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A simple mathematical technique is introduced to establish the connection between the universal-

ity of diatomic potentials and correlation property of the Graves-Parr parameters Pf ( =a', /6) and

P2 ( =a2/6) [Phys. Rev. A 31, 1 (1985)]. On the basis of this universal feature of diatomic poten-
tials, an accurate expression of the ground-state reduced potential valid for all diatomic molecules
has been obtained.

I. INTRODUCTION

Recently we have reported' the existence of a universal
potential valid for all diatomic molecules. The potential
has been predicted on a theoretical basis and verified
empirically in Ref. 1 (hereafter we will call it I). We
present, in this paper, a full report on the subject based
on a more refined mathematical technique and extensive
experimental data.

Many simple analytic functions involving a few param-
eters have been empirically found to represent the
ground-state vibrational potential E accurately as a func-
tion of internuclear distance R for a certain group of dia-
tomic molecules. Moreover, the parameters may be
"scaled out" from the functions by introducing an ap-
propriate reduced potential and scaled distance. This
feature of diatomic potentials has led us to conjecture
about the existence of a universal form of potential func-
tion for all diatomic molecules

E =D,F(z) .

Here D, is the sum of dissociation energy and zero-point
energy, z is the reduced internuclear distance which is
supposed to be a function of R and it may contain various
species-dependent parameters, and the reduced potential
F(z) is defined as a parameter-free function of z. Though
the search for a universal potential F(z) has persisted
through the years, the question about the existence of the
potential per se has never been answered.

In his reduced potential curve method, ' Jenc has
given an interesting procedure for obtaining the reduced
distance and used it extensively for the comparative study
of diatomic potentials. We expect to have a unique ex-
pression for z in an exact theory. However, in approxi-
mate theories, the functional form for z may depend
largely on reduction schemes and the functional structure
as well as the very existence of F(z) would depend on the
choice of z. It is well known that Jenc potentials of vari-
ous diatomic molecules do not coincide well, and it seems
that a species-independent reduced potential valid for all

diatomic molecules does not exist in this particular
reduction scheme.

Recently Ferrante, Smith, and Rose" (FSR) have pro-
posed a simple linearly scaled distance z& =v(R /R, —1),
where a is a scale factor and R, is the equilibrium inter-
nuclear distance. Here we use the symbol z, for z to em-

phasize the fact that the reduced distance is linear in R.
Such a possibility of universal scaling has stirred up a
renewed interest in diatomic potentials and motivated
Graves and Parr' (GP) to investigate the eff'ect of the
universal scaling on the predicted Dunham coefficients, '

a, and a2. The linear scaling concept" directly implies
that the special combinations P, ( =a, /6 ) and Pz
(=a2/b, ) (we will call them GP parameters) are some
numbers independent of molecular species. ' Here 6 is
the Sutherland parameter. However, Graves and Parr
have found that experimental data for P, and P2 of 150
diatomic molecules' obtained from measured diatomic
spectra' vary by factors as much as 6 and 20, respective-
ly. They also have observed that the sample data for P;
and P2 are highly correlated in the scatter diagram and
argued that this is a good evidence for the need of a few
more species-dependent parameters in F(z), and the
universal scaling is necessarily broken. Along this line,
Smith and his co-workers' have modified their universal
binding-energy relation" by adding a Coulomb term
representing a net charge transfer between the two atoms
of a molecule. At the price of the universal scaling they
have an adjustable parameter, the net charge transfer, in

P, and P2 so that the predicted P, agrees exactly with the
experimental value.

On the other hand, Tellinghuisen and his co-workers'
have examined the scaling property of 35 cases of experi-
mentally determined diatomic potentials. The result im-
plies that many molecules particularly among chemically
similar ones, e.g. , alkali-metal dimers, share a nearly
common reduced ground-state potential although the
corresponding P, and P2 still vary by factors of 2 to 3.
Thus, the linear scaling seems to hold to a good approxi-
mation for a certain group of molecules while the result
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obtained by Graves and Parr indicates otherwise. This
apparently contradicting situation needs an explanation.

The Dunham coefficients a, and a2 are related to the
second-, third-, and fourth-order derivatives of F(z) with
respect to R at R„and they depend on all the parameters
contained in both z,'"'

( =d "z/dR "~z ) and F'"'(0)
e

( =d "F( z ) /dz "
~ ) for n = 1, 2, 3, and 4. In a universally

e

scaled theory, all F'"'(0) are pure numbers and the pa-
rameter dependence of al and a2 arises solely from z,'"'.
Here we recall that the scaled distance examined by
Graves and Parr is linear in R (and so is z, ), and thus
R,z,'" ( =b, '

) is the only species-dependent quantity in

a, and a2 for this particular choice of z. Moreover, a,
and az are both proportional to (R,z,"'), and conse-
quently, the calculated P, and P2 are independent of
molecular species. On the other hand, if z should contain
some additional parameters, then P& and P2 would depend
upon those parameters even if F'"'(0) are pure numbers.
With this understanding, the disagreement between the
predicted and observed values for Pf and P2 may be as-
cribed to the linear nature of z, =h' (R/R, —1), and
not to the universality of F (z, ) per se.

