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Electron-hydrogen quasiparticle calculations with the Temkin-Lamkin polarization potential
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Low-energy electron-hydrogen scattering data are calculated within the quasiparticle approach to
Faddeev-type integral equations. The simple phenomenological polarization potentials employed in

former applications of this formalism, however, are replaced by the more sophisticated parameter-

free Temkin-Lamkin potential. Despite the fact that, in contrast to the former calculations, there is

no longer a fitting parameter at our disposal that could be used to optimize the results, the best pre-

vious values are reproduced or even slightly improved.

I. INTRODUCTION

The quasiparticle formalism' developed by Alt,
Grassberger, and Sandhas (AGS) for Faddeev-type in-
tegral equations has been applied to low-energy electron-
hydrogen collisions in two recent publications. ' In Ref.
5 the zeroth- and the first-order quasi-Born approxirna-
tion of the effective potentials, denoted as O.QBA and
1.QBA, were taken into account. For large scattering an-
gles, fair agreement between the theoretical and experi-
mental cross sections has been achieved, but the strong
forward peak could not be reproduced. As pointed out in
Ref. 6, this is due to the neglect of the polarization effect
contained in higher-order quasi-Born terms. To calculate
these terms exactly would be an extremely complicated
task. This suggested that they be replaced by simple phe-
nomenological polarization potentials. With an optimal
choice of the cutoff parameter in these expressions, a re-
markable improvement of the differential cross sections
was achieved. But deviations of the low phase shifts from
variationa1 results, while partly reduced, were still evi-
dent.

In the present paper, we report on results obtained
with the same integral equations employing now, howev-
er, instead of the simple polarization potentials used in
Ref. 6, the more sophisticated Ternkin-Larnkin poten-
tial. It will be shown that, despite the fact that there is
no longer a fitting parameter at our disposal, the resulting
cross sections coincide almost exactly with the ones
found in our preceding investigation, and also the phase
shifts are only slightly modified. In other words, we ar-
rive in a parameter free manner at th-e same good agree-
ment between theoretical and experimental cross sec-
tions, but the above-mentioned discrepancies concerning
the low phase shifts, apart from slight improvements, are
also reproduced.

The latter observation is not astonishing. For the
Temkin-Lamkin potential, being derived in "adiabatic"
approximation, is energy independent, such as the phe-
nomenological expressions of Ref. 7. Deviations similar
to the ones found in Ref. 6, therefore, were to be expected
a priori. We only mention in this context that the charac-
teristic Feshbach resonances cannot show up at all for
energy-independent polarization potentials. General ar-

guments and the present detailed results, therefore, indi-
cate that excited subsystem states should be taken into
account more explicitly in future applications of the in-
tegral equation approach.

Since our calculations are based completely on the for-
malism and the numerical program used in Ref. 6, it ap-
pears justified to restrict the discussion of formal ques-
tions given in Sec. II to some few relevant aspects. In
Sec. III the new results obtained with the Temkin-
Lamkin potential are presented and compared with the
ones of Ref. 6 and with variational calculations.

II. FORMALISM
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therefore, have been added in Ref. 6 to the diagonal ele-
ments of the first-order (1.QBA) interaction. Here, a
represents the dipole polarizability, d is an open parame-
ter, and Q = Ik' —k I.

In the present investigations, the same formalism is ap-
plied. But instead of (2.1) and (2.2), we use the Temkin-
Lamkin potential given in coordinate space by

V '(r)= ——[—' ——'e "(r + r+9r-l

r 4 4 3 2

+ ", r + 7r+ —", )], (—2.3)—

Faddeev-type integral equations are usually reduced to
effective two-body Lippmann-Schwinger equations by ex-
panding the two-body amplitudes in their kernel into a
series of separable terms. In Ref. 5 only one separable
term has been introduced in each subsystem amplitude,
the form factors being chosen as Sturmian functions.
The nonseparable rest was taken into account in first
quasi-Born approximation (1.QBA) in the resulting
effective interaction.

As recalled in the introduction, the effect of the target
polarizability is not contained in this order of approxima-
tion. Phenomenological polarization potentials of the
form
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or, after transformation into momentum space, by

Vi'"(k', k) = 1
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III. RESULTS

Figures 1—3 show the differential cross sections for lab-
oratory energies E=8.7, 4.9, and 2.2 eV, respectively.
The dotted curves are the 1.QBA calculations of Ref. 5,
while the solid curves represent the results achieved after
inclusion of the polarization potential (2.4). Comparison
with the corresponding 6gures of Ref. 6 demonstrates
that these curves agree almost exactly with the ones ob-
tained for the phenomenological potentials (2. 1) and (2.2)
after optimizing there the open parameter d.

