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Consider the nonuniformly scaled electron density n A (x,y, z) =A,n (A,x,y, z), with analogous
definitions for n, and nl I.t is shown that it is generally true that E„,[nz]AE„,[nI]WE„,[nz],
where E„, is the exact exchange-correlation energy. A corresponding inequality also holds for the
correlation component of E„, when the correlation component is defined in one of the meaningful
ways. In contrast, equalities always hold for the local-density approximations to these exact func-
tionals. In other words, the local-density approximations for exchange correlation and for correla-
tion alone do not distinguish between nonuniform scaling along different coordinates.

I. INTRODUCTION

For the purpose of improving approximate exchange-
correlation density functionals it was recently shown'
that the local-density approximation to the exchange-
correlation functional does not distinguish between
nonuniform scaling along different coordinates. That is,

ELDA [n x ]
—ELDA[n J ]

—ELDA[nz ]

where the nonuniformly scaled density is

II. EXCHANGE-CORRELATION ENERGY

To arrive at Eq. (4},we start with

F [n~] ~ (& '4„'"(«,,y~,z~, «~,y~, z~)l~

+9 ~A 0™(Ax),y),z), . . . , Axtt, y~, z~))

(5)

nz(x, y, z)=An(Ax, y, z} .

Equation (1) follows from'

E„, [nf]= f n(r) e„,[ An(r)] dr, q =x,y, z

(2) which follows directly from' the constrained-search
identification ' of the universal Hohenberg-Kohn func-
tional F[n]. Here, 4„'" is that wave function which is
constrained to yield n and minimizes (7+0, , ), and
F [n z ] is partitioned as

E„,[n & )WE„,[n ~& ]PE„,[n z ] . (4)

Accordingly, it is the purpose of this article to prove Eq.
(4).

where e„,[n (r}] is the exchange-correlation energy per
electron of a uniform electron gas of density n(r). In
contrast to Eq. (1), it was also recently conjectured' that
the exact exchange-correlation functional E„, satisfies the
following inequalities for a general density without spe-
cial symmetry:

F[n&]=T,[nz]+ U[nz]+E„,[nz], (6)

where T, is the Kohn-Sham noninteracting kinetic ener-

gy and U is the classical electron-electron repulsion ener-
gy

By taking into consideration that f is homogeneous of
degree —2 and 0, , is homogeneous of degree —1, Eq.
(5) becomes

F[n&]—(A, T„[n]+T [n]+T,[n]+ f I „'"(r&r2~r, r2)[A (x, —xz) +(y, —y2) +(z, —z2) ]
' d r&d &2) ~0,

where I „'"is the second-order matrix of 4„'"and where

~ 1T [n]= 4 '" —— 4' '")

Next, utilize the fact that Eq. (5}exhibits its maximum at A. = 1 and apply Eq. (6) to obtain

BE„,[n"„]
aA,

=2T„[n]—2T,"[n]+ f I „'"(r,r2lr, r2)(x, —xq) Ir, —
r21 d r~d &q

A. =1

—f (rn&) (rn)( 2&
—xx2) ~r&

—
rz~ d r&d rz,
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where

Tx —@min @min
g~2

(10)

and where 4„'" is the Kohn-Sham noninteracting wave function (often a single determinant). ' ' The second term in

Eq. (9) arises from'

BT,[n~]
BA,

=2T,"[n],

and the last term arises from taking (BU [n i„]/BA, )&,. Finally, it should be clear that Eq. (9) generalizes to

BE„, n
=2T [n] 2T—~[n]+ f I'„'"(rir2lr&rz)(qi —q2) lri —rzl d r, d r2

A. =1

—f n(r, )n(r2)(q, —q2) lri —
r~l d r, d r2, (12)

for q equal to x, y, or z, so that Eq. (4) follows because, for asymmetric n, the right-hand-side of Eq. (12) clearly varies
with q.

III. CORRELATION ENERGY

There are slightly different ways of defining the correlation energy in density-functional theory. The easiest definition
to consider in the context of this paper is '

( iIiminlf + p i@min) (@min lg+g lg
min ) (13)

where 4„'Hp is that single determinant which yields n and minimizes "(f+'0, , ), and where HF signifies Hartree-
Fock. By following the techniques used for the whole E„,above it follows that

BE,[n)] =2T [n]—2Tgp[n]+ f I „'"(r&rzlrir2)(qi —q2) lr, —
rzl d r, d r2

A, =1

(14)

where

(15)

and I „'H„ is the 2-matrix for 4„'HF.
Equation (14) reveals that E,[nf] depends upon q. In contrast, any local-density approximation to E, gives a result

which is independent of q:

E, [nf]= f n(r)e, [An(r)]d r (16)

for all q.
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