Experiments indicate that we need species-dependent
parameters in P, and P2 (at least one) and here we have a
choice for accomplishing this. We may either insist that
we should have species-independent F'"'(0) and find a
generalized reduced distance z to accornrnodate addition-
al parameters, or keep the reduced distance linear (so
that z =z, ) and find a way to give F'"'(0) the requisite
parameter dependence to have a broken universality.
Since our long-sought goal ' ' ' is to find a species-
independent universal potential, the choice is obvious.
Thus, we want F'"'(0) to be species independent for all n

( = 1,2, . . . ) and the reduced distance z should contain all
the species-dependent parameters of the problem.

Recently we have developed a simple mathematical
technique and applied it to establish the connection be-
tween the universal potential and the correlation among
GP parameters P„(n =1,2, . . . ). The result has already
been reported brieAy in I. The present paper is an exten-
sion and an outgrowth of I. The mathematical scheme
we developed in I is refined further and its relation to the
convergence property of the reduced distance z has been
discussed in this paper.

II. UNIVERSAL REPRESENTATION

One of the central problems associated with diatomic
bonding is the correct representation of the potential
E(R) [=D,f (R)] in terms of the internuclear distance
R. The detailed functional form of the reduced potentialf (R) is expected to vary with the nature of individual
molecules. In order to be free from model-dependent de-
tails of f (R), we will base our discussion on the series
representation of the reduced potential. A power-series
expansion technique of potentials is one of the most
powerful means of relating observed spectroscopic data
to the structure of diatomic potentials.

The basis of our approach lies on the Dunham expan-
sion' of f (R) around the equilibrium point R =R,

which can be cast into the form

f(z )=z, 1+ g P„z", —1,
n =1

(2)

is the Sutherland parameter, and P„=a„ /5 "~2 (for
n =1,2, . . .) are the parameters introduced by Graves
and Parr. ' Here the Dunham coefficients a„are defined

by

R," d~+2f /dR ~+2
an 2 (n+2)! d f/dR R,

(3)

for all n =1,2, . . . . As found by Graves and Parr, P's
calculated from experimental spectroscopic data' are
species dependent and strongly correlated among them-
selves. Thus, f (z, ) is manifestly species dependent and
so is the graph (z„f(z, )) [which is the plot of f (z, )

against z, ].
Now we consider the variable transformation from the

linearly scaled distance z, to a new variable z(z, ) which
can be approximated by a series expansion zz,

X
ZN —g bnz 1

n=1
(4)

Then the reduced potential f (z, ) can be rewritten as the
function I' of the new variable z through the definition
F (z) =f (z

~ ), and it can be expanded into the form

F(z)=z 1+ g h„z" —1, (5)
n=1

where h's are the expansion coefficients yet to be
specified. Because of the composite relation f (z& ) =F(z)
and z =z (z, ), the coefficients b's are not independent but
related to P's and h's. We can always recover the original
function f (z, ) from the composite relation regardless of
the actual assigned values of h's. If we choose b's accord-
ingly, it is always possible to assign species-independent
numbers for the expansion coefficients h's in order to
have a species-independent potential graph (z,F(z) ) valid
for all diatomic molecules. Here all the species-
dependent parameters are embedded in the expression of
z [Eq. (4)]. We should point out that the mapping
(z, ,f (z, ) )~{z,F(z) ) itself is arbitrary and devoid of
physics unless we provide an unequivocal method for the
unique determination of h's. The question of how we find
the unique set of h's corresponding to the true universal
function F(z) should be answered based on some sound
experimental properties of diatomic spectra.

As a first step to find such a method, we will obtain ex-
plicit expressions for b's in terms of P's and h's from the
definition of a„[Eq. (3)] and the relation f (z

&
)=F(z (z

&
) )

by making use of the explicit expression' for the nth
derivative of a composite function. After a little algebra-
ic manipulation, we have the following expressions for b's
(b, =1):

where z, =6' (R /R, —1) is the linearly scaled distance
used by FSR (Ref. 17) and others, ' '

,'R d—f(R)/dR2iz
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b„+,= —,'(P„—h„),
n —1

p, =p„—$ $(m+2)!h~b, ' . b„"/[m, ! . m„!]

(6) uniquely determined by

b...=-,'(p„—(p„)) . (12)
m=1

—Q„(n &1),
where the second sum is over all non-negative integer
partitions

We also note that p„contains h„,, . . . , h z, and h,
which are already determined by (p„ 1 ), . . . , (pq), »d
(pl), respectively. There is only one set of [h„ I for all
diatomic molecules. The reduced distance truncated at
Nth order is obtained by setting b„=O (n & N + 1):

tml, . . . , m&~gml, =m+2, +km&=n+2I .

Here Pl =Pl and

X
z =z, + y —,'(f3„,—(p„,) }z", .

ll =2
(13)

2g bl, b„+z 1, for odd n,
k

(b„&~+,) +2+bi, b„+z 1, for even n,
k

5A„=——g(P„,—h„,) 5h„
2 .

