iii) it is actively ionizing. In each class
we have determined the value of the lowest principal
quantum number p of the excited levels meeting our LTE
criterion. For a recombining plasma there are two cri-
teria that must both be met, viz. ,

and

p ) 118/8 +279/7/ (17)

p )282/8 (17')

where the equation numbers give reference to the ap-
propriate part of the text of the paper.

For a plasma in ionization balance our criterion is

p + 8580' /g0' 133 (18)

For a plasma that is in a state of active ionization to be
in partial LTE it must be of high temperature
(8)3X10 K) and high density (g) 10' cm ) and in
addition satisfy the criterion

) [ 1()b( 1 )]0.16'7

For complete LTE our criterion is

g) 1.5X10' (8/10 )',
where

(21)

(25)

a =0.55 —(0.49/z )' (27)

In deriving these criteria we have taken care to de-
scribe the physical reasons for them. Thus it is possible
to understand how they might be extended to atoms and
ions that are not hydrogenlike. We also give a qualitative
discussion of the effect of radiation trapping and point to
the need for experimental confirmation of our theoretical
predictions.
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APPENDIX A: PLASMA IONIZATION
BALANCE AND ITS SCALING LMV

In this appendix we discuss several important proper-
ties of the plasma in ionization balance and its scaling law
against the nuclear charge z.

In the theory of the collisional-radiative model the
effective rate of ionization and that of recombination are
described by the collisiona1-radiative ionization-rate
coefficient Scz and recombination rate coefficient acR.
According to the scaling of the reduced electron tempera-
ture 8= T, /z and density ri= n, iz, the reduced rate
coefficients are ScR/z and acRz. It then follows that the
reduced "ionization ratio" is [z n + ln&B(1)]. This means
that for constant 8 and g and a varying z, the "ionization
ratio" is not constant but is

n+/n, B(1)o-z

The first point is that, for a constant reduced tempera-
ture and a varying z, even though the above "ionization
ratio" has the strong z dependence, the relative contribu-
tions from the two terms in the right-hand side of Eq. (8)
are approximately independent of z. This will be shown
below.

In the limit of low density the population correspond-
ing to the second term is described by corona equilibrium

2 &me 1 R
3&3 rn c q

R
X exp

q kT,
R—Ei

q kT,
(A6)

where the exponential integral may be approximated to

—lnx —y, x &(1—Ei( —x)~ '

e "/x, x ))1
(A7)

(A8)

where y =0.5772 is Euler's constant.
We first consider the case of high temperature. For a

large q, lnq may be approximated to 0.7&q, and roughly
speaking, P(q) ~ q

' for q ) 1. The excitation and ion-
ization rate coefficients are proportional to the oscillator
strengths for the respective transitions, and for excitation
from the ground level we have C( l,p ) ~p . The oscilla-
tor strength for the 1 —+2 transition is approximately
equal to that for the 1 ~continuum transition, and there-
fore we have C(1,2) =S(1). It then follows that the ratio
(A5) is of the order of 0.1, being independent of z.

The above fact also justifies the common practice of as-
suming corona equilibrium for the excited-state popula-
tion by neglecting the contribution from the recombining
plasma component no(p). It is further noted that, under
this condition, the first term in the right-hand side of Eq.
(8), ro(p) (which is usually neglected in practice), is close
to 1, as discussed in Sec. IV B.

When the temperature is very low, the rate coefficients
for excitation and ionization from the ground state are
determined by the cross-section values close to their
thresholds. A relationship between these cross-section
values is discussed in Appendix 8 for the case of neutral
hydrogen. The approximate relationship between the
rate coefficients is thus given by

n, (p) =C(l,p)nta(1)n, A(p, q),
q (&p)

(A2)

C(l,p) S(1) R R
—3 kT p2kT

The population given by Eq. (A2) is expressed as

(A9)

no(p) =It3(p)n+n,
q (&p)

A(p, q) . (A3)

and the first term is given by the capture-cascade scheme
P(q)

q (~1) 2R R
n, (p) =n n, exp

~(p, q) p'kT, p'kT,
q (&p)

(A 10)

n+ I , (n1)B=S(1) P(q) . (A4)

In these expressions the cascade contributions have been
neglected, which are as much as 30% for high tempera-
tures and more for low temperatures. The "ionization ra-
tio" is given by

' 1/2

q ()1) 3V'3 ~ g kTe
(A11)

For lower-lying levels than q=10-20, we adopt the
second approximation, Eq. (AS) for P(q), and we have

q (~1)

The ratio of the two terms is

np(p) In, (p) =P(p)S( 1 ) C( l,p) g P(q) . (A5)

where

10-20 —1

q=1
(A12)

In the approximation that the bound-free Gaunt factor is
unity, P(q) can be expressed as

is of the order of 3. For the higher-lying levels with
which we are concerned the radiative decay probability is
approximated, on the assumption that the bound-bound
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Gaunt factor is unity, by

, („) ' &3 h'mc' p'

Here,

(A13)

We slightly modify the structure of the semiempirical
cross-section formula by Johnson for excitation and that
for ionization. The excitation cross section is expressed
as

2 2

o'qz(Uq&)= U
q
[1+s &exp( r &Uqz))

8= ( R /k ) ( 13.5 —4 lnz ) .

Figure 1 contains this approximation.

