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We have investigated the 6p&/Q 3/2np; J=O, 1, and 2 doubly excited, autoionizing series in atomic
barium, that is, nine of the ten series of the 6pnp configuration, for n between 10 and 28. Experi-
mental results are analyzed from two complementary points of view. First, we have studied the

energy-level structure within a given n multiplet. Second, we have performed simple multichannel-

quantum-defect-theory analysis of the 6p&/p 3/2np; J series, for each J value. We find that the jk
coupling scheme is the most appropriate for describing the resonance states in the long-range re-

gloI

I. INTRODUCTION

Numerous studies have now been devoted to the au-
toionizing doubly excited states of alkaline-earth
atoms. ' The doubly excited systems have revealed a
wide spectrum of original features in their structure and
properties. Among the most recent challenges, actually
related, one can mention the excitation of nln'l' double-
Rydberg states, with high and comparable n, l and n', l'
values, the search for highly correlated configurations,
or the excitation of highly stable resonances. The exper-
imental studies make common use of the isolated core ex-
citation (ICE) scheme, in which the two electrons are
successively optically excited. As a result, the excitation
profile of the continuum in the resonance region presents
itself as that of a quasibound state, with limited contribu-
tion of the direct underlying continuum. In barium, the
6pnl; J states have been particularly studied, since the
6s ~6p transition involved in the ICE scheme is a strong,
easily pumped transition. ' In the work presented here,
we have investigated the 6p&/&np; J and 6p3/2np; J states,
for n between 10 and 28, J equal to 0, 1, and 2. The 6pnp
configuration may be thought of as a relatively simple
one, but was not studied until the recent work of Story,
Yap, and Cooke on the 6p3/2np; J series. " Accordingly,
our results extend and complement those of Story, Yap,
and Cooke. The noticeable interest of the 6pnp
configuration is that it constitutes a manifold of autoion-
izing states involving a limited number of J components,
four 6pt/2np; J (J =0,2X1,2) and six 6p3/2np; J series
(J =0,2 X 1,2 X 2,3). Consequently, the experimental
study can easily enough provide extended and consistent
information on the manifold as a whole. In our experi-
ment, nine of the ten J components are accessible, the
J=3 state being excepted. This is in contrast with most
of the studies of 6pnl configurations, for higher 1: the
latter should proceed through successive attempts, each

concerned with a particular J value at a time. ' The oth-
er advantage is that analysis of the experimental results
can be global, including most of the J components for a
number of n multiplets. Moreover, two complementary
types of analysis can be performed, that were usually sep-
arately developed. " First, it is possible to analyze the en-

ergy spacings between the different J states, within a
given n multiplet, in terms of spin-orbit and Slater in-

tegral parameters. Second, measurement of 6pnp; J
series, for a given J, allows multichannel-quantum-
defect-theory (MQDT) treatment of the data. In this pa-

per, we make a simple attempt to associate in a consistent
manner the former and latter types of analysis.

Experimentally, the ICE scheme is easily set up with
only two laser excitation steps, as shown in Fig. 1. A
first, uv photon excites the 6snp 'P, state, whose energy
has been measured by Armstrong, Wynne, and Esher-
ick;' a second photon excites the 6s~6p, /p 3/2 transi-
tion, in the 450—500 nm range. The 6p &/2 3/2 limits are at
62296.46 and 63987.32 cm ', respectively. Within the
above ICE scheme, we have introduced a selective excita-
tion of the different J states, by choosing appropriate
combinations of laser polarizations. Because of the rela-
tively simple situation, the dependence of the different
transition moments on the angular momentum and light
polarization can be computed. It allows discussion of the
ion yield measurements, contributing to the tentatively
global analysis proposed.

The organization of the paper is as follows: experimen-
tal technique and results are reported in Secs. II and III,
respectively; analysis and discussion are in Sec. IV.

II. EXPERIMENT

The isolated core excitation scheme has already been
introduced in Sec. I and Fig. 1. The experimental setup
is schematically represented in Fig. 2. The barium
effusive beam is produced out of an oven at 750 C. The
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states in Ref. 13 should presumably be permuted]. Lower
n ( n =9) or higher n states ( n & 28) cannot be easily
pumped in our experimental conditions. Laser I chain
consists in an excimer pump (Lambda Physics —100
mJ/pulse) pumping a tunable dye (Lambda Physics 3002)
working with coumarin C102, further doubled in a beta-
barium-borate (BBO) crystal. Output energy after at-
tenuation and doubling is typically 50 pJ/pulse for a
pulse duration of 20 ns. The laser beam is focused in the
interaction region through a telescope (beam waist of O. i
mm); the corresponding intensity of 10 -10 W cm pro-
duces significant pumping and measurable photoioniza-
tion of the 6snp 'P, state. Laser II is used for exciting
the 6snp 'P& ~6p, &2np; J or 6p3/2np; J transition to au-
toionizing resonances. Laser II chain consists in Nz-laser

pumping a tunable dye. The first transition between 500
and 490 nm is pumped using an appropriate admixture of
coumarin C500 and C102. The second transition be-
tween 460 and 450 nm is pumped with C47. The energy
output is of typically 70 p J/pulse for a pulse duration of
10 ns; the spectral linewidth is 0.70 cm '. The same
focusing as for laser I and use of neutral density filters
lead to a working intensity of 10 —10 Wcm . For this
moderate intensity, resonance profile can be measured
without being affected by power broadening and reso-
nance saturation.

The accurate calibration of laser II wavelength, A.», be-
tween 500 and 450 nm is obtained from two complemen-
tary measurements, which are illustrated in Fig. 2. First,
a fraction of laser II beam is transmitted through a
Fabry-Perot etalon (free spectral range of 3.46 cm ').
The fringes of the intensity pattern are recorded simul-

I

taneously with the ion yield, as a function of A, n—see Fig.
3. Secondly, another fraction of the beam is diverted into
a "Lambdascope" device, which provides series of abso-
lute energy measurements, e.g., in Fig. 3, at 62086.74
cm '. The principle of the Lambdascope has been re-
ported in Ref. 14. As a result, A,» is measured with an en-

ergy accuracy of 0.05 cm
In order to introduce a selective pumping of the J com-

ponent in the resonance state, we have used combined po-
larized lights for both steps I and II. Initially linear, per-
pendicular polarizations of lasers I and II are
transformed into right- or left-circular polarizations by
means of A,/4 plates installed in both beams, without
changing their intensity. The configurations produced
are therefore (i) linear perpendicular nn, w. h. ich is la-
beled Lt; (ii) sr+0+ right-right-circular with respect to
the same propagation axis, labeled C+, (iii) o o right-
left circular, labeled C . A fourth sr~ linear parallel
configuration, labeled L~~, is produced with use of an ad-
ditional polarizer after the 1/4 plate, on laser beam II.
Since the intensity is reduced, the ion yield measurements
in L~~ require an appropriate normalization to those in
the three previous configurations. In the four
configurations used, the rate of polarization is about 95%
of the total intensity for each beam. The first excitation
step populates either 6snp; J;= 1, M; =0 (L

~~,
L t ), or

M; =1 level (C+,C ), the transition amplitude being in-

dependent of M, . The second step introduces a selective
pumping of the different J components, according to the
selection rules in the expression of the squared transition
moment:"

J, 1 J
( (6snp; J M; ~r e~6pnp; JM ) )

= g e
M; q

—M i(6snp; J, i~irC"'i~i6pnp; J ) i

where the e are the real standard components of the
laser II polarization. The angular factors multiplying the
reduced matrix element are listed in Table I for the
different polarization configurations. Note that they al-
low comparison of the transition probabilities between
two polarization configurations but for the same Jvalue.