Here the condition 6A„=O (n & 2) should be satisfied for
an arbitrary variation 5h„ I. Then we obtain

h„ 1
=g P„,/N, , (10)

where N, is the number of sample points in the sum and
the sum is over all samples. For notational convenience
we introduce the symbol (p„,) to represent the alge-
braic average in Eq. (10), and we have

The expansion coefficients of the reduced distance z are

where the sum is over k from 2 to (n+1)/2 for odd n

and to n/2 for even n Ha. ving explicit expressions of b's,
we can examine the convergence property of the series
z~. Here we observe that the coefficient b„+ &

is a func-
tion of p„,p„ 1, . . . , pl and h„,h„ 1, . . . , h

1

..

n+1 bn+l(Pn»P»» —1» ' ' ' »Pl» n» n —1»» 1)

For many diatomic molecules, GP parameters' p, and pz
have been determined" ' ' from experimental spectro-
scopic constants' and in some cases even higher order
p's are available. The expansion coefficients b's of the re-
duced distance z are dependent upon still undetermined
numbers h's as well as on p's. We observe that the radius
of convergence of the series [Eq. (4)] directly depends on
the values of h s. Considering that the availability of reli-
able experimental data for P„ is rapidly diminishing with
the increasing order n, the rapid convergence of the series
is of vital importance in a practical realization of a
universal potential. This aspect should be regarded as
the most important single factor in the determination of
h's. This has led us to determine h's so that they mini-
mize the expansion coefficients b„(n =2, 3, . . . ) simul-
taneously for all diatomic rnolecules in the sense of the
least-squares principle.

Beginning with n =2, we successively minimize
A„=g b„ for all n (n &2), where the sum extends over
all available sample values for the relevant p's. By utiliz-
ing the expression [Eq. (6)] for b„, we have the variation

Equations (5), (11),and (13) uniquely define a hierarchy of
universal potentials for diatomic molecules, z1v and F(z~ )

for N =1,2, . . . .
Now we examine the condition of the Nth-order trun-

cation b~+, =0. Because of Eq. (12) the condition can be
rewritten as

plv
—

hlv (14)

III. CORRELATION
AMONG SPECTROSCOPIC CONSTANTS

It has long been known that there exist some regular
features among spectroscopic constants D„R„and co, .
Morse' proposed in 1929 that the product of R, and the
harmonic frequency co, is approximately constant for
some class of diatomic rnolecules, especially for those in
which the masses of two atoms are approximately equal.
Subsequently, the Morse relation had been modified by
Clark and Badger ' to have better descriptions for a
wide group of molecules. Later Frost and Musulin pro-
posed still another expression relating k,
( =d E /dR

~ 11 ), D„and R, . The fact that so many ex-
e

pressions give reasonable agreement indicates that each is
only an approximation to a certain accurate rule.

which rePresents a relation among Pl, Pz, . . . , Pn and
there exist similar relations for higher order p„
(n &N+1). The relation [Eq. (14)] is the condition im-
posed on spectroscopic constants when we truncate the
series at an Nth-order term. Since we have minimized all

g b„(n &2) for the determination of h's, the magnitude
of b„should decrease rapidly as n increases, and the trun-
cated series zlv [Eq. (13)] is expected to approximate the
reduced distance z very accurately even for values of N as
small as 2-3. Thus, we should expect to have a strong
correlation between pl and pz if the graph (z3,F(z3 )) is a
good approximation to the universal curve (z,F(z) ).
Therefore, it is essential to show that p's of real diatomic
molecules actually satisfy the correlation governed by
pz=hz (=(pz)) for the proof of the existence of the
universal graph (z, F (z) ). Here we should note that' the
existence of the universal potential F(z) does not mean
that the bonding structure is identical to all diatomic
molecules. The potential form necessary to solve various
physical problems is ordinarily required to be given as a
function of R, D,f(R), and this is different from one
molecule to another as it should be, although there is
only one F(z) for all diatomic molecules.
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In order to study possible relations among higher-order
derivatives of E(R) at equilibrium, Varshni has exam-
ined two quantities H [Ref. 22] and G involving co„ the
vibrational anharmonicity co,x„ the rotational constant
B„and the vibrational-rotational coupling constant a, :

200

150—

~ ~
~ 0

H =a, co, /68, ,

G =8cox, /B, .

Those are related to the third- and fourth-order deriva-
tives of the potential function with respect to R at equi-
librium. Varshni has shown that both H and 6 are func-
tions of the Sutherland parameter b, =k,R, /2D, only for
various potential functions attributed to Morse, ' Ryd-
berg, Rosen-Morse, Poschl- Teller zs Frost-Musulin,
and other potential models studied by Varshni. This has
led Varshni to plot an experimental variation of H and 6
against 6 for 27 diatomic molecules, and he found that
the sample points are scattered around the straight lines
H=0. 116+0.36 and 6=56+9. However, when we
plot H and 6 against 6 by utilizing experimental data for
265 diatomic molecules, ' ' ' we can hardly recognize
any correlations in the scatter diagrams, Figs. 1 and 2.
Here it is interesting to observe that the data points are
rather well correlated in the H-G plot (Fig. 3) than in
8-6 or 6-5 plot.