Inclusion of the polarization effect is of particular
relevance with respect to the forward direction, i.e., with
respect to the higher partial waves. Table I shows that,
for L &5, the phase shifts obtained when using the
Temkin-Lamkin potential practically coincide with the
O' Malley result
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FIG. 2. Same as in Fig. 1, but for E=4.9 eV.
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FIG. l. Differential cross section in atomic units {m.ao/sr) at
laboratory energy 8.7 eV for elastic electron-hydrogen scatter-
ing in 1.QBA (dotted curve) and after having incorporated the
polarization potential V " (solid curve). The experimental data
are taken from Ref. 9.
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FIG. 3. Same as in Fig. 1, but for E=2.2 eV.
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TABLE I. Singlet and triplet elastic electron-hydrogen phase shifts for L =3, 4, and 5 at E=8.7 eV.

ypol

O' Malley'

'Reference 10.

0.0270
0.0287

3$

0.0295 0.0132
0.0131

0.0132 0.0071
0.0070

3$

0.0071

3$

TABLE II. Singlet and triplet elastic electron-hydrogen phase shifts for L =0, 1, and 2 at E=8.7 eV.

lg 3$ lg

1.QBA'
P1 (d =1.80)"
P2 (d =1.36)
Vpol

Variational'

0.7126
1.1011
0.9981
0.9578
0.886

1.3319
1.3929
1.3954
1.4020
1.643

—0.2682
—0.1618
—0.1587
—0.1567
—0.004

0.2417
0.3785
0.3792
0.3731
0.427

—0.0083
0.0397
0.0417
0.0474
0.0745

0.0309
0.0805
0.0826
0.0883
0.069~

'Reference 5.
Reference 6.

'Reference 11.

TABLE III. Singlet and triplet elastic electron-hydrogen phase shifts for L=O, 1, and 2 at E=4.9
eV.

3$

1.QBA'
P1 (d =1.80)
P2 (d =1.36)
ypol

Variational"'

0.9642
1.3774
1.2786
1.2338
1.041

1.7834
1.8432
1.8457
1.8503
1.9329

—0.1679
—0.0858
—0.0829
—0.0766
—0.009

0.1829
0.3074
0.3103
0.3125
0.3412

—0.0066
0.0264
0.0275
0.0321
0.0383

0.0130
0.0471
0.0483
0.0530
0.0424

'Reference 5.
Reference 6.

'Reference 11.

TABLE IV. Singlet and triplet elastic electron-hydrogen phase shifts for L=O, 1, and 2 at E=2.2
eV.

3Q 3$ 3$

1.QBA'
P1 {d=1.53)
P2 (d=1.04)
ypol

variational'

1.3373
1.9883
2.0212
1.6313
1.4146

2.2082
2.2714
2.2771
2.2745
2.2938

—0.0749
—0.0109
—0.0036
—0.0105

0.0100

0.0857
0.1874
0.2030
0.1803
0.1872

—0.0019
0.0166
0.0174
0.0181
0.0183

0.0028
0.0216
0.0224
0.0231
0.0198

'Reference 5.
Reference 6.

'Reference 11.
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mak

(2L + 3)(2L + 1)(2L —1)
(3.1)

a property found already for the phenomenological po-
tentials V"' or V . As in Ref. 6, the L & 5 contributions
to the cross sections, therefore, could be chosen accord-
ing to this formula.

In Tables II—IV we compare our present results for the
L=0,1,2 phase shifts +'5z with the ones of Ref. 6 and

with variational values" that are usually considered to be
most accurate. Also, for these low partial waves, the im-

provement of the I.QBA achieved by incorporating the
parameter-free Temkin-Lamkin potential is similar to the
one obtained with the phenomenological expressions (2.1)

or (2.2) for optimized values of the parameter d. This, on
the one hand, appears rather satisfactory; but it also
means that the discrepancies to the variational calcula-
tions are not removed when replacing V ' or V by V"
(only in the singlet-S phase shift the deviations are slight-

ly reduced).
The present approach, therefore, provides, in a

parameter fr-ee manner, quite accurate results for the
differential cross sections and the higher partial waves of
electron-hydrogen scattering below the first excitation
threshold. The inaccuracies of the low phase shifts found
in Ref. 6, however, are not removed when going over to
the Temkin-Lamkin polarization potential.

The main conclusion to be drawn from the present in-
vestigation, therefore, is that the excited two-body (hy-
drogen) states should be taken into account more explicit-
ly in the kernel of the integral equations, a requirement
leading, of course, to a higher number of coupled quasi-
particle equations, i.e., to a considerable increase of the
numerical effort.
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