Each of the four spectra in Fig. 3 corresponds to a par-
ticular combination of laser polarizations, i.e.,
C+,C,I-~, L~~~, respectively. Using the coefficients in
Table I, we can, in most cases, unambiguously assign a J

C+

0
0

1/5

1/3
1/6
1/30

1/3
0

2/15

L,

0
1/6
1/10

TABLE I. Angular factors in the squared transition moment
~(6snp; J;M;tr e~6pnp; JM) ('—.see Eq. (1)—as a function of
laser polarizations and J value. The table allows comparison of
the ion yield magnitude for different polarizations but for the
same J value.

value to the observed structures. Some measurable devia-
tions from the variation predicted are observed, when the
expected value is a small or zero value, e.g. , in Fig. 3, for

n + an
II

r 0 &n C+ and I.j This is attri-
buted to the residual polarization of the light introducing
residual excitation, which can be of the same order of
magnitude as the one produced by the dominant polariza-
tion. Definite assignment of some of the J components,
when not clearly resolved, has required analysis of the re-
sidual excitation.

In the conditions of isolated core excitation, spectra in
Fig. 3 show that the nonresonant photoionization
remains much weaker, by a factor of about 10, than the
resonant one. The excitation profile of a resonance state
is essentially Lorentzian, centered at energy E that we
call the resonance energy, and with a full width at half
maximum (FWHM) I . Width is measurable providing it
is larger than 0.3 cm ', i.e., not too small with respect to
the laser linewidth. Then, energy positions and widths
are measured with the same accuracy of 0.3 cm '. The
corresponding uncertainty on the v, /p v3/2 effective quan-
tum numbers varies as 2v b,E/R (R =109736.87 cm
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is the Rydberg constant for barium), from 0.001 (n = 10)
to 0.02 (n =28).

III. RESULTS

Two sets of measurements have been performed, of the
6p»2np; J=0,1,2 and 6p3/2np; J=0,1,2 autoionizing
series, respectively, for n varying between 10 and 28. As
we have mentioned, the 6p3/2np; J=O, 1, and 2 series
have been already studied by Story, Yap, and Cooke" for
n between 14 and 21. For these series, our results
extend —a new J=1 series is measured —and somewhat
complement the results in Ref. 11. The presentation of
our results aims at offering a global view of the 6pnp
configuration; it supports the simple, but tentatively glo-
bal, analysis of Sec. IV. Energy positions, effective quan-
turn numbers and widths of the autoionizing series are re-
ported in Table II (J=O), parts (a) and (b) of Table III
(J= 1), and Table IV (J=2). In the case of two 6pnp; J
series having the same limit, for J=1 or 2, the series of
lowest energy is labeled (a), the second one is labeled (b).

The relative position of the 6p, /2np', J and 6p3/pnp; J
series below 6p, /2 threshold can be followed in the tables
(the energy position of the 6p3/$9p multiplet is extrapo-
lated from the measured values at higher n). The
significant interaction between the 6p, /2np; J and

6p3/2n'p; J series below the 6p&/2 limit clearly appears on
the Lu-Fano plots of v&/2 as a function of v3/2 in Figs.
4—6, for J=O, 1, and 2, respectively. The solid lines
displayed in the figures result from a MQDT fit which is
developed in Sec. IV; in the present section, the graphs
only serve as guidelines for reading the plots of experi-
mental points.

Another, direct illustration of the interaction between

the two 6p&/2'; J and 6p3/pn'p; J series is given in the
spectra in Fig. 7. Spectrum (a) is measured with Lii po-
larizations, when the 6s11p P, initial state is populated,
and k&& wavelength scanned in the range 430—450 nm, in
the vicinity of the 6s11p~6p3/211p transition. Besides
the structures which can be assigned to the 6p3/$11@ mul-

tiplet, the spectrum exhibits a number of additional peaks
labeled (n; J). Namely, in Fig. 7, they correspond to the
excitation of the 6p, /220@;J=2 and 6p&/znp; J=O reso-
nance states for n=21,22. Actually, the J=O states were
observed, in the same conditions, for n = 18 to 24, as were
the 6p&/znp; J=1 states for C or Li polarizations.
Thus the spectrum gives direct evidence of an admixture
of 6p3/211p character in the 6p &/2'; J states. We note in

Figs. 4—6 that these states fall into the perturbed region
of the Lu-Fano plots. Figure 6 also shows that, while the
6p, /220p; J=2 state is strongly perturbed, the other J=2
states should be less mixed, and actually are not excited
in spectrum (a) in Fig. 7. Now, spectrum (b) is measured
with I.

it
polarizations, in the case of a direct excitation

6s22p~6p&/222p of the n=22 multiplet, i.e., k» in the
vicinity of 500 nm. We note that spectrum (b) reduces to
the single J=2 structure, the J=O structure which was
produced in spectrum (a) has disappeared. Besides the
channel mixing in the final state, part of the contrast be-
tween the two paths should also involve the ('P, P) mix-
ing in the 6snp; J;= 1 initial state, for n = 18 to 24. '

A. The 6p, /2np; J series

1. J=O

Table II and the Lu-Fano plot in Fig. 4 show the im-
portance of the interaction between the two

TABLE II. Resonance energies, effective quantum numbers, and widths {F%'HM) for the

6p, /, np; J=O and 6p3/2np; J=O series. The width of the 6p&/2np; J=O states is smaller than 0.3 cm
i.e., not measurable, for n ) 12.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

E (cm-')

59 478.7
60 116.3
60 694.0
61 005.2
61 249. 1

61 445.6
61 569.1

61 671.7
61 754.5
61 822. 1

61 877.1

61 922.5
61 958.5
62 009.0
62 033.3
62 056.2
62 076.7
62 094.7
62 111.0

6p&/2np; J=O
V1/2

6.241
7.095
8.278
9.219

10.236
11.357
12.283
13.253
14.230
15.210
16.176
17.130
18.018
19.539
20.421
21.373
22.345
23.320
24.325

I (cm ')

1.0
2.4

F (cm ')

61 338.2
61 985.8
62 432.0
62 741.0
62 967.9
63 137.5
63 268. 1

63 370.9
63 453.5
63 520.2
63 575.6
63 621.5
63 659.9
63 692.3
63 721.1

63 745.4
63 766.5
63 784.9
63 801.5

6p3/2np; J=0
&3/2

6.436
7.405
8.400
9.383

10.375
11.363
12.353
13.343
14.337
15.328
16.325
17.319
18.308
19.286
20.302
21.296
22.294
23.285
24.303

I (cm ')

1.3
1.8

24.3
17.8
14.3
12.4
7.4
5.5
4Q
4Q
3.3
2.5

3.3
1.3
1.1
0.6
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TABLE III. Resonance energies, effective quantum numbers, and resonance widths (FWHM) for the
(a) 6p»2np; J=1(a) and 1(b) series and (b) 6p3/pnp; J=1(a) and 1(b) series.