Calder and Rudenberg also have examined 160 dia-
tomic molecules in order to determine whether or not
there exist consistent relationships among spectroscopic
constants. On the basis of the Dunham expansion' of
the potential, they proposed that the Dunham coeScients
a, and az are identical for almost all the molecules they
examined. The average values of a, and az they deter-
mined are —3.22+0.09 and 6.44+0.75, respectively.
But those values are somewhat misleading, since hydrides
and lithides, for which the values of a's deviate most from
the averages, were not included in the averaging process.
In fact, it has turned out that a1 and az are far from be-

ing constant.
Graves and Parr' have shown that a, and az vary by

large factors over the sample data and they exhibit a cer-

G 100—

50-

~ ~ t ~ ~
~ ~ ~ ~ gp g ~

~ Q ogg[ g ~

~
~ ~

~ ~ tye~y

10 20 25

FIG. 2. Experimental values of 6 plotted against 5 for 265
molecules.

tain tendency towards data correlation. This directly
reflects the correlation feature revealed in the H-G plot
(Fig. 3) since a, and az are related to H and G through
the relations

b, =co, /48, D, ,

a& = —1 —co,a, /68, ,

a&
=5a f /4 —2',x, /38, .

(15)

(16)

(17)

a = —1 —H1

a&=5(l+H) /4 G/12 —.
In the same work, Graves and Parr have shown that the
correlation feature of a, and a& is further enhanced in the
scatter diagram of pf and pz. In terms of experimental
spectroscopic constants, p, and pz are obtained from
their definition a f /b, and az/b„respectively. Here the
parameters a1 and az are, to a very good approxima-
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FIG. 1. Experimental values of H plotted against 6 for 265
molecules.

FIG. 3. Experimental values of 6 plotted against H for 265
molecules.
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The GP parameters p, and pz are especially interesting
because they are just the first two expansion coefficients
of the series expansion of E(R)/D, in terms of z, [Eq.
(2)], and the property of the reduced potential is directly
determined by the values of those constants. If the scal-
ing hypothesis like that of FSR (Ref. 11) should hold true
for all diatomic molecules, p, and pz (and all p's for that
matter) would be independent of molecular species. We
have plotted p, against pz in Fig. 4 for 265 diatotnic mol-

ecules for which all of R„D„co„co,x„B„and a, are
known. '4 ' As we see from Fig. 4, P, and Pz vary by
large factors over the samples. This has an important im-

plication that the universal scaling hypothesis" should
fail and f (z, ) [Eq. (2)] cannot be a species-independent
universal function of z&." .

Graves and Parr have shown that the regression line of
the scatter diagram (Fig. 2 in Ref. 12) can be approximat-
ed by

P) =( l.378+0.023)Pz+(0. 166+0.019) . (18)

The existence of a correlation between P, and Pz ap-
parently necessitates more parameters (at least one more)
in addition to the ones already existing in the linearly
scaled theory. '

Smith and co-workers' have introduced such an extra
parameter into their universal binding-energy relation
through a net charge-transfer term. They have defined
the net charge transfer so that the predicted value of pf
agrees exactly with the experimental value; however, the
universal scaling is necessarily broken in this approach.
A similar method has already been considered by Graves
and Parr. ' They have introduced a generalized Morse
function to have one more parameter on which pf and pz
depend, but this is not particularly successful. These
methods have two drawbacks. The resulting reduced po-
tentials are manifestly species dependent and the way of
introducing requisite parameters is not unique.

Recently we have introduced a new method' of under-

standing the observed correlation between p& and pz. In I
we obtained the relation

pz fz(pl&h1&hz) &
(19)

where fz
=

4 p&+ h, p, —5h, /4+ h z, as a condition of the
existence of a universal reduced potential valid for all dia-
tomic molecules. Here the constants h, and h2 can be
determined by requiring them to minimize g(Pz —fz),
where the sum extends over all samples. In I, we had
h

&

= —1.073+0.028 and h2 =0.744+0.046 based on the
data of 150 diatomic molecules. ' However, we obtain
h&

= —1.061+0.028 and h2=0. 719+0.044, instead, by
utilizing the spectroscopic data for 265 molecules' '

and we have found that most data points fall very close to
the correlation line

Pz =
—,'Pf—l.061P i

—0.688, (20)

In order that zz be a good approximation to z for real di-
atomic molecules, Eq. (21) has to be satisfied accurately
by experimental p's. Even though the overall accuracy in
Eqs. (13) and (21) is expected to increase as N increases,
the N =2 case should be a reasonable approximation in
due consideration of the work of FSR. For N=2, we
have b3 =0, or

which is represented by the dotted line in Fig. 4.
Now we will examine the data correlation problem in

the scatter diagram (Fig. 4) based on the formalism
developed in this work which is a natural extension of I.
In this section we introduce a method that determines the
set of expansion coefficients h's of F (z) by making use of
the least-squares principle. The coefficients are chosen so
that they minimize g b z, g b 3, . . . , g b„, . . . , simul-

taneously. In the Nth-order truncated approximation
z =z~, we have the relation among p„pz, . . . , p~: Eq.
(14), or

(21)

Pz=hz ~ (22)

1.8
where Pz=Pz —

—,'P, —h, P&+5h f /4. Equation (22) can be

rewritten as

1.5— Pz = ,' P, +h i P, —5—hf /4+ h z . (23)

1.2-

Pz 0.9—

0.6—

0.3—

0.0—1.8
I

—1.5
1

~ 2
I

-0.9 —0.6

FIG. 4. Experimental data distribution for p, and p2 of 265
molecules. The solid curve represents the line determined by
Eq. (23) with the values h, = —1.036 and h, =0.679 and the
dotted line represents the correlation line [Eq. (20)].

