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Observation of doubly excited resonances in the H ion
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Laser photodetachment on a relativistic H beam has revealed several series of resonances in

which both electrons are excited. These "bound states in the continuum" appear as dips in the par-

tial production cross sections of various excited states of neutral hydrogen. We present here a de-

tailed account of the experimental observation of the resonances and the results of fits of the mea-

sured yields to sets of Fano profiles. A simple analytic formula for the energy-level spacing in this

quantum-mechanical three-body system is verified.

In this paper we report the observation of several series
of high-lying 'P resonances in the photodetachment cross
section of H . The energy levels of these doubly excited
states are shown to obey a simple and elegant analytic
formula. We discuss here in greater depth the results
presented earlier. '

We begin in Sec. I with a short discussion of the physi-
cal nature of the resonances, before describing our experi-
mental technique in Sec. II. Section III presents the re-
sults of the data analysis. Details of the experimental ap-
paratus and of the data reduction are presented in the
two appendixes.

I. THEORY

the separation between the two electrons.
We adopt the hyperspherical coordinates, defined as

( 2+ 2 )1/2

tana = r1 /r2

and

8,2=cos '(r, r, ),

(3)

(4)

where r, , r2 are the radius vectors of the electrons, and r
represents a unit vector.

In these coordinates, the Schrodinger equation for the
two electrons (with the nucleus fixed) is

A. Autodetaching resonances
d 5 d A

d%
+2E /=0,

B. Hyperspherical coordinates and ridge states

The nonrelativistic Hamiltonian for the two-electron
system with fixed nucleus is (in atomic units)

H = —1721 1V22
2 1

r1

Z 1
7

"12

where the nuclear charge Z = 1 for H, r, , and r2 are the
distances of the two electrons from the nucleus, and r12 is

One can think of the resonances in H, such as the 'P
Feshbach and shape resonances associated with
H (n =2), as having a core consisting of an excited hy-

drogen atom which is polarized by a second, outer, elec-
tron. This polarization results in a potential which sup-

ports one or more bound states. Upon the return of the
core hydrogen atom to its ground state, the outer elec-
tron is ejected —hence the name "autodetaching. " This
basic system of a polarized excited core binding an outer
electron is sometimes known as a "planetary" resonance.
It should be noted that this simple picture, with an
"inner" and an "outer" electron, is not always appropri-
ate to describe doubly excited states; this is the case for
some of the states under study in this paper.

where A is Casimir's operator

1 d . 2 2 d
sin acos a +

sin a cos a da da
I 2 L 2

1 + 2

cos a sin a

with eigenvalues A(A, +4), where 1L, is an integer. The po-
tential energy of the system is V= C/%, where

C= —J7 +1 1

r1 r2 12

1 1 1

cosa sina ( 1 —sin2a cos8»)'

This definition of C agrees with that of Lin, but differs
by a factor of —2 from that of Macek and of an earlier
work by Lin.

Since the hyperspherical radius W is simply a scale fac-
tor, the potential energy can be represented by C (some-
times known as the "effective charge"), which is a func-
tion purely of the hyperspherical angles 012 and a. It
may therefore be plotted as a surface, as shown in Fig. 1.
The energy has minima at a=0 and ~/2; these give rise
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The so-called channel function P„(A,Q) satisfies the
differential equation

1P
1

%2

2 L2 L2
+ + +2%C P„(A,Q)

da cos o. sin a

C o-

= U„(&)P„(&,&), (11)

and the hyperradial function F„(%)satisfies the coupled
equations

-5-
1

2
—U„(%)+ + 8'„„(A)+2EF„

d% " 4%

+g W„,(% )F,=0, (12)

where the coupling terms 8'are defined as

6f
~l' 2 ~) (13)

FIG. 1. Potential surface in hyperspherical coordinates at
%=1 bohr. [Courtesy of J. Knudson; based on a similar figure
by Lin (Ref. 4).]

At this stage, all of the nondiagonal coupling terms 8'„,
are usually neglected; the resulting equation,

to the "valley states, " for which one electron is close to
the nucleus and the other is far away; this is a limiting
case of the planetary resonances spoken of earlier. Singly
excited states, in a system (such as helium) that supports
them, would be valley states.