(a) 6p&/2np; J=1(a) and 1(b) series

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

E (crn ')

59 353.5
60 139.4
60 630.1

60 978.8
61 229.8
61 410.5
61 549.6
61 660.1

61 747.9
61 820.2
61 873.9
61 922.5
61 963.2
61 996.6
62 026.0
62 050.8
62 072.6
62 091.5
62 108.2

6p1/2np; J= 1(a)

+1/2

6.106
7.133
8.115
9.126

10.143
11.129
12.122
13.132
14.143
15.180
16.116
17.130
18.147
19.128
20.143
21 ~ 137
22. 142
23.139
24. 146

I (cm ')

25.9
2.4
5.4
3.3
2.1

1.5
2.5
6.9
2.0

0.5

0.3
0.7
0.3
0.3
0.3
0.3

E (cm-')

59 439.7
60 200.4
60 670.0
61 004.6
61 252.8
61 426. 1

61 561.7
61 667.8
61 753.2
61 825.7
61 876.3
61 928.9
61 966.7
61 999.4
62 028.3
62 053.0
62 074.4
62 093.0
62 109.6

6p»&np; J= 1(b)

+1/2

6.198
7.236
8.214
9.216

10.254
11.228
12.221
13.212
14.212
15.267
16.161
17.279
18.242
19.221
20.228
21.229
22.230
23.226
24.232

I (crn ')

8.0
0.8
1.0

0.3
0.1

0.1

1.4
2.2
1.2

~ 0.1

(b) 6p3/2np; J=1(a) and 1(b) series

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

E (crn ')

61 050.1

61 811.1
62 321.1
62 666.7
62 915.5
63 099.5
63 240.5
63 350.2
63 437.2
63 507.6
63 565.3
63 613.1
63 653.4
63 687.0
63 716.2
63 741.4
63 763.5
63 782.3
63 798.9

6p3/pap; J= 1(a)

6.112
7.101
8.115
9.116

10.119
11.120
12.121
13.124
14.124
15.124
16.126
17.124
18.127
19.116
20.118
21.123
22. 140
23.134
24. 131

I (crn ')

5.4
1.4
4.8
4.5
2.8
2.2
1.7
1.5
1.5
1.3
1.5
1.1
1.3
1.5
1.7
0.9
1.0
1.0
1.0

E (cm-')

61 166.6
61 898.7
62 373.0
62 702.4
62 941.9
63 119.7
63 255.3
63 362.2
63 447. 1

63 515.9
63 572.2
63 618.9
63 658.3
63 690.2
63 719.1
63 744.0
63 765.1

63 783.7
63 800.3

6p3/pnp; J= 1(b)

+3/2

6.237
7.248
8.245
9.242

10.245
11.246
12.244
13.250
14.252
15.258
16.260
17.258
18.264
19.219
20.228
21.239
22.223
23.217
24.225

I (cm ')

0.8
0.6
6.2
5.6
4.7
3.8
2.4
1.7
1.3
1.5
1.0
0.9
0.7
2.4
1.6
1.0
1.6
1.2

6p, /2np; J=O and 6p3/pn'p; J=O series. Actually, most
of the states between n=10 and 25 are perturbed. The
"unperturbed" value of the 5»z quantum defect is ap-
proximately that for n=25 to 28, i.e., 3.75. Except for
the first two states, the resonance widths are found small-
er than 0.7 cm ' and thus not measurable. They are also
smaller than the energy spacing between two J com-
ponents.

2. J=l
The two 6p, &2np; J= 1(a) and 1(b) series in part (a) of

Table III interact with the two corresponding
6p3 jpn'p; J= 1(a) and 1(b) series. Compared to Fig. 4, the
interaction illustrated by the Lu-Fano graph in Fig. 5 is
not as strong as in the J=O case, both curves presenting
portions of constant quantum defects, 6, /2"'=3. 86 and
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TABLE IV. Resonance energies, effective quantum numbers, and widths for the 6p&/2np; J=2 and 6p3/pnp; J=2(a) and 2(b) series.
Energy and width of the 6p3/2np; J=2(a) state are not determined for n=20 and 21, since the corresponding structure is hardly
measurable —see Sec. III B4.

6p &/2 np s
J=2

E (cm ') v&/2 I (cm ')
6p3/2np; J=2(a)

E (cm ') v3/2 I (cm ')
6p3/2np; J=2(b)

E (cm ') v3/2 I (cm ')

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

59 438.5
60 196.5
60 666.1

61 004.6
61 249. 1

61 424.9
61 560.6
61 668.1

61 754.0
61 822. 1

61 876.3
61 927.2
61 966.7
61 999.4
62 028.3
62 053.0
62 074.4
62 093.0
62 109.6

6.197
7.229
8.204
9.216

10.236
11.221
12.211
13.215
14.223
15.210
16.161
17.240
18.242
19.221
20.228
21.229
22.230
23.226
24.232

34.2
10.9
9.8
9.3
4.9
2.6
3.2
4.4
2.4
1.5
1.6
1.2
0.9
0.9
0.7
0.4
0.3
0.3
0.4

61 086.7
61 844.3
62 335.3
62 682.6
62 925.6
63 106.2
63 244.9
63 353.5
63 440.3
63 510.0

63 654.6
63 688.2
63 717.1
63 742.6
63 763.9
63 782.8

6.151
7.156
8.150
9.171

10.166
11.160
12.157
13.158
14.164
15.162

18.161
19.153
20.150
21.174
22.164
23.166

9.0
4.8
4.0
3.3
2.8
2.5
1.9
1.4

2.4
2.4
2.8
1.5
1.6
1.4

61 154.0
61 889.3
62 367.9
62 697.3
62 937.4
63 116.2
63 252.8
63 359.7
63 445.4
63 514.1
63 570.6
63 617.6
63 656.7
63 690.1

63 719.0
63 743.7
63 765.1

63 783.7
63 800.3

6.223
7.232
8.232
9.223

10.223
11.224
12.223
13.222
14.230
15.228
16.228
17.227
18.220
19.215
20.221
21.222
22.223
23.217
24.225

17.3
8.1

11.0
7.1

4.8
4.6
3.0
2.7
2.5
2.1

2.0
1.9
1.6
1.4
1.4
0.9
1.1
1.0

53~&" '=3.77. In the average, the 6pt ~znp; J= 1(a) series
has larger widths and larger squared transition moments
(1) than the 1(b) series. Note in part (a) of Table III the
dramatic change in the resonance width between n = 10
and 1 1 and the large value for n= 17, J= 1(a).

l I } 4 I I I I I I

3. J=2

The 6p & &znp; J=2 series in Table IV interacts with the
two corresponding 6pszzn'p; J=2(a) and 2(b) series. As
mentioned above from the Lu-Fano plot in Fig. 6, the
most perturbed state is that for n=20. The region of ap-
proximately constant v»2 determines 5»z =3.80. The
resonance width in Table IV roughly varies as v&&z, with
I v»2 —-5300 cm ', the width for n=17 is larger, as in
the case J= 1(a).
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FIG. 4. Lu-Fano plot of the —vl/2 (mod 1) quantum defect
as a function of v3/p (mod 1) effective quantum number, for the

6p, /, np;J=O and 6p3/2n'p; J=O resonance states below the

6pl/2 limit. The 6p3/pn'p; J states are labeled p (n'=10) and q
(n'= ll). The solid curve corresponds to the MQDT fit of Sec.

's 3pIVB1. A first estimate of p and p is obtained as the inter-
section of the curve with the vI/p v3/2 (mod 1) diagonal.

+3/2 effective quantum number

FIG. 5. Lu-Fano plot of the —
v&/2 (mod 1) quantum defect

as a function of v3/2 effective quantum number, for the
6p, /, np; J= 1(a) and 1(b) and 6p3/2n'p; J=1(a) and 1(b) series
below the 6p, /2 limit. In Figs. 5 and 6, the 6p3/2n'p; J(a) and
J(b) states are labeled p, and pb (n'=10), q, and qb (n'= 1 1).
The solid curve corresponds to the MQDT fit of Sec. IVB3.
For each state, the deviation between measured and computed
energies is smaller or of the order of the resonance width.
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B. The 6p3/2np; J series

Apart from the n=10 and 11 multiplets below the
6p&/2 limit, the 6p3/2np; J series appear as rather regular
between n = 12 and 28. In Table II, part (b) of Table III,
and Table IV, one clearly checks the increase of the reso-
nance widths across the 6p&/2 threshold. For instance, in
the J=O case, the width varies from 1.8 cm ' (n= 1 1) to
24 cm (n =12). In the latter case, this is a clear indica-
tion that autoionization of the 6p3/2np; J=O state mainly
occurs in the 6p, /2sl continuum. Actually, a preliminary

FIG. 6. Lu-Fano plot of the —
v&/& (mod 1} quantum defect

as a function of v3/2 effective quantum number, for the
6p»2np;J=2 and 6p3/2n'p; J=2(a) and 1(b) series below the
6p, /, limit. The solid curve corresponds to the MQDT ftt of
Sec. IV B2. For each state, the deviation between measured and
computed energies is smaller or of the order of the resonance
width. Note that the n=20 state is the most perturbed in the
6p&/2np; J=2 series.

attempt to measure the energy of the ejected electrons, by
means of a time-of-Aight analysis, has confirmed that au-
toionization of the n = 12 multiplet predominantly occurs
in the 6p»2el continuum. The ordering of the energies
within a given multiplet remains the same throughout the
range n=1Q to 28. It comes out, by order of increasing
energies, as J= 1(a), 2(a), 2(b), 1(b), and O. No inversion is
observed as it is often the case for the 6p, /znp series.
Specific remarks should be added, according to the
different J values.