Here Eqs. (19) and (23) are identical except the values of
h's. In Eq. (23) h, and hz are given by (P, ) and (Pz),
respectively. We obtain h

&

= —1.036+0.012 and

h2 =0.679+0.005 from the arithmetic averages over 265
diatomic molecules. ' ' ' The curve [Eq. (23)] thus ob-
tained has been plotted in Fig. 4 as the solid line. We no-
tice that the values of h's in Eqs. (19) and (23) are not
much different, and the corresponding curves are almost
indiscernible. This is not surprising because the method
of determining h's in this work is a natural generalization
of that developed in I. Considering that the functional
form of Eq. (23) is predetertnined by the requirement of
the existence of a universal reduced potential, it is re-
markable that all data points in Fig. 4 fall very closely to
the curve [Eq. (23)]. The fact that the conformation of
experimental data to the correlation curve demonstrates
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that there exists an intimate relation between the ex-
istence of the universal potential and the observed corre-
lation between Pi and P2. This point will be discussed in
more detail in the next section.

IV. DIATOMIC POTENTIALS

z2 =z&+b2z &,
2

b2= —,'(p, —h, ) .
(24)

A knowledge of accurate ground-state diatomic poten-
tials is of great importance in molecular theory. Thus, it
is imperative to have a self-consistent method of con-
structing potential curves from experimental data. We
will first show that experimental reduced potentials
E (R )/D„obtained by making use of the method of Ryd-
berg, Klein, and Rees (RKR), ' fall on a single
curve F,(z) almost in the entire experimental range when
they are plotted against z. Then the experimental curve
F,(z) may be identified with F(z) [Eq. (5)] which is the
universal potential we have sought for. It is very con-
venient, in practice, if we have a suitable analytic func-
tion F, (z~ ) to fit the experimental curve F, (z) accurately.
Then from the expression of F, (zN) we can construct a
very accurate potential-distance relation for each diatom-
ic molecule from its experimental Dunham coefficients,
b„ai,a2, . . . , by substituting the expression [Eq. (13)]
for z~ in F,

Here we have tacitly assumed that the truncated series
z& would converge rapidly to the true value as N in-
creases, and, in a certain sense, it is designed to be so.
But this and other results must be verified in experiments.
With these verifications in our minds, we will closely ex-
amine the first several cases of truncation approximation
by taking N =1, 2, and 3 in succession.

If we retain only the first term in Eq. (13), then we re-
cover the scaling procedure developed by FSR."' In
this case, the calculated spectroscopic data are then
found to satisfy unrealistic relations p =const for all
m ~ 1. On the other hand, when we truncate the series
[Eq. (13)]at second term we have z =z2, where

Here h i is given by the arithmetic average of p, over 265
diatomic molecules. In this approximation p, is directly
determined by the experimental data of individual mole-
cules; however, the value of pz is related to p, through
Eq. (23). Thus, the experimental data for P2 of individual
molecules cannot be exactly reproduced; instead they are
represented by the points on the solid curve in Fig. 4.
However, as we pointed out before, experimental points
lie very close to the solid curve, and this is a drastic im-
provement over that p =const.

Now we will examine the next order approximation by
setting b„=O for all n & 4. Then we have z =z3 and

z3 =z[ +b2z, +b3z i
2 3

b3= —,'(p2 —h2) .
(25)

We still use the same h, determined in the previous ap-
proximation and h2=(p2). Here pi and p2 are experi-
mental values although p (m & 3) are related to p, and

P2. If higher-order Dunham coefficients ai, a4, . . . were
known accurately for a sufficient number of molecules,
we could systematically determine h3, h4, . . . by means
of the least-squares principle [Eqs. (7), (8), and (11)] and
find accurate expressions for z and F(z) by summing up
the series, at least, in principle.

In due consideration of the successful application of
Morse or Rydberg functions "' using the scaled dis-
tance z =zi, the series [Eq. (13)] is expected to converge
very rapidly. We have examined the ground-state experi-
mental potentials of 29 molecules listed in Tables I and
II. We have chosen those molecules because of the avai-
lability of their experimental potentials, spectroscopic
constants (used for constructing these potentials), and D, .
If our approach to the universality is correct, then all the
reduced experimental curves plotted against z, , z2, and

zi should converge rapidly towards a single curve F, (z),
which may be identified with F(z), as the order of trunca-
tion increases.

For the demonstration of this property of experimental
potential curves, we will examine 29 cases ' of the
ground-state RKR or inverted perturbation approach

TABLE I. Experimental values of R„D„&h,Pl, and P2 and calculated values of b2 and b, for 13
molecules. Here we note that ~b2i && ~b, i.