(A15)

lnp= j'q-'dq (A14)
1

is of the order of 3. It is concluded that, in the present
approximation, Eq. (A2) is close to two-thirds of the
Saha-Boltzmann value [Eq. (1)], or r, (p)b&a(1)= —', . It
may be also shown that, under these conditions, ro(p) is
not far from —,'. An example of the exact calculation is

shown in Fig. 2(a). (See the case of 10Sp ~20 for
n, = 10 cm .) The ratio of the two terms does not
strongly depend on z.

We next consider a consequence of the scaling law [Eq.
(13)]. As discussed in Sec. II, for a varying temperature
the "ionization ratio" [n+In&B(1)] is important in deter-
mining the emission-line intensity, or the excited-state
population n(p) with p ~2. Since n (p) takes the max-
imum approximately at a temperature at which
[n+In& a(1)]=1 hold, ' we call the latter temperature
the optimum temperature. It is clear from the discussion
at the beginning of this appendix that the reduced op-
timum temperature has a z dependence. In Ref. 25 an ap-
proximate expression for this temperature has been de-
rived for low-density plasma,

X W„ ln U„+ 1

%P

+ B —3 ln
2g 11— 2

Hap

(Bl)

where U is the incoming electron energy in threshold
units and x is the energy difference of these levels in Ryd-
berg units. Aq& and Bqz are the parameters in the Born
approximation, and ao is the first Bohr radius. The pa-
rameter s is absent in the original Johnson's formula
and determines the cross-section value near the excitation
threshold. We also add a similar adjustable parameter s
to the ionization cross-section formula. In the original
formula, these quantities were effectively set equal to —1.
We adjust these quantities very slightly so as to obtain a
reasonable fit to the cross sections which have been men-
tioned above; for ionization s&

= —0.59, and for excita-
tion s& = —0.95 for 2~p ~5 and s&

= —0.9 for p ~10.
In Fig. 10 the cross sections given by these modified for-
mulas are shown with the thin solid curves. In this figure

APPENDIX B: EXCITATION AND IONIZATION
CROSS SECTIONS FOR ATOMIC HYDROGEN

The excitation cross section from the ground state to
the first excited state is well established experimentally
and theoretically. The cross section to higher-lying levels
is not well known. In a recent experiment on a tokamak
plasma to determine the atomic and molecular hydrogen
densities in it, it has been concluded that the cross sec-
tions given by the semiempirical formula by Johnson
lead to a more reasonable result than those from the re-
cent 15-state R-matrix calculation ' do.

In Ref. 19 the process of collisional excitation and that
of ionization are discussed on the common basis of the
extended Wannier classical theory, and the relationship
between the excitation and ionization cross sections is es-
tablished theoretically as well as experimentally.

In the present study we proceed as follows: We fit the
ionization cross section derived in the above theory to the
experimental data which are well established (Fig. 10).
By the use of the above relationship, the cross section for
excitation to Rydberg states is determined, as shown in
Fig. 10. The cross-section values just above the threshold
are not determined in this theory, but it is suggested that
they are about a factor of 2 larger than the values at
higher energies. ' The part of the cross section shown
with the thick dotted curve is smaller than the result of
the numerical calculation by as much as 20%.
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FIG. 10. Excitation and ionization cross sections from the
ground state of neutral hydrogen by electron collisions in the
energy range close to the ionization threshold. The excitation
cross section has been multiplied by p'. && &: experimental ion-
ization cross section (Ref. 32). cross sections de-
rived in Ref. 19 and fitted to the experimental ionization cross
section. —.—.—:cross sections in the relationship of Eq. (B2)
and fitted to the experimental ionization cross section.
the modified semiempirical formula (81) for excitation and the
similar formula for ionization and fitted to the most reliable ex-
perimental and theoretical data. 0: the 15-state R-matrix cal-
culation of the excitation cross section 1~5 (Ref. 31). The ar-
row with "@=6" indicates the excitation threshold of level

p =6.
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a few values of the cross section 0. , 5 given by the R-
matrix calculation ' are shown for energies lower than
the threshold of the p =6 states, where the neglect of the
existence of the higher-lying states in this calculation do
not affect the result.

We now discuss an approximate relationship between
the ionization and excitation cross sections introduced
above. We concentrate our attention on the energy range
very close to the ionization threshold. We approximate
the excitation cross section to be constant
(o. , z

=o o ~p ) and the ionization cross section to be a
linear function [o„„=a(E —R ) ]. We now assume
smooth continuation from the excitation of Rydberg
states across the ionization limit to ionization. More
specifically, the rate at which electrons are raised to the
discrete states having energies of b,E—& E & 0 (hE is
small) is assumed equal (except for the 8oltzmann factor)
to that at which continuum electrons having energies of

0&E (AE are produced. Then it is straightforward to
derive the relationship

a=oo/(2R/p ) . (82)

In Fig. 10 the ionization cross section as given by
a(E —R) is shown with the thin dash-dotted curve,
which tends to the modified Johnson's formula near the
ionization threshold. The value of crop3 (=1.3X10
cm ) thus determined from this ionization cross section
and Eq. (82) is shown with the dash-dotted line. It is
seen that the above approximation is good to within
20—30%.

For excitation and ionization cross sections from excit-
ed states there are several calculations and a few experi-
ments, and we employ the semiempirical formula by
Johnson in its original form for the low-lying levels and
that by Vriens and Smeets for high-lying levels.
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