1. J=O

I I I I
l

I I I I
l

I I I I
l

I I I

3.90— 4
4 4 4 44 4 4 4

4

For the 6p3/2np; J=O series in Table II, the only series
which can be thought of as a perturber is the 7sns; J=O
series. However, its 7s lowest energy state is positioned
according to the calculation of Aymar' at 65000 cm
that is above the 6p3/2 limit. Figure 8 displays the varia-
tion of the 53/3 quantum defect for the 6p3/2np;J=O
series as a function of n principal quantum number.
Surprisingly enough, whereas an essentially constant
number is expected, the experimental points emphasize a
regular increase, of about 0.2, of the quantum defect. In
the same conditions, the quantum defects measured for
the other J=1 and 2 series remain approximately con-
stant, as shown in Fig. 8. Thus a systematic error due,
for instance, to the energy calibration of the spectrum
seems very unlikely. Story, Yap, and Cooke" have not
reported such a regular variation of 53/2 By the scale of
the graph they have published, it is difficult to say wheth-
er their rneasurernents agree with ours, or not. At
present, we do not have a definite explanation for the
variation observed. Because of the finite resonance
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FIG. 7. Ba+ ion yield as a function of k&I wavelength (abso-
lute energy scale), for L

jj
polarization. Spectrum (a):

6s11p 'PI ~6p3/$11p;J excitation and 6s11p 'P&~6p&/2np;J,
n=20, 21,22, indirect excitation. The corresponding structures
are labeled (n;J). Spectrum (b): 6s22p P] ~6p, /222p; J direct
excitation.

FIG. 8. Measured 53/2 quantum defect for the 6p3/pnp;J
series, as a function of n between 10 and 28. Note the variation
of 53/2, the error bars correspond to a 0.3 cm ' uncertainty on
the resonance energy. In the same conditions, quantum defects
for J= 1{a) and 1(b), J=2{a) and 2(b) series are approximately
constant.
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width, part of the variation may be attributed to a change
in the resonance profile, with subsequent bias in the reso-
nance energy [in particular, ('P, P) mixing takes place in
the initial state —see Sec. IV]. However, according to the
measured resonance widths, the shift should not exceed
0.002 for n=10, 11, and a maximum of 0.04 for n=12. In
Table II, the variation of the width with the v3/p effective
quantum number is reasonably fitted by a v3/p law, with

rv3/p —1.4X10 cm '. However, one notes the width
for n =23, larger by a factor of 2 than the one expected.

2. J=l
Besides the 6p3&znp;J=1(a) series of lowest energy

identified by Story, Yap, and Cooke in Ref. 11, we have
measured the second J= 1(b) state of the multiplet. As
shown in part (b) of Table III and Fig. 8, the two series
exhibit approximately constant quantum defects, 3.88 for
the 1(a) series, in agreement with Ref. 11, and 3.75 for the
1(b) series. Actually, the second line was difficult to mea-
sure in our experimental conditions, as it probably was in
the experiment of Story, Yap, and Cooke. The line has a
small relative intensity for n ~20, and is hardly resolved
from the stronger J=2(b) line for n) 20. The variation
of the resonance widths in part (b) of Table III is not fully
regular. For the 1(a) series, a v3/p law can only approxi-
mately fit the points n=12 to 19 (I'v3&z—-3000 cm
For higher n, the widths remain significantly larger, by a
factor of 2—3, than the fit-predicted values. Neither ex-
perimental uncertainty, nor limited resolution of the
structure, entirely explains this deviation, since the 1(a)
line is a well-isolated structure in the ion spectrum. The
widths of 1(b) series are approximately fitted by the law
I v3/p —4500 cm ' in the range n = 12 to 22. The width
for n =23 significantly larger than the one predicted. For
higher n values, measurements are affected by the limited
resolution of the structure.

3. J=2

Energies and widths for the 6p3&~np; J=2(a) and 2(b)
series are in Table IV. The two series present essentially
constant quantum defects, 3.84 and 3.77, respectively, as
shown in Fig. 8, in agreement with measurements in Ref.
11. The variation of the widths reproduces the same
features as in the J=O and 1 cases. For n=12 to 19,
widths are approximately fitted as I v3/p of the order of
3000 cm ' for 2(a), and 5500 cm ' for 2(b). The widths
for higher n are larger by a factor of 2—3 than the fit. The
maximum values of the I v3/Q product occur between
n=22 and 24. This observation, common to all the
6p3/Qnp; J series, can be partially related to the change in
the character of the 6snp; J,. initial state between n=21
and 24, where 'P and P are mixed. However, a definite
interpretation would require careful study of the reso-
nance profile; this question is not addressed in the present
work.

4. Relative intensities within a multtplet

The ratio of the total ion yields for two different J lines
(the total ion yield is defined as the integrated signal un-

6snp; J; —6p3/pnp; J=1
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FIG. 9. Ratio of the 6p3/2np; J= 1(b) to J= 1(a) ion yields. ~,
experimental points (measured for C polarization). 6, corn-
putation from Sec. III 84 for jk coupling in the asymptotic final

state. The ('P, 'P) mixing in the 6snp; J, state is accounted for
between n= 18 and 28; between 10 and 17, the solid line is only
indicative. Qualitative agreement is obtained in the 18—28 inter-
val, with resonance states labeled as 1(a), k=3/2 and 1(b),
k=1/2. c, the same for jj coupling in the asymptotic final

state. Computed curve (or inverse) does not fit the experimental
points.

der the resonance profile) is easily measured within a
given n multiplet i.e., a given spectrum as in Fig. 3. The
total ion yield ratios, 8 " '/cP "', from the J=1(b)
to the 1(a) line, and 8 "/d" ' ', from the J=2(a) to
the 2(b) line, are plotted in Figs. 9 and 10, respectively, as
a function of n. One notes that they present a maximum
for n=14, 15, and 23,24, where the 'P and P characters
are mixed in the 6snp initial state; conversely, there is a
minimum for n=18 to 20. As the ion yield measure-
ments are sensitive to the symmetry of the initial state,
they also reAect the symmetry of the quasibound final
state. Hence we have attempted a qualitative test of the
two limiting coupling schemes for describing the reso-
nance state, either jj or jk, by comparing the simple com-
putations of the transition moment in (1) to the experi-
mental points. Within the ICE approximation, the tran-
sition moment is expressed as the product of three fac-
tors, i.e., an angular factor, the dipole matrix element for
the ion core transition, and an overlap integral for the
outer electron. ' For achieving the computation, the
bound part of the 6p3/pnp; J resonance state, for J=1 or
2, is expanded in either a jj- or a jk-coupled basis; the
bases are, respectively,

(6p3/pnpj, ';J), j~=1/2, 3/2 for J =1 and 2,
(6p3&znp [k];J), k =1/2, 3/2

for J=1; 3/2, 5/2 for J =2 .
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are accounted for by the computation. Accordingly, a
particular 6p3/pnp [k];J component should have a dom-
inant weight in the long-range expansion of the resonance
state. We find that the J components can be labeled, in
order of increasing energy, 6p3/2np[3/2];J=1(a) and
J=2(a), [5/2];J=2(b), [1/2];J= 1(b), and [1/2];J=0.
We note that this ordering, where components with the
same k value are consecutive, is compatible with the en-

ergy structure of the jk-coupled multiplet. Finally, the
measurement of ion yield ratios indicates that jk-
coupling scheme is presumably better adapted than jj for
describing the long-range symmetry and energy-level
structure of the 6p3/2np multiplet.