Molecules

Br-Br
Br-F
Cl-Cl
Cs-Cs
I-Cl
K-K
Li-Li

Na-Na
Na-Cs
Na-K
Na-Li
Rb-Rb
Zn-D

R, 4'A)

2.2811
1.7590
1.9877
4.6480
2.3209
3.9243
2.6733
3.0786
3.8500
3.4968
2.8850
4.2099
1.5937

D, (cm ')

16058.0
20 884.8
20 276.5

3 649.5
17 557.6
4447.0
8 541.0
5 988.0
4 950.0
5 274.9
7 068.0
3 980.9
7 654.3

4.480
3.885
3.978
3.210
4.292
2.923
2.319
2.614
2.918
2.767
2.490
3.059
3.539

—0.795
—0.844
—0.848
—0.659
—0.842
—0.694
—0.826
—0.751
—0.729
—0.732
—0.863
—0.673
—0.731

0.355
0.424
0.434
0.087
0.412
0.150
0.376
0.249
0.223
0.222
0.459
0.125
0.288

b2

0.120
0.096
0.094
0.188
0.097
0.171
0.105
0.143
0.154
0.152
0.086
0.181
0.152

b3

0.017
0.017
0.019

—0.021
0.012

—0.014
0.006

—0.004
—0.001
—0.004

0.020
—0.012

0.029
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TABLE II. Experimental values of R„D„v'b, p„and p2 and calculated values of bz and b, for 16
molecules. Here we note that ~b2 ~

=0.

Molecule s

Al-0
B-0

Ca-Ca
C-0
H-H
K-H
Li-H

Mg-Mg
N-N

Na-H
Na-D

Na-K*
O-O+
Si-H

Si-H+
Sr-Sr

R, (A)

1.6178
1.2047
4.2769
1.1283
0.7411
2.2400
1.5956
3.8900
1.0977
1.8890
1.8890
5.4385
1.1170
1.5201
1.4990
4.4460

D, (cm '}

42 993.0
67 722.0

1 095.0
90 543.9
38 288.8
17030.0
20 286.0

424. 1

79 889.7
16 300.0
16700.0

209.1

54 689.2
25 012.0
27 004.8

1 060.0

2.949
2.714
4.578
2.594
1.441
2.043
1.800
4.073
2.951
2.083
2.054
4.007
3.135
2.357
2.371
4.446

—1.110
—0.968
—1.044
—1.040
—1.134
—1.048
—1.053
—1.161
—0.930
—0.996
—1.005
—1.004
—1.004
—0.986
—0.963
—1.028

0.714
0.572
0.613
0.669
0.961
0.667
0.755
0.974
0.540
0.573
0.605
0.609
0.597
0.648
0.630
0.617

b2

—0.037
0.034

—0.004
—0.002
—0.049
—0.006
—0.009
—0.063

0.053
0.020
0.015
0.016
0.016
0.025
0.036
0.004

b3

—0.041
—0.002
—0.040
—0.008

0.063
—0.016

0.024
0.048
0.011

—0.022
—0.014
—0.011
—0.017

0.022
0.031

—0.025

(IPA) potentials. Rather accurate potential curves and
spectroscopic constants D„R„h,p„and p2 are avail-

able for those 29 molecules.
The spectral constants corresponding to the following

21 molecules of the 257 molecules presented in Ref. 14
are replaced by the values consistent with the poten-
tials: Al-0 (Ref. 27), B-O (Ref. 28), Br-Br (Ref. 29), Br-F
(Ref. 30), Ca-Ca (Ref. 31), Cl-Cl (Ref. 32), C-0 (Ref. 33),
Cs-Cs (Ref. 34), H-H (Ref. 35), I-Cl {Ref. 36), K-K (Ref.
37), Li-Li (Ref. 38), Li-H (Ref. 39), Mg-Mg (Ref. 40), Na-
Na (Ref. 41), Na-K (Ref. 42), N-N (Ref. 43), O-O+ (Ref.
44), K-H (Ref. 45), Na-H (Ref. 45), and Si-H (Ref. 46).
Besides those 257 molecules, we also have taken into ac-
count 8 more molecules: Na-Cs (Ref. 47), Na-D (Ref.
45), Na-K'(a X+) (Ref. 42), Na-Li (Ref. 48), Rb-Rb
(Ref. 49), Si-H+ (Ref. 46), Sr-Sr (Ref. 50), and Zn-D (Ref.
51).

Thus, we have 265 points in the scatter diagram in Fig.
4 and used those sample points to calculate h's. Then we
have h&

= —1.036+0.012 and hz=0. 679+0.005. Those
values of h's are used, in turn, to evaluate b2 and b3 for
the 29 molecules for which accurate experimental poten-
tial curves are available. The experimental constants as
well as b's are listed in Tables I and II.