There is a singularity when the electrons are coin-
cident, at a=a. /4, 0,2=0. In addition, there is a saddle
point at a=a. /4, H, z=m, which lies at the back of a
broad, Aat ridge; some states have a high probability den-
sity in this region of hyperspherical space —hence the
nomenclature of the "ridge states" (see, e.g. , Rau or
Lin ). At this saddle point, the electrons are equidistant
from the nucleus and diametrically opposite one another,
and their motion is strongly correlated; they therefore
may lose their association with the parent hydrogen atom
and become associated instead with the "grandparent"
nucleus.

A whole series of these "ridge" states exists; in the
lower limit, they are just the so-called intrashell reso-
nances (both electrons occupying the same shell), charac-
terized as 2s2p, 3s3p, 4s4p, . . . (see Sec. IC); in the
upper limit, they result in the double-detachment process.
The ridge resonance energies obey a Rydberg-type formu-
la which will be discussed in Sec. IE and again in Sec.
III.

The Schrodinger equation (5) is not completely separ-
able in hyperspherical coordinates. However, substitu-
tion of

reduces it to

d' ~~+

d~2 A2
+ + 2E $=0. —

1—U„('A)+— + W„„(A)+2EF„=O,dA' " 4%' (14)

1. +-—-0 classification

Following the discovery of autoionizing resonances in
helium, Cooper, Fano, and Prats developed a notation
to describe doubly excited states. If the electrons were
independent, with, say, one of the pair being in a 2s or 2p
state, a series of excited states would arise from the other
being in any of the higher states, n. As the electron
correlations are very strong, however, linear combina-
tions of these states are appropriate as a first approxima-
tion. So, for example, the wave functions g for the
'P(S =0, L = 1) resonances at the H (n =2) threshold in
H may be approximated in terms of the single-particle
wave functions u (n, l), by

is known as the "adiabatic approximation. " The second-
order diagonal term W„„(J7)is included in this approxi-
mation, although it is usually dropped in the Born-
Oppenheimer expansion for diatomic molecules.

Each resonance series and its adjoining continuum are
jointly called a "channel, " each channel (designated by a
set of parameters p) being characterized by the eigenval-
ue U„(A) and its eigenfunction P„(J7,0).

C. Classification of doubly excited states

Having seen the origin of the potentials U„(A},we
shall next consider the designations of the difFerent chan-
nels p. We begin in Secs. I C 1 and I C2 with the simple
+-—Odesignation -(which primarily describes radial
correlations), before looking at the more complete
K-T- A classification in Sec. I C 3.

The wave function P can then be expanded ' as

11
=g P„(A,Q)F„(A) /(A sinu cosa) .

1—[u (2s)u (np)+u (2p}u (ns)],v'2

represented more simply as

(15)
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8- - n=8

K
D
N

II 6- - n=6

2snp+2pns .

In this case, the only + state supported is the so-called
"shape" resonance [named for the curious shape, with
three classical turning points, of the potential curve
U„(W)that binds it], represented by 2s2p. On the other
hand, an entire series of —resonances is believed to be
supported. The only one of these to have been observed
so far is the first in the series, the Feshbach resonance
represented by 2s3p —2p3s. Its first recursion should
occur approximately 1 meV below the n =2 threshold.

In addition to the + and —channels, 'P n =2 states
may be formed from linear combinations of np and nd
wave functions, but in this case the potential of the re-
sulting "pd" or "0" channel is entirely repulsive, so no
bound states are supported.

As we move to higher excited states, more such linear
combinations become available to form 'P states. The
potentials U„(R)for n =2—11 are shown by Sadeghpour
and Greene, who also isolate the lowest + potentials
and show the levels of the first resonance in each of these
channels. These lowest + channels are also emphasized
in Fig. 2, which shows potential curves' for n=4-9.
Two-electron excitations into the + channels are expect-
ed to occur more strongly than into the channels by one
to two orders of magnitude, " since the potential curves
U+(A) are more attractive at small R and allow both
electrons to overlap with the ground state far better than
do the U (A) curves.

In addition to emphasizing the lowest + potential
curve in each channel, Fig. 2 also highlights a potential
curve —the fourth 7+ curve —that may support a shape
resonance just above the n =7 threshold. At the time of
writing, it is not yet certain whether such a resonance is
in fact bound here, but if it is it would be very broad, and
probably rather weak, as it is associated with the fourth
+ series. It may mix with the lowest 8+ Feshbach reso-
nance, which also lies right at the n =7 threshold.