IV. ANALYSIS AND DISCUSSION

Z'.
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FIG. 10. Ratio of the 6p3/2np; J=2(a) to J=2(b) ion yields
(the experimental points are measured for C+ polarization).
Comments are the same as in Fig. 9. For jk coupling, qualita-
tive agreement is obtained with resonance states labeled as
J=2(a), k=5/2 and J=2(b), k=3/2.

Now, the reduced transition moment in (1), for the
6snp; J; ~6p3/2np; J transition, can be easily calculated
under the following simplifying assumptions.

(i) The 6snp; J, =1 initial state is a linear combination
of 'P, and P, LS states, with the mixing coefficients
determined by Post, Vassen, and Hogervorst' for n be-
tween 18 and 28. ('P, P) mixing should also exist for n

between 11 and 15, but coefficients have not been rnea-
sured until now.

(ii) Each of the two J(a) and J(b) resonance states is
identified with one of its bound components in the above
basis sets, either jj or jk coupled. The transition moment
corresponds to the oscillator strength density integrated
throughout the resonance profile. ' "

Comparison between the measured and computed ra-
tios is illustrated in Figs. 9 and 10. Although they are
only grounded on a qualitative basis, at least two con-
clusions can be drawn from Figs. 9 and 10. First, the

computation in the jj-coupling scheme does not repro-
duce the experimental points. Whether a ratio or its in-
verse is considered, it is impossible to check for both the
position of the maxima and their order of magnitude (ei-
ther the fit is off by one order of magnitude or the maxi-
ma are mismatched). Conversely, although it does not
show full and accurate agreement, the computation in the
jk-coupling scheme is certainly closer to the experimental
points than the former one. Both the maximum for
n=23 and the correct order of magnitude of the ratios

The purpose of this section is to develop a global and
coherent analysis of the results on both 6p, /2np; J and

6p3/2np;J series, in the simplest possible frame. The
choice of this simple frame is naturally suggested by the
experimental results. First, the energy spacing between
two consecutive multiplets (800 to 20 cm, with increas-
ing n j is always much larger than the resonance widths
(20 to less than 1 cm '). Moreover, because of the finite
laser linewidth, only partial measurements of the reso-
nance widths were performed on the 6p&/2np; J series.
Therefore we have found it reasonable to limit our
analysis to the energy positions of the resonances,
without consideration of the widths. In this context, the
dominant interaction for the 6p, /2';J and 6p3/pnp; J
series is their mutual interaction below the 6p»2 limit, as
clearly illustrated by the Lu-Fano graphs in Figs. 4—6.
Therefore we have restricted our analysis to the frame of
the 6pnp configuration, below and above the 6p, /2 limit.
However, we stress that comparison between the mea-
sured resonance energies and those from a discrete state
model is only significant within the finite resonance
widths.

A. Energy-level structure of the 6pnp configuration

In a first step, we have attempted to fit the energy-level
structure of the 6pnp configuration, i.e., measured ener-
gies of both 6p, /2'; J and 6p3/2np; J series for J=O, 1,
and 2, in terms of the six standard parameters. " ' ' the

and g„spin-orbit integrals for the 6p and np elec-
trons, respectively; the F,F direct and 6,6 exchange
Slater integrals for electrostatic interaction. Our attempt
partially repeats but further extends that reported in Ref.
11 in the case of the 6p3/$15p multiplet. In Ref. 11, Sto-
ry, Yap, and Cooke have limited their investigation to
determining the four F, G, G, and g, ~z parameters
from the four energies they have measured [J=O, 1(a),
2(a), and 2(b)] in the multiplet. In our fit, we determine
five parameters —g6 is fixed, equal to 1127 cm
including as experimental data, either (i) the five energies
of the J components measured in the 6p3/pnp multiplet,
or (ii) both sets of measured energies (four in 6P, ~i np and
five in 6p3&2np multiplets), that is a reasonably larger
number of points than of parameters. The fit is repeated
for different n values, between 16 and 23 in case (i), for
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TABLE V. Parameters determined from analysis of the
energy-level structure in the 6pnp configuration, for different n

multiplets. (i) F,F direct and G, G exchange Slater integrals
in cm ', n* is the effective quantum number associated with

F,„, average energy of the configuration. (ii) g„~ spin-orbit in-

tegral in cm

Fo 60

16
17
18
19
22
23

62 686.7
62 794.2
62 879.9
62 949.0
63 092.5
63 125.6

12.20
13.20
14.21
15.23
18.30
19.30

49
38
29
25
14
10

2
1.5
1.5

n = 16, 17, 18, 22, and 23 in case (ii); in the latter case, the
range of n values where the two multiplets strongly in-
teract has been excluded. We have used for the fit the
code displayed in Ref. 19. The Hamiltonian matrix
(spin-orbit plus Coulomb interaction) is written in the
LS-state basis for the 6pnp configuration. After diagonal-
ization of the matrix, parameters are optimized so that
energy eigenvalues fit the experimental data. Determina-
tions of the different parameters are displayed in Table V.
Calling n' the effective quantum number associated with
the average energy F~„~ of the 6pnp configuration, we

check that F~„~ and 6~„~ vary approximately like
(n') 3. '@' The determination of G~„~ is affected by a
larger uncertainty; its departure from a (n') law is not
significant. The values of the g„spin-orbit integral are
between 1 and 2 cm ' for n=16 to 18. This parameter
could not be fixed for higher n. Finally, our results for
n=16 to 23 are consistent with those in Ref. 11 for
n =15. Spin-orbit interaction for the np electron is found,
as expected, smaller than electrostatic interaction be-
tween the two electrons. This supports the conclusion of
Sec. III B4 that the jj-coupling scheme is not the best
suited for describing the long-range symmetry of the res-

onance state. However, the contributions to the electro-
static energy of the direct and exchange Slater integrals,
respectively, are found to be of the same order of magni-
tude (this can be checked further in the text from the en-
ergy expressions in Table VI); this somewhat contrasts
with the condition (exchange tertns negligible with
respect to direct ones) which usually characterizes pure
jk-coupling scheme.

B. MQDT analysis of 6pnp;J series

As mentioned, we deliberately limit our analysis to the
energy positions of the resonances. With this restriction,
MQDT analysis of the data involves the minimum num-
ber of channels required for a first-order positioning of
the resonances, i.e., for a given J value, the 6p, /2np; J
and 6p3/2np; J channels. Accordingly, resonances are
viewed as bound states below the 6p, /2 limit; comparison
with the measured resonance energies is only significant
within the resonance widths. Our MQDT analysis makes
use of the standard formulation of Lee and Lu, '
developed in terms of the tz eigenchannels. Since MQDT
is an extensively documented topic in the literature, we
only recall some particular points, which are relevant to
the studied case. In the Lee and Lu formulation, two sets
of channels are introduced, which are respectively ap-
propriate to the limiting cases of short-range and long-
range interaction between the electron and the core. The
first set is that of the close-coupled a eigenchannels,
which diagonalize the short-range interaction; the second
set corresponds to the collision channels, labeled with an
i index. The meaningful physical parameters are (i) the
JM eigenquantum defects associated with the a eigen-
channels, and (ii) the orthogonal U matrix, i.e., the trans-
formation between the above two channel bases entering
the description of the resonance state. In our simple
model, the resonance energies below the 6p&/2 limit are
discrete energies E which satisfy the following two well-
known conditions:

TABLE VI. Energies of the LS;J states in the 6pnp
configuration when spin orbit is ignored. in terms of Slater in-

tegrals (Ref. 23). The p quantum defect is fixed from the Lu-
Fano plot in Fig. 4. Other pL associated to E(LS) are estimat-
ed from (4) (p is averaged over the n multiplets in Table V).