We have plotted 29 reduced experimental poten-
tials ' against the linearly scaled distance z, in Fig. 5.
The spread among the curves is excessively high in both
of the repulsive and attractive branches. Here it is in-
teresting to observe that the 29 potential curves in Fig. 5
can be divided into two groups of molecules. The one
group is composed of 13 molecules listed in Table I and
the other group consists of 16 molecules given in Table
II. The Srst group of potential curves is marked by a cir-
cle in Fig. 5 and the curves belonging to this group seem
to lie very close to each other. In order to clarify this
point further we have plotted these 13 potentials in Fig.
6, and we recognize that a11 the curves fall very near to a
single line in the attractive branch, although the spread is
somewhat large in the repulsive branch. This feature of

0 0

-0.2—

-0.4—

—0.6—

—0.8—

—1.0—1

z,

FIG. 5. Experimental reduced potential F plotted against zi
for 29 molecules. The curves marked by an open circle are ex-
perimental potentials for the 13 molecules specified in Table I.

the graph {z~,F(z& )) for a certain group of diatomic rnol-
ecules has already been recognized by Tellinghuisen and
co-workers. ' Those authors have shown that the re-
duced potentials of analogous electronic states in chemi-
cally similar molecules are nearly congruent over the full
range of the bound well, yet the corresponding GP pa-
rameters are not constant as would be required for the
graph (z, ,f (z~ )) to be universal. The seemingly contra-
dicting features of these potentials can be understood by
examining the values of P, and P2 of these molecules
given in Table I. Although the values of p& and p2 are
species-dependent, they vary in such a way that the series
approximation to f (z~ ), z f(1+p&z&+p2z& ), especially its
[1,1] Pade summant '

f (zt ) =Z1[1+Zl(pl p2/pl)]l(I zipzlpi ), —

behaves like a species-independent function of z& for
those 13 molecules in a wide range of z, , —0.3 &z, & 1.0.
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Z)

FIG. 6. Experimental reduced potentials of 13 molecules
marked by a circle in Fig. 5. The spread of the curves is still
large in the repulsive range.

This property of experimental p's is directly reffected in

the plot of experimental potentials in Fig. 6. Therefore,
we see that reduced potentials may coincide to a certain
degree of approximation without having the same P's.

Now we examine the other group consisting of 16 mol-

ecules of which potential curves are lying consistently
below those of the group of 13 molecules in Fig. 5. Here
we notice that the curves are widely spread, especially in

the attractive range. We recognize in Table II that the
values of P, for those 16 molecules are very close to the
average value of P& over 265 molecules, which is h t.
Those molecules are shown inside a rectangular symbol
in Fig. 7. The expansion coefficient bz [Eq. (24)] of those
molecules are expected to be very small. As we notice
from Table II, the magnitude of b2 of those molecules is

one order smaller than that of 13 molecules given in

Table I. This clearly indicates that the series for zz con-

verges much more rapidly in this case. The interesting
point is that this "supposed to be fast convergent group"
of 16 molecules includes four van der Waals molecules:
Mg-Mg, Sr-Sr, Na-K*, and Ca-Ca. Here it is important
to note that the order of magnitude of b2 for these 16
molecules is the same as that of errors associated with the
evaluation of h &, and it is hardly expected that z2 and z3
would greatly improve the situation over that of z&.

However, due to the smallness of b2, the linearly scaled
distance z, should be a good approximation to z, at least
for those 16 molecules, and the graphs {z„f(z,)} for
those molecules should lie close to a supposedly accurate
graph (z3,f (z3 ) ). For elucidating this point, we have su-

perimposed the graphs (z,f (z)) of all 29 molecules in
Fig. 8 by taking z =z, for the group of 16 molecules (the
dotted lines) and z =z3 for the group of 13 molecules (the
solid lines) for which higher-order corrections arising
from b2 and b3 are significant. As expected, the potential
curves of 16 molecules are centered around the collapsed
curves of 13 molecules. The spread of the dotted lines is
caused partly by the lack of higher-order corrections and
partly by the inaccurate values of available spectroscopic
constants (especially D, ), among other things. Here we
note that the graphs {z&,f (z& ) }and (z3,f (z3)) for the 13
molecules are quite difFerent when they are superim-
posed, in contrast to the case of 16 molecules aforemen-
tioned, since higher-order corrections are important in
these cases, especially b2 corrections are significant. This
indicates that z =z, is a good approximation to z only for
a molecule of which P, is close to the average value {P, }.

For the determination of an analytic function F, (z), we
have plotted reduced potentials for 20 molecules (7 mole-
cules from Table II and 13 molecules from Table I}
against z3 in Fig. 9. The 7 molecules are Al-O, B-O, C-O,
N-N, O-O+, Si-H, and Si-H+. All those 20 experimental
potential graphs nearly fall on a single curve in Fig. 9,
and such a representative curve can be analytically ap-

1.2
0.0)- i; I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I ~ ~ ~ ~ ~ ~ ~ '~

~ ~

1.0— -0.2—

0.8— -0.4—

Pz 06— -0.6—

0.4—

0.2—
-0.8—

0.0—1.4
I

—1.2
1

—1.0
I

—0.8 -0.6
-1.0—1

FlG. 7. Experimental values for P, and Pz of 29 molecules

given in Tables I and II. The symbol + marks the point

(h&, hz) and the enclosed in the rectangular symbol are the
points representing 16 molecules in Table II.