Classifying the wave functions with + or —quantum
numbers, which emphasizes whether the two electrons
approaching the nucleus are in phase or out of phase'—

and thus whether the wave function vanishes (for —
) or

not (for +) at r, =rz —is of course still an approxima-
tion. In fact, Eq. (15) should be a sum over all angular-
mornentum components l„l2 that can add to a total
L = 1. ' The hyperspherical calculations, however, treat
the different channels (+, —,and pd) independently, by
omitting the coupling terms W„„[Eq.(13)], and this
seems to work well. The potential curves shown in Fig. 2
do not in fact cross one another. When they get very
close, the coupling strength between them shows a sharp
spike, and they repel one another. The region where this
occurs is known as an "avoided crossing. " From the cou-
pling strength, one can tell if the two curves are decou-
pled enough to simply assume that they cross. In fact,
the reason that the 2+ potential is repulsive at large % is
that the + and —channels interact strongly enough to
repel one another, so the + channel is pushed up (and
supports the shape resonance) and the — channel is
pushed down. As n increases, the avoided crossings be-
come sharper and sharper, and the approximate + and
—quantum numbers become more and more exact.

2. Mechanical analog

It is helpful to consider a simple classical model to ex-
plain the difference between the radial correlations of the
electron pair for the + and the —types of resonance.
Developing a model suggested by Cooper, Fano, and
Prats, Bryant proposed a mechanical analog based upon
the "Newton's cradle" —the popular set of steel balls
suspended, just touching, in a row, often used to demon-
strate resonant behavior in classical mechanics. This
model consists of just three such balls, the central one be-
ing extremely massive (to represent the proton) relative to
the outer pair (the electrons), as illustrated in Fig. 3.
There are two resonant modes of oscillation; the outer
pair of balls may move either in the same direction
(correlated motion), which results in a very long-lived res-
onance, or their motion may be "anticorrelated, " which
produces a short-lived resonance that begins to decay im-
mediately, as the balls do not hit the central sphere sirnul-
taneously. These represent, then, the Feshbach ( —) and
shape (+) resonances, respectively. This analogy may be
carried a stage further, as, in an external field, the outer
electron in a —-type resonance would see a shielded nu-
clear potential, and so would be more susceptible to de-
tachment, whereas for the +-type resonance both elec-
trons would see the full nuclear charge when distant from
the nucleus. Thus, the shape resonance, normally short-
lived (and therefore broad), remains unaffected until rela-
tively high fields are imposed, and in contrast the long-
lived Feshbach resonance is quenched in modest fields. '

- n=5

I I I I I I I I I

4 5 6 7 8 9 10 11 12 13 14 15 16

WR

FIG. 2. Potential curves converging on the n =4 to 9 thresh-
olds of H . (Courtesy of H. Sadeghpour. ) FIG. 3. "Newton's cradle" model of two-electron resonances.
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3. K T -A-classification

An independent-particle model would represent the
two-electron wave function as ~n, 1„nzl2,L,S,m), .where
L and S are the total angular momentum and spin, re-

spectively, and m is the parity. Herrick and Sinanoglu'
introduced mixings of l, and l2 within a given n „n2and
replaced l, and I2 with two new quantum numbers I%' and
T. Each doubly excited state is then represented by
quantum numbers

~ n, m, K, T,L,S, vr ), where m and n are
the principal quantum numbers of the outer and inner
electrons, respectively. n is therefore the hydrogenic
threshold below which the resonance lies. The intrashell
resonances, the lowest of any given series, have the two
electrons occupying the same shell, so m =n.

The numbers E and T arise from group theoretical cal-
culations. K is related to ( —cos8,2), where 8,2

represents the angle between the radius vectors of the
electrons; the larger the positive K, the closer is
( —cos&,2) to unity. K may be considered as a (bending)
vibrational quantum number. T, on the other hand, mea-
sures the projection of the total angular momentum L
onto the interelectron axis, and as such describes the
orientations between the orbitals of the two electrons;
thus, T =0 implies that the orbitals lie in the same plane.
T may be considered to be a rotational quantum number.
K and T, therefore, describe the angular correlations of
the system. ' According to Herrick and Sinanoglu,
T=0, 1, . . . , min(L, n —1) (although T=O is forbidden
for states where the parity tr = (

—1 )
+ '

), and
K =n —T —l, n —T 3, . . . , (—n —1 —T—).