F2 62
E('P) =F — — 6 —,J= 1, p =0 86

5 5

F 6E( P)=F — + 6 —,J=0,1,2, p =0.79

F2 62
E( D)=F + — 6 +, J=1,2,3, p =0.77

25 25

o F 6E('D)=F + + G +, J=2, p =069
25 25

3 o 2F o 26E( S)=F + — 6 +, J=1, p =0.64
5 5

o 2F o 2GE('S)=F + + 6 +, J=O, p =0.53
5 5

RE —E, = —--
Q2

F(v;)=det~U; sinn(p +v;)~=0, (3)

where E, is the ionization threshold associated with the
collision channel i. In the case of 6pnp configuration, v&/2

effective quantum number is expressed in (3) as a function
of v3/2 the corresponding curves are the Lu-Fano graphs
in Figs. 4—6. Discrete state energies are at intersection
with the curve from (2). It is a general assumption that in
the short-range region, the electrostatic interaction dom-
inates the spin-orbit interaction. As a result, the a eigen-
channels have a dominant LS character. By neglecting
spin-orbit terms in the short-range region, approximate
values of the p eigenquantum defects can be deduced
from the energy-level structure of the 6pnp configuration,
analyzed in Sec. IVA. In Table VI, we recall the expres-
sions for the energies of the LS states in the 6pnp
configuration, as a function of the Slater integrals. The
order in Table VI is that of increasing energy, as deter-
mined with the parameters of Table V. Now, the follow-
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ing expression of the p eigenquantum defect is easily
's

obtained, as a function of one of them, e.g., p
' —1/2

E(„)('S)—E(„)(LS)+
R

Ls (4)'s z(n —p )

where n is defined as the integer part of n*+1 and equal
's 's

to n —3. An estimate for p, p =0.53+0.01, can be de-
duced from the Lu-Fano graph in Fig. 4 relative to the
6pnp; J=O series [one has made use of the rules (i) the (M

eigenquantum defects are at intersection of the Lu-Fano
graph from (3) with the diagonal v, &2= v3&z (modulo 1), '

and (ii) the 'S(3 state is the one of highest energy, i.e., of
lowest quantum defect]. The p parameters determined

by (4) turn out to be approximately constant, within 0.01,
for the different n multiplets. Average values are given in

Table VI.
As we mentioned in Sec. III B4, the collision channel

basis can be defined according to either the pure jj- or
pure jk-coupling scheme. In that respect, we have no-
ticed in Sec. IIIB4 that jk coupling should be better
adapted than jj for describing the bound part of the
6p 3 /2 np; J resonance states in the long-range region.
Hence, in our work, the U matrix is factorized in the
form

the jk-coupled collision channel basis:

(7)

F(v, )=det(%+tanmv)=0 . (3')

The Z; coefficients in (7) are easily calculated once the
MQDT parameters are known. Of practical use is that
Z; is proportional to the 8F/Bv, partial derivative of the
F(v; ) function in (3). ' The coefficients relative to the
jj-coupled basis are computed from the Z; through a
(jk~jj) transformation. From both sets of coefficients,
channel mixing is analyzed and the most appropriate la-
beling of the resonance state, in either the jk- or jj-
coupling scheme, is selected. In the following, we consid-
er percentage admixture coefficient 8'; = 100Z, .

In order to check the consistency of the analysis below
the 6p&/2 limit, we have extrapolated its predictions
above threshold, and compared them with experimental
data. For this, we refer to the alternative formulation of
MQDT, which makes use of the% short-range reac-
tance matrix defined as % = U tan(my, ) U. The deter-
minantal equation (3) transforms into the equivalent one
(3'), written in matrix form:

U = Tj~.Ls V,

where T/k Ls is the .(jk~LS) transformation within the

6pnp; J configuration; the phase convention for T k.Ls is
that of Ref. 18(d). The orthogonal V tnatrix accounts for
the departure from pure LS coupling in the a eigenchan-
nels. ' V can be generated by successive rotations, each
characterized by a P angle (note that the order of the

factors is not arbitrary):

Now, the v; parameters relative to the open channels are
identified, modulo 1, to the —~ parameters, such that ~~
are interpreted as eigenphase shifts in the open channels
relative to the pure Coulomb phase, characteristic of the
continuum eigenstates at energy E. According to the
increasing number of channels involved, the three analy-
ses are presented in the order J=O, 2, and 1.

V= gR(P ).
a(a

(6)
I. MQDT analysis of the 6pnp; J=O series

We have determined the energy-independent )M, and P
parameters by fitting the measured resonance energies
below the 6p, /2 limit. The fitting procedure uses the
MQDTAc code developed by Robaux and Aymar. In
our case, the fit proceeds through minimization of the
rms deviation between theoretical and experimental reso-
nance energies, which are regarded as discrete state ener-
gies. Here, we should recall that the fit is essentially fixed

by the points in the interaction zone of the Lu-Fano plot
(for instance, of crucial importance is the curve profile in
between the asymptotic branches), where only a limited
number of them have been measured. Moreover, energies
alone are often insufficient for determining a unique set of
P angles. An additional condition must be introduced,
which consists in minimizing the deviation of V from the
unity matrix. Actually, because of the limitations in the
fit and of the approximations we made (ignoring open
channels and limiting the analysis within the 6pnp
configuration), the fit outputs —for instance, the P an-

gles and related quantities —should be interpreted with
some care.

The wave function 41E of the resonance state at energy
E can be expanded in terms of the y,- wave functions, in

Within the 6pnp configuration and J=O subspace, the
collision channels are the following, jk-coupled channels:
channel 1,

6p, &2np [1/2];J =0,

channel 2,

6p3/2np [1/2];J .

Note that they identically correspond to the
6p»2np&/2, J=O and 6p3/pnp3/p J=O, jj-coupled chan-
nels, respectively. The two a eigenchannels can be la-
beled according to their dominant LS character: n eigen-
channel 1, 'S0; and 2 P0. The p eigenquantum defects
obtained from the fit are in Table VII. They are compati-
ble, within 0.02, with their estimated value from (4). The
fit does not introduce significant deviation of the U ma-
trix from its initial T k. Ls determination; the P) 2 angle is
fixed to —0.07 rad. The corresponding graph is
displayed in Fig. 4. The deviation between the measured
and computed energies is smaller or of the order of the
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Method 3S D 3p ip

6pnp
configuration

MQDT fit
J=O
J=1
J=2

0.53 0.64 0.69 0.77 0.79 0.86

0.53
0.72

0.74
0.86
0.81

0.81
0.81
0.85

0.91

TABLE VII. p eigenquantum defects labeled according to
the dominant I.S character of the a eigenchannels. Row 1,
reproduced from Table VI, i.e., determined from analysis of the
energy-level structure in the 6pnp configuration. Rows 2—4, es-
timated from MQDT fit on the 6P, /p 3/pnp; J series.

the dominant coupling for the 6p3/pnp; J states is with
the 6p]/zep;J open channel, the other ones being ig-
nored. Above the 6p, /z limit, mv]/z corresponds to the
eigenphase shift in the unique open channel. This phase
shift varies by m. with energy when crossing a resonance
in the closed channel, i.e., T, =tanm. v&/z should have a
pole for the resonance energy. ' According to the sim-
ple form (3') of the determinantal equation, poles of Ti
occur for vs/i=(1/m )arctan( —%~i) (mod 1), which cor-
responds to a quantum defect of 0.54. We note that this
value is roughly compatible with the lowest measured
value of the quantum defect for the 6p3/pnp; J=O series
in Table II, 53&z =0.56 for n = 10.