FIG. 8. The solid curves are experimental potentials of 13
molecules (Table I) plotted against z3 ( =z) and dotted lines are
experimental potentials of 16 molecules (Table II) plotted
against zI ( =z). Here we notice that the solid curves fall in the
middle of the dotted curves.
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-0.8—

proximated by a function F, (z3). In I we have shown
that RKR curves for 10 molecules would coalesce into a
single curve when they are plotted against z3 and F, (z)
has been approximated by Morse function. The values of
h, and h2 of Morse function are —1 and 0.583, respec-
tively, which are rather close to experimental values
—1.036 and 0.679. Although the differences are small,
these should be corrected for a better approximation. We
examine the modified Morse function introduced by Hul-
burt and Hirschfelder

F, (z)=[1—exp( —z)] +cz exp( —az) —1, (26)

where c =1+hi and a =(7/12 —h2)/c. This function
has correct values for h, and h2 as required. The first
term on the right-hand side of Eq. (26) is the usual Morse
function and the second term is a modification to the
function to have the h values corrected. This function
has been plotted (for hi = —1.036 and h2=0. 679) in Fig.
9 as a dotted curve which almost coincides with the 20
other potential curves in the entire range of experiments.
Here it is interesting to observe that the correction term
in Eq. (26) is so small in the attractive range that Morse
function itself may represent F(z) quite accurately, but
the correction term is important in the repulsive range
where simple Morse function lies consistently below the
experimental curves. However, the Hulburt-Hirschfelder
function [Eq. (26)] reproduces the reduced experimental
potential curve F,(z) very accurately including the repul-
sive branch. Thus, analytic expressions [Eqs. (13} and
(26)] can be used, in practice, to obtain an accurate ap-
proximation to the reduced potential of a real diatomic
molecule as a function of internuclear separation distance
by utilizing the composite relation f (R)=F,(z3(zi ) ).

V. DISCUSSION

For finding the reduced potential f (R) from a
knowledge of experimental spectroscopic constants, it has
been customary ' ' to assume a mathematical form for
f (R} which contains a number of paraineters. These
species-dependent parameters are then adjusted to give

-1.0—1

z
FIG. 9. The plots of experimental reduced potentials of 20

molecules (solid curves) and Hulburt-Hirschfelder function
(dotted curve) against z3. They are almost indiscernible.

the best fit to the experimental spectroscopic constants of
each molecule. Numerous attempts to find suitable func-
tional forms have been made. In these approaches the
problems of finding a functional form for f (R) and un-
derstanding correlation properties among experimental
spectroscopic constants have been treated as separate
problems while it should be regarded as a single problem
for internal consistency.

Since combinations of spectroscopic constants, e.g., the
Dunham coefficients a's [Eq. (3)] or the GP parameters
P's, are related to higher-order derivatives of the poten-
tial function f (R) at equilibrium, those constants should
also depend on the parameters contained in f (R ). Thus,
if the potential f (R) contains only a finite number of
species-dependent parameters, then there should exist
internal relationships among spectroscopic constants.
Here we note that the number of independent parameters
in f (R ) dictates how many GP parameters should be in-
volved in the relation among themselves. If f(R) con-
tains N independent parameters, then there exists a rela-
tion among P„Pz, . . .P~ z. On the other hand, the func-
tional form off (R ) determines the form of mathematical
expression of the internal relation which should be
satisfied by GP parameters and vice versa. Thus, in any
self-consistent attempt to construct the reduced potential
f (R) valid for all diatomic molecules, it is essential to
know the detailed mathematical expression of the inter-
nal relation among experimental GP parameters. Al-
though we may need an infinite number of parameters in

f (R ) in an exact theory, the number of parameters in the
function should be restricted as small as possible in any
attempt of practical realization off (R). Furthermore, it
is important to show that the effect of any additional pa-
rameters should be small compared with that of the pa-
rameters already taken into account. Here we note that
the relationship among P's cannot be exact in algebraic
sense in a theory involving only a finite number of param-
eters. Rather it should be understood as a correlation
property in the scatter diagram of P's. Figure 4
exemplified this clearly.

Motivated by this reasoning, we have developed a sim-
ple mathematical scheme in order to unravel the interre-
lationship between the functional structure of f (R) and
correlation among P's. We have assumed that the expan-
sion coefficients b„of the reduced distance z~ [Eq. (4)]
should be minimized for all n () 1) in the sense of the
least-squares principle to make the series converge rapid-
ly. This assumption, in fact, completely determines the
correlation among P's [Eq. (21)] and the expansion
coefficients b's [Eq. (12)]. The correlation property as
well as the universality of the graph (z~, F (zN ) ) have
been tested against experimental data. The predicted re-
lation between P, and P2 [Eq. (23)] well conforms to the
data distribution in the scatter diagram, Fig. 4. We have
shown that the universal potential F(z) can be represent-
ed by F, (z3) [Eq. (26)] to a very good approximation.
Here we mention that the same universal feature has also
been found for various bounded potential systems includ-
ing excited states of diatomic molecules, surface adsorp-
tions, and metallic cohesions. The result is to be pub-
lished elsewhere.
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