The lowest 'P' + channels have the maximum possible
E within a given n manifold, namely n —2, and also have
T=1. In addition, Lin' introduces a quantum number
3 to describe radial correlations. A is allowed the values
+1, —1, and 0. A state with A =+1 would have an an-
tinode for the hyperspherical angle a [of Eq. (3)] at about
a=+/4; a state with A = —1 would have a node there.
This designation coincides with the + or —classification
of Cooper, Fano, and Prats. States that have neither
node nor antinode are assigned A =0, and their charac-
ters are similar to singly excited states. A may also be ex-
pressed in terms of the other quantum numbers. If
K) L n, then —A =rr( —1) +; otherwise, A =0. In ad-
dition, states with L )2(n —1) must have A =0.

range dipole potential that binds series of the so-called
Feshbach resonances (of both + and —character) below
the hydrogenic threshold in question, as we have dis-
cussed in Sec. IC1 for n =2. The positions EI, and
widths I z of successive resonances within such a series,
converging on the threshold at energy E„=E,—R In
(where E, is the double-detachment threshold energy,
14.3526 eV) should then obey the simple recursion formu-
la

E —E
E.—Ek+i

(18)

where k =m —n + 1 is the "number" of the resonance in
the series, and

(
] )1/2

n n 4 (19)

We shall refer to a„as the dipole parameter of the
relevant photoionization channel. The values of a„may
be calculated very precisely, and are listed for + chan-
nels in Table I; they may also be calculated approximate-
ly from the formulas

23n + 2
fl 3 3

for the 1owest + series, and

2 23n 7a„=3n —
6 6n

(20)

(21)

for the lowest —series. These approximations di8'er

from the exact values by less than 0.3%%uo, as shown also in

Table I. The series are expected to terminate only when
the resonances are separated from the threshold by an en-

ergy equal to the relativistic splitting of the hydrogenic
levels.

Calculations' have shown that a strong series of +-
type resonances lies below each hydrogenic threshold
from n =3 upwards. (The series of Feshbach resonances
believed to lie below n =2 is a —series. ) Sadeghpour
and Greene have to date carried their hyperspherical cal-
culations up to the n =12 hydrogenic level.

D. Recursion formula

1 anU„(%)~—R + (17)

where R is the (reduced-mass) Rydberg energy, 13.5984
eV (not to be confused with the hyperspherical radius A),
and the hydrogen atom is in state n. This is the 1ong-

Having established the nature of the potentials U„(%),
let us now consider the energies of the bound states that
they support.

Gailitis and Damburg' have shown that, as the hyper-
spherical radius %~ oo, the potential U„(A)—which is

just the interaction energy of an electron in the field of an
excited hydrogen atom —takes the form (in eV)

Hydrogenic
threshold n

3
4
5

6
7
8

9
10

a„(theory)

5.22
18.46
37.70
62.95
94.20

131.45
174.70
223.96

a„+ (formula 2.20)

5.22
18.50
37.80
63.11
94.43

131.75
175.70
224.40

TABLE I ~ Theoretical values of the dipole parameter a„+.
The thresholds in each case are those to which the resonances
converge —e.g., the resonances in the n =4 continuum are asso-
ciated with the hydrogenic n =5 threshold.
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K. Recursions of series: the "2e formula"

Since the resonances are associated with the neutral
hydrogenic thresholds, which themselves have an (ap-
proximate) energy dependence

E(n, m)=E, —8
n2

—2'( m —n }la„+2R e
1 0.70784

2n (n +0.377)

E„=E,—R /n (22)

where

Zo =2&2(Z —
—,
' ),

Z =3&2(Z —
—,', ),

(where E, is again the double-detachment threshold ener-

gy), it is natural to wonder if the entire series of reso-
nances themselves might obey such a recursion relation.
The so-called "modified Rydberg" formula

E E 2R(Z a)
(n —p }'

for the lowest resonance in each series has been discussed
by various authors, for example Read, ' Rau, ' and Moli-
na; the form essentially arises from the assumptions (i)

that each electron partially screens the other from the
charge of the nucleus, reducing the Coulomb potential
outside the core from Z/r to (Z cr)/r, wh—ere 0 is a
screening parameter, and (ii) that the stronger non-
Coulombic potential experienced by an electron that
penetrates the core may be parametrized by a quantum
defect p.

The formula may be obtained by considering the ener-

gy spectrum produced by the hyperspherical potential
[see Eq. (7)] expanded about the saddle point (recall from
Sec. I B that the lowest resonances in each + series, the
intrashell resonances, essentially reside at this point).
The expansion gives, in atomic units, "

V= [ —Zo —Z (ir/4 —a) +Zs(ir —
H, i) ), (24)

1

rl=(Z —cr )

so that in this case g=0.707 84.

F. Cross-section structure in the resonance region

(26)

So far, we have discussed the nature of the doubly ex-
cited states, the different ways of classifying them, and
the relationships between their energy levels. We con-
clude Sec. I by considering how the resonances might
affect the continuum photodetachment cross section, and
what kind of structure we might therefore expect to see
as we "tune"' a laser through the resonance energies.

If we represent the amplitude of a resonant state as

(t)= Ae 'e (27)

a Fourier transform into the energy domain gives

(25)

where n is the principal quantum number of the hydro-
genic threshold in question, m =n, n+1, n +2, . . . , and
a„is the dipole parameter belonging to channel n. The
first two terms are the usual Rydberg series for the hy-
drogenic thresholds (22). The term in large parentheses is
the difference between these thresholds and the lowest
resonance in each series as given by the modified Rydberg
formula (23). This difference is multiplied by the factor—2Q m —n) la„
e " to satisfy the dipole scaling law (18). No-
tice that the quantum defect p is unusual in that it is
negative —this may suggest a different origin than the
postulated "core effect." Sadeghpour and Greene refer to
Eq. (25) as the "two-electron formula, " or, more siinply,
the "2e formula. "

For future convenience, let us now define

and

Zs =&2/16,
iar/2=

E E,+ir/2 '— (28)

and of course Z = 1 for H . A first approximation to the
states localized around a=ir/4, H, i=ir is to retain only
the "hyperspherically symmetric" part in Zo. However,
because the saddle is so fiat, even a small energy-level
spacing implies a significant extension in a and 0&2 away
from the saddle point; in other words, the wave function
does not lie entirely on the ridge, but resides partially in
the valleys. The quantum defect compensates in some
ways for this "core" effect. It is introduced, together
with the screening parameter, by inclusion of the Z and

Z terms in the expansion.
Sadeghpour and Greene *' have fit the screening pa-

rameter o. and the quantum defect p to their own calcula-
tions of the energies of the lowest + 'P resonances in the
n =3, 4, and 5 series. By combining the results with the
dipole recursion formula and the Rydberg formula, they
have produced an analytic expression for the energies of
all of the +-type 'P resonances in H associated with all
of the hydrogenic thresholds,

where I r=A, E =fico, and a =2Aiii/1.
This in turn leads to the usual Breit-Wigner formula

for the cross section of a resonance,

aI /4
(E —Eo) +I /4

(29)

where a constant of proportionality is included in the
normalization.

If, however, the resonance lies in a continuum, then
the total amplitude g, becomes instead'

ae'&r/2
E —ED+i r/2 (30)

a +2ab(ccosg+sinP)
c. +1

(31)

where b is the continuum amplitude and tI) is the phase
difference between the resonance and the continuum.
This leads easily to
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(q+e)'
cT —0' +ob a (33)

usually known as a Fano line shape. Note that b Cob, '

since as c~~, o~o, +o.b, this would seem to imply
that the resonance contributes a term o., to the continu-
um background even infinitely far from the energy Eo of
the resonance. Let us therefore redefine o.b,

(3&)

where E =2(E —Eo ) /I .
If the resonances overlap one another, it is necessary to

add their amplitudes before calculating the intensity P*g,
and thus one obtains

ae'&r]2
E —Eo+iI /2

(A summation index j is here implied but suppressed on
the amplitude a, width I", phase P, and energy Eo of the
resonances). The continuum background, here represent-
ed as b, also may be a function of the photon energy.
%hen fitting to this model, it was assumed that b had a
linear dependence on energy.

Equation (31) shows that the shape of the resonance
depends on the phase P between the resonance and the
continuum. The resonances in question here are interest-
ing in that the phase difference with the continuum is
close to 180'—they therefore appear as dips rather than
peaks. The dips found below n =3 by Hamm et al. are
in fact combinations of a dip and a peak, suggesting that
the phase difference with the continuum is close to 90';
the n =2 Feshbach resonance appears as a peak (al-
though it is believed to have a dip associated with it), in-
dicating that it is nearly in phase with the continuum in
this model.

It is interesting to speculate that if we could somehow
separate out the excited states before they were to decay,
perhaps by laser excitation to a higher resonant state, the
measured partial cross sections would then be from con-
tinuum production alone, and the dips should disappear.
This is similar to determining which slit a photon went
through in a double-slit experiment, which destroys the
interference pattern.

With a surprising amount of algebra, (31) may be cast
in the more common form

60
CO

c
50

~TTf
at 4o

30I
20

400
fo

0
f 3.80

I I
'

I I « I I I I I I I I I I I

f 3.85 f 3.90 f 3.95 f 4.00

correspondingly contained in the asymmetry parameter q
(33). This is defined as

&@IT i)
(n.I /2)' (V~T~i )

(37)

where ( 4~ T ~i ) is the transition probability from the H
ground state i to the resonance, and (qi~ T~Ii ) is the tran-
sition probability from the ground state to the continu-
um. Since the overlap of the resonance wave function
with the ground state is expected to become very close to
zero for high-lying resonances, q ~0, and the resonances
should appear more and more like pure dips.

Early evidence for both the dipole recursion formula
and for the diplike structure of high-lying resonances
came from the first double-detachment experiment,
when dips were found in the n =5 continuum, as shown
in Fig. 4. The scan was at coarse resolution, and the
third dip was only represented by a single data point.

II. EXPERIMENTAL TECHNIQUE

The experimental apparatus, of which there is a
schematic diagram in Fig. 5, is described in Appendix A.
Some familiarity with the material therein is assumed in
this section, which aims to outline the principles underly-

Photon Energy (eV)

FIG. 4. Dips in the H continuum below H (n =6). Thresh-
old energies are 13.8084 eV for n =5 and 13.9746 eV for n =6.

so that the continuum amplitude far from the resonance
is just eb. The resonance is then "decoupled" from the
continuum, and the Fano line shape becomes

H Beam
Turntable

—uv Laser(q+e}
O- =O-b+O. , 1+v,

A series of such line shapes that do not overlap would
then be represented by

1 H+ y H""+e

lontztng Magnet

2 H' (n) + B~H'+ e
Separating
gnet

0' rl b +g cTa
(q+E)
1+6 (36} H

H

where again it is worth emphasizing that the o.
b defined

here is slightly different from that defined by Fano.
The shape of the resonance, determined by P in (31), is

H+

Scintillators

FIG. 5. Apparatus for high-lying resonances search.
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ing the experiment and the procedures followed during
the data taking. A detailed description of the apparatus
and of the procedure followed in acquiring data is pub-
lished elsewhere.

A. Overview

The experiment described here is the latest in a series
of studies of H that have been carried out at the Los
Alamos Clinton P. Anderson Meson Physics Facility
(LAMPF), a linear accelerator that provides a beam of
H ions at energies up to 800 MeV (p=0. 842). LAMPF
is uniquely suited to such studies, since the relativistic na-
ture of the beam provides two extremely powerful tools.
First, and foremost, is the relativistic Doppler shift. As
the H ions are moving at relativistic velocities, making
them intercept a laser beam of laboratory photon energy
Eo at a varying angle a changes the barycentric photon
energy E according to the formula

E =Eoy(1+Pcosa), (38)

where p=u/c and y =(1—p ) '; a=0 when the beams
meet head on. The enormous range of tuning —over a
decade for an 800-MeV beam —is otherwise totally out of
the question for any lasers available either now or in the
foreseeable future. Coupling this tuning ability with
available lasers, from CO2 through the various harmonics
of a Nd: YAG (where YAG is yttrium aluminum garnet}
to an excimer ArF, any photon energy from 0.03 eV up
to 21 eV is attainable. This is a perfect match with the
energy range of interest for H, from well below the
single-electron photodetachment threshold, right through
the resonance region and up beyond the double-
detachment threshold.

The second important feature of the LAMPF beam is
the relativistic transformation of electromagnetic fields.
A modest transverse magnetic field B~ in the laboratory
becomes a substantial electric field, of strength

Fi =ypcBi (39)

H +y~H *{~ n )+e (40)

where the principal quantum number n of the hydrogen
atom is typically between four and eight, and the ~ sign
indicates that the atom may, instead, be excited to any
state lower than n, with the electron carrying off the ex-
cess energy. The asterisk (e) indicates that the electron
in the atom is excited.

As the angle a between laser and particle beams be-
comes smaller, and the photon energy correspondingly

(SI units), in the rest frame of the ions. It is extremely
difficult to apply such strong fields in a normal laboratory
environment, especially to charged particles, as the
several MV/cm that have been applied here. Thus, this
technique allows the study, for example, of the quenching
of resonances in extremely strong dc fields.

In order to study the high-lying resonances in H
which, as has been indicated earlier, lie at energies of
10—14 eV—in the far-uv region —the fourth harmonic of
our Nd: YAG laser (EO=4. 6595 eV} is Doppler-tuned to
excite the transition

higher, successively higher n states are produced. If,
however, the photon energy should match that of a reso-
nance in the H continuum, then the process

H +y~H **~H *( ~n)+e (41)

B. Energy calibration

Transitions between excited states of neutral hydrogen
are used to determine the energy scale. A neutralizing
thin foil is used to produce excited H atoms; scanning
the magnetic field of an electron spectrometer shows us

may also take place. The amplitudes for excitation of the
neutral hydrogen atom via production of the doubly ex-
cited resonant state H ** [Eq. (41)] and that of direct ex-
citation [Eq. (40)] will add coherently, resulting in struc-
ture on the continuum cross section as discussed in Sec.
I F.

Let us consider a photon with a Doppler-tuned energy
sufficient to detach the second electron from the H ion
and to excite the remaining hydrogen atom into the state,
say, n =4. There is a large probability that it will, in-
stead, eject the outer electron and leave the neutral hy-
drogen in n = 1, 2, or 3. If we wish to see structure in the
H (n =4) production continuum, it is essential that we
discriminate against this background.

It is here that the transformation of (laboratory frame)
magnetic fields into (barycentric frame) electric fields be-
comes important, for, by applying a field of -4000 6,
the corresponding field of 1.9 MV/cm in the ion's rest
frame is sufficient to strip the electron from H '(n =4),
while leaving unaffected those atoms in n ~3. The pro-
tons resulting from this so-called field ionization are mag-
netically separated from the remaining neutral and posi-
tively charged particles, giving a clear signal of the pro-
duction of H '(n =4).

We might expect, then, that as we increase the
barycentric photon energy, starting from that needed to
produce H *(n ~ 3), we should see a staircase-type struc-
ture, as shown in Fig. 6(a), with the onset first of n =4
production, then of n =5, 6, and so on. (This figure also
includes a linear dependence with energy of the continu-
um cross section. ) In addition, by reducing the magnetic
field to the pont where it is no longer able to strip
H *(n =4), but is able to strip H "(n ~5), we should
again see a staircase structure, but this time beginning
with the onset of n =5 production. Thus, we have the
means to isolate and study a single channel at a time.
This iterative process is repeated for successively higher n

states until the signal becomes so small that it is impossi-
ble to discern the structure above the background noise.

The interference in the cross section, due to the
coherent addition of amplitudes for the production of the
H continuum and the H **resonance (see Sec. I F), re-
sults in a series of "dips" in each H *(n) channel, as
shown schematically in Fig. 6(b), becoming progressively
narrower and closer together as they converge on the
H *(n +1) threshold. The object of this experiment is to
characterize these dips, measuring their positions and
widths, and to compare them to the many predicted 'P
resonances in H
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FIG. 6. Expected staircase structure of continuum, (a)
without resonances, (b) showing dip resonances.

the distribution of high-lying excited states. If a magnet-
ic field of =130 6 is then applied (before the laser in-

teraction region), these high-lying states will be field ion-
ized, and no longer detectable by the electron spectrome-
ter. The laser-particle beam intersection angle may then
be swept until the spectrometer, set at the appropriate
field, once again detects high-lying states, this time pro-
moted from lower excited states by the laser. For exam-
ple, if the spectrometer is tuned to detect, say, the state
n =14, and the magnet has stripped all of the foil-
produced atoms in the state n = 14, then the spectrometer
will detect nothing until the laser angle is set to the tran-
sition from n =1 to n =14 (or n =2 to 14, etc.). The an-
gular spacing between several such hydrogen lines tells us
which lines we are looking at, and therefore where to ex-
pect other structure. The n =2 Feshbach resonance pro-
vides another important energy reference point. Instru-
mental resolution may be determined from the widths of
the hydrogen lines and of the Feshbach resonance.

The angular spacing between these hydrogen lines may
appear to vary slightly from that expected for two
reasons; firstly, if the laser is not properly aligned, it will
"wander" as the intersection angle is varied; and second-

ly, runout in the bearings on the belt drive system will

cause a sinusoidal variation from linearity in the encoder
readout itself. As the structures under observation here
all lie within a very small angular range, however, these
variations are not generally a problem. A longer-term
drift may be caused by a change in the frequency of the
laser itself, by up to a wave number. This (systematic)
shift in energy scaling is not apparent in any of the data.

H pulses
(paddle scintillator) 500ns

Laser Q-Switch
Trigger

5ns

Signal from
Detector

Data Gate

Background Gate

FIG. 7. Laser-particle beam timing overlap, with relative po-
sitions of data and background gates.

III. RESULTS AND ANALYSIS

In this section we discuss the results of the data fitting
under various constraints. Of these results, we shall place
particular emphasis upon the fitted energies of the reso-
nances, since several theoretical calculations of these en-
ergies are available. We shall find that we are unable to
discriminate between the different theoretical approaches
at this level of precision, but that the simple analytic "2e
formula" [Eq. (25)], with the parameters g [Eq. (26)] and

p [from Eq. (23)] determined by a fit to the data, is able to
predict the energies as well as any of the ab initio calcula-
tions.

A. Fitting the data

All of the data collected and analyzed are displayed
elsewhere; the procedure followed for data reduction is
discussed in Appendix B. The data for each hydrogenic
continuum channel studied (n =4, 5, 6, 7) were combined
to produce one set of data for each channel, displayed in
Figs. 8(a)—8(d). Each contains at least three prominent
resonances, which seem to converge on the next higher
threshold (n =5,6, 7, 8, respectively). These resonances

C. Taking data

During a run, the laser-particle beam interaction will
take place at a number (usually 100) of different intersec-
tion angle settings. Signals are collected at each angle
setting for a certain amount of time, determined by in-

tegrating the H current detected by a Faraday cup in
the beam stop. At each laser shot, the integrated signals
from the detectors are recorded on magnetic tape; at the
end of each angle, the computer calculates the sum, the
mean, and the standard deviation of the mean of these
signals, writes the results to a data file, and records such
information as the angle-encoder setting, magnetometer
readings, and so on. It also generates histograms of sig-
nal versus angle number. Fast electronics, discussed in
Ref. 26, are used to synchronize the laser pulse with the
particle beam, and to digitize the signals from the detec-
tors (see Fig. 7.)
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appear primarily as dips, although there is still evidence
of some asymmetry —the Fano q parameter [Eq. (37)] is
in each case close to zero. Figures 8(a) —8(d) also show
the results of the fits to sets of Fano profiles.

As explained in Appendix B, the data set for each
channel was fit first to a set of independent resonances, in
which the probability amplitudes g, were added (in case
of overlap) before calculating the cross section a =1(*p
(see Sec. IF). The amplitude for the continuum back-
ground was allowed to be a linear function of energy.
When the fitted widths indicated that there was in fact no
significant overlap, sets of standard Fano profiles were
used for the fitting. The sets of resonances were then fit
to the dipole recursion formula (18), both with the dipole
moment a„asa free parameter and with it fixed at the
value predicted by theory.

Theoretical considerations suggest that the asymmetry
parameter q and the amplitude 0., of the Fano profiles
(35) should be constant (or nearly so) throughout the

series of resonances. Fits were also performed, there-
fore, with these constraints.

For each fit, a value is given for y-squared per degree
of freedom (y /v, or reduced y ). Confidence levels (CL;
defined as the probability of g exceeding its calculated
value) are also given where they exceed 0.01%%uo', however,
with —100 data points, the confidence level drops oA ex-
tremely rapidly for g /v) 1.

A Gaussian width corresponding to our resolution of
8.3 meV has been convolved into each fit. The energy
scaling and resolution were determined from the posi-
tions and widths of the n =2 Feshbach resonance and of
several hydrogen lines, as outlined in Sec. IIC, and the
absolute uncertainty in energy is less than 1 meV (with a
relative uncertainty between points of less than 0.2 meV).
This is su%ciently small that no energy uncertainty has
been introduced into the fits. Of course, the energies in
the unconstrained fits are free to "Aoat, "whereas those in
the dipole formula fits are tied to the threshold energies;
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FIG. 8. Partial photodetachment cross sections of H, showing production of neutral hydrogen in (a) n ~4 (g'/v=0. 97, CL is
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but allowing an energy uncertainty in the dipole fits does
not produce a consistent offset —either in magnitude or
in sign —for the different channels, and does not bring
about a large reduction in y, and so the energy scale was
fixed at its independently measured setting. The number
of free parameters is in any case already prohibitive.

B. Positions and widths of the resonances

The fitted positions and widths of the resonances are
given in Table II. Sets of Fano profiles were used

throughout, the cross section of the continuum back-
ground O.

b being assumed to vary linearly with photon
energy. The conditions under which the fits were per-
formed are as follows.

(a) Positions of the minima, read from the data files