TABLE VIII. Percentage admixture coeScients, 8'; = 100Z, ,
of the 6P, „np [1/2];J and 6p3/inp [1/2];J collision channels in
the 6pi/g 3/pnp,

' J=O resonance states below the 6p»& limit. 8'
are computed using MQDT parameters from the fit in Sec.
IVB I. In Tables VIII—X, the 6p~/p 3/pnp[k];J channels are
noted 1/2, 3/2[k].

J=O

6p i n10p
6pi/q11p
6P3n9P
6p i/z12p
6P i/z13P
6p i n14P
6P3/&10P
6pin15p
6p i /& np

16~ n ~20
6p in, 21p
6p i/q22p
6P3n1 1p

6p3/$23p
6P3n24p
6p i/znp

n «25

1/2[1/2]
8]

93
60

3
94
95
78
44
89

&95

93
84
79
81
92

&95

3/2[1/2]
8'p

7
40
97

6
5

22
56
11

7
16
27
19

8

resonance width.
The strong interaction between the two series is

reflected by the mixing of the 6p, /znp[1/2];J=O and
6p3/zn'p [1/2];J=O states (n'=9, 10,11) in the wave
function (7) of the 6pnp; J=O resonance state. The

] /p 3/Q percentage admixture coeScients are listed in
Table VIII. One notes the significant weight of the
6p3/ill p[1/2] J cllaililel 111 tile 6p]/ nip; J state, for
n = 11, 14, 15, and 21—24. This important channel mixing
explains that it is possible to excite the J=O component
of the 6p, /znp multiplet, starting from the 6sn'p 'P„
n'= 10 or 11, initial state, as was observed in spectrum (a)
in Fig. 7.

Extrapolation aboue the 6p&/& limit. The extrapolation
of the previous analysis above the 6p, /z limit is, obvious-
ly, only indicative. It proceeds from our assumption that

2. The 6pnp; J=2 series

Our simple analysis of the 6p, /p3/pnp;J=2 series is
developed in the three, jk-coupled, collision channel
basis: channel 1,

6p, /inp [3/2];J
channel 2,

6p3/i np [3/2];J,
channel 3,

6p3/inp [5/2];J .

The three a eigenchannels are labeled according to their
dominant I.S character: a eigenchannel 1, 'Dz,' 2, Dz', 3,
P~. From analysis of Sec. IV A, we have associated with

each of them in Table VI a first determination of the p
eigenquantum defects. The p parameters obtained from
the fit are reported in Table VII. They are systematically
larger& by about 0.06, than the ones initially determined.
The p parameter is also slightly larger (+0.03) than the
one determined in the fit for J=O. The V matrix (6) is a
product of three rotation matrices; p angles estimated
from the fit are, in radians, p, z= —0.01, p» = —0.20, and

F3 not significantly different from zero.
We find that jk coupling is better adapted than jj for

describing the resonance states in the long-range region.
The 8', admixture coefficients in the 6p, /znp;J and

6p3/znp; J resonance states below the 6p»z limit are list-
ed in Table IX. All the states but the 6p»z20p; J=2 and
the 6p&/&lip; J=2(b) states have W, weight larger than
95 in the jk-coupled basis. The jk labeling of the
6p»zn'p; J resonance states, n'=9, 10,11 proceeds from
Table IX as k=3/2 for 2(a) resonance and k=5/2 for
2(b) resonance. It is compatible with that for the J=2
resonance states, deduced above threshold from the
analysis of ion yield ratios in Sec. III B4.

One checks that the 6p»~np; J=2 series is much less
perturbed than the J=O series, since only the
6p, /z20p; J=2 state has an appreciable 6p3/inp[k];J
component ( JY3 =26 for k=5/2). This explains why the
6p ] /z 20@;J=2 state is efficiently excited from the

6s lip 'P, state [in spectrum (a) in Fig. 7], whereas other
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J=2

6p 1/2 np
n %20

6p3/$10p (a)

6p3/210p (b)

6p3/~11p (a)

6p]/220p
11p (b)

1/2[3/2]
W,

1

5

3
74
31

3/2[1/2]
W~

99

3/2[5/2]
W3

95

26
69

TABLE IX. Percentage admixture coefficients, 8' = 100Z,',
of the 6p)/2np [k];J and 6p3/2np [k];J collision channels in the

6p, /2 3/2np; J=2 resonance states below the 6p, /2 limit. W, are
computed using MQDT parameters from the fit in Sec. IV B 2.
See Table VIII.

The latter simplified form is obtained at resonance ener-

gy, where T2 = T3 = T+ and T, infinite (the two ratios for
T+ and T, respectively, are inverse of each other).
With the estimated parameters [%23—-10,much small-
er than 7722 and %33 in (9), so that T+( )

—— %33(22)],
the ratio (10) varies from a few 10 [T+,' resonance 2(b)]
to more than 100 [T; resonance 2(a}]. This noticeable
contrast shows that the 6p3/2np; J=2 states are well de-
scribed in the long-range region by almost pure jk cou-
pling [k=5/2 for 2(b) resonance, and k=3/2 for 2(a)].
The latter assignment is consistent with that obtained for
6p3/2np; J=2 states located below the 6p, /2 limit. It is
also compatible with the jk labeling of 6p3/2np;J=2
states deduced above threshold in Sec. III B4.

members of the same series (n=21,22) are not as easily
accessible.

Extrapolation above the 6p&/2 limit. Keeping in mind
that our three-channel analysis can provide but only a
rough description of the continuum above the 6p»z limit,
we nevertheless attempt an extrapolation to check the
consistency of our treatment. As we recall from Sec.
IVB1, with collision channel 1 becoming open, m.v&/2

corresponds to the eigenphase shift of the one-
dimensional continuum; mv, /2 varies by m, i.e., T, has
poles, across the resonances in the closed channels. From
(3'), we obtain the expression of T1 as a function of T2
and T3, where T, =tanmv, :

T) +A))

+13(T2 ++22 }++12(T3 ++33} +12+13+23

2++22)( 3++33} +23

(8)

Since the two closed channels have the same 6p3/2 limit,
we have T2=T3; the poles of T, are obtained as the roots
T+ of the denominator in (8) [the cofactor of T, +%» in
the determinant (3') should be zero]:

+ 2 I +22 +33—[(+22 +33) + +23] (9)

W2

W3

r)F (v, )/t)v2

aF(v, )/av,

1+T', (T, +A )(3T3)+&)))—&)3
I+ T3 ( T2++22)( Tl ++11) +12

T+ +%33
T+ +%22

(10)

T+ correspond to the two J=2(b) and 2(a) resonance
states, respectively. The quantum defects of the autoion-
izing series are 53/2 ",53/2

' '= 1 —
( I /m. )arctan( T+ ),

0~ arctan(T+ ) & n , they are e"qual to 0.85 to 0.77, which
values reasonably agree with the ones experimentally
measured in Table IV and Fig. 8. The unique continuum
eigenstate at energy E has an expansion (7} in the long-
range region; one easily expresses from (3') the ratio of
admixture coefficients relative to the closed channels:

3. The 6pnp;J=l series

Our MQDT analysis of the 6p)/2 3/2np; J= 1 series is
developed in the basis of the following four, jk-coupled
collision channels: channel 1,

6P1/2nP [1/2];J,
channel 2,

6P, /2nP [3/2];J,
channel 3,

6p3/2np [1/2];J,
channel 4,

6P3/2nP [3/2];J .

The a eigenchannels, labeled according to their dominant
LS character, are a eigenchannel 1 S&' 2 P&' 3 P]' 4,
D, . A first determination of the p eigenquantum de-

fects has been attached to the a eigenchannels in Table
VI. The p parameters estimated in the fit are reported

S 1p
in Table VII. The p and )tt are larger (by 0.06 and
0.04, respectively) than their determinations in Table VI.

3D 3p
Another observation is that p and p have inverted
their relative magnitude with respect to the J=2 fit. Ac-

D 3p
tually, the determinations of p and p in Sec. IV A, re-
sulting from the global analysis of the 6pnp configuration,
are close to each other, within 0.02 rad. The V matrix in
(6) is the product of six rotations; p angles determined

in the fit are, in radians, as follows: p, 2, 0.07; p13,
—0.18;

P,4, 0.10; P23,
—0.17, P24, 0.00; P34, 0.04. The corre-

sponding graph displayed in Fig. 6 is already satisfactory.
The deviation between the experimental and computed
energies is smaller or of the order of the widths; the
inAection of the curves in between their asymptotic parts
is generated and should be significant.

The W, admixture coefficients in the 6p, /2np;J and
6p3/2n'p; J resonance states below the 6p, /2 limit are
computed in Table X, relative to the jk-coupled basis.
Although the perturbation of the 6p, /2np; J=1 series by
the 6p3/pn'p; J states is stronger than for the J=2 series,
it significantly affects only a limited number of states.
Far from the perturbers (n &13,19,20), the
6p)/2np; J= 1(a) and 1(b) states are well described in ei-
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ther the jk -or jj-coupling scheme, with in both cases
dominant weight, 8'; & 95, of a purely coupled state. In
the perturbed energy ranges (n=13,19,20), the series in-
teraction induces a very irregular variation of the 8',.
coefficients, when going from one to the following n state.
For these states, although by a small percentage, the jk-
coupling scheme is, again, better adapted than the jj.
From Table X the 6p3/pn'p;J resonance states below
threshold are approximately labeled as k=3/2 for l(a)
resonance and k= 1/2 for 1(b) resonance. This labeling is
consistent with that derived above threshold from ion
yield ratio analysis in Sec. III B4.

In the three fits for J=O, 2, and 1, we have noted that
the successive determinations of the p parameter, for a
given LS character of the a eigenchannel, can be
significantly different. This should reflect a deviation
from pure LS coupling in the a eigenchannels (for pure
LS coupling, the p parameter is independent of J).
Moreover, some of the P, angles have reached finite

values between 0.1 and 0.2 rad, which account for the
same deviation. However, part of the deviation observed
in the fits must be certainly attributed to the limitations
of our analysis (the limited amount of data, simplified
analysis, and numerical procedure) evoked in the begin-
ning of Sec. IV B.

Extrapolation aboUe the 6p &/& limit. Extrapolation
above the 6p»z limit is analogous to that in the J=2
case. Channels 1 and 2 becoming open, the continuum at
a given energy E is a two-dimensional subspace generated
by the QE, and Pz ~ eigenstates. The eigenphase shifts in
the open channels, r and ~', are the two roots of Eq. (3'),
where we have set v, =vz= d'or —i—' (mod 1) in the
4X4 determinant. The resonances occur where mv or m~'

varies rapidly by n., i.e., where tann. ~ has poles. Accord-
ingly, it is easy to see that the coefficient of (tan@+) in
(3') should be zero; this corresponds to

W3 T+ +%44

W4 T++A33
(12)

giving 6.8 for the 1(b) resonance and inverse 0.15 for the
1(a). This contrast is not as pronounced as in the J=2
case in Sec. IV B2. However, it shows that the
6p3/pnp;J=1 states above threshold still have a dom-
inant, specific jk character [k=1/2 for 1(b) resonance
and 3/2 for 1(a)]. This assignment is consistent with that
below threshold from Table X; one checks that it is the
same as the one deduced above threshold in Sec. III B4.

Finally, in the three J cases which have been con-
sidered, we have consistently concluded that jk coupling
is better adapted than jj for describing the long-range
symmetry of the 6p&/p 3/pnp; J resonance states. In the

6p3/pnp; J case, this was independently supported, on the
one hand, by the ion yield ratio analysis in Sec. III B4,
and on the other hand, by the MQDT analysis of the
6p, /p 3/pnp; J series. Evidence from the ion yield analysis
was not as marked in the 6p»znp; J case, where neither
simple computation in jk nor in jj coupling fits fully the
measured quantities. In this case, where an important
channel mixing is involved for most of the n values, fur-
ther development is probably required.

( T3+J833)( T4+A44) —%34 0 .

Since the closed channels 3 and 4 have the same limit, the
two 1(b) and 1(a) resonances are associated with the T+
roots of (11) where T3 = T4, as in the J=2 case. We find
the quantum defects 53&z"" and 53&&" ', given by
1 —(1/m )arctan( T+ ), equal to 0.89 and 0.75, respective-
ly. They reasonably compare with the experimental
values in part (b) of Table III and Fig. 8. An analogous
computation to that in Sec. IV B2 gives the W3/W4 ratio
of the weights of the closed channels in the QE, and fz,.
eigenstates. The ratio is the same for both eigenstates
and we have, at resonance ( T, and T~ infinite;

T3 T4 T+ ), the same type of expression as (10):

1/2[1/2] 1/2[3/2] 3/2[1/2]
Wp W3

1/2[3/2]
W4

6pl/znp (a)
n %13,19,20

6p&/&np (b)
n %13,19,20

6p&/&13p (a}
6pl/q13p (b)

6p3/$10p (a)

6p3/$10p (b)

6p3/$11p (a)

6pl/219p (a)

6p]n19p (b)

6p I /~20p (a)
6p I/~20p (b)

6p3/$11p (b)

&94

7
84

8

10
18
9

74
15
68
26

&96

90
9
1

21
78

1

81
18

1

4
7

80
8
2

2
11
67

2
34
84
10
53
11
25

2
3
7

TABLE X. Percentage admixture coefficients, W; = 100Z, of
the 6p, ~znp[k];J and 6p3/pnp[k];J collision channels in the

6p, /p 3/pnp; J= 1 resonance states below the 6p&/& limit. W, are
computed using MQDT parameters from the fit in Sec. IV B3.
See text. See Tables VIII and IX.

V. CONCLUSION

We have used the 6s 'So~6snp 'P, ~6p, /p3/pnp;J
scheme of isolated core excitation for investigating ener-

gy positions, widths, and transition moments associated
with the 6p, /znp; J and 6p3/pnp; J autoionizing states
with J=O, 1, and 2, for n between 10 and 28. This
represents nine of the ten series of the 6pnp configuration,
the J=3 series being excepted. The results on the
6p3/pnp; J series are in general agreement with those of
Story, Yap, and Cooke in Ref. 11. The extended set of
experimental results has allowed us to develop simple and
complementary analyses, providing a comprehensive
view of the 6pnp configuration: successively, the energy-
level structure of the 6pnp multiplet, and the interaction
of the 6p, /&np; J and 6p3/pnp; J series studied within a
simple MQDT model, have been considered. We find
that jk coupling should be the best suited for describing
the long-range symmetry of the 6p»Q 3/gnp; J resonance
states. However, it is fair to say that this conclusion may
depend on the approximation made throughout the mod-
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el, that the resonance state can be represented within the
only 6pnp configuration. This approximation is certainly
questionable in our MQDT treatment below 6p&&2 limit,
neglecting all open channels as well as 6pnf
configuration, therefore reducing channel mixing in the
long-range region. Moreover, MQDT analysis rests on
the resonance energies alone, and may be insuScient for
an accurate determination of the resonance state wave
functions. Although they are grounded on consistent ar-
guments, our conclusions may slightly vary on account of

further investigations. Careful analysis of the resonance
widths and transition moments should be pursued, allow-
ing a definite comparison with ab initio calculations, e.g. ,
of the R-matrix type. Work is in progress in that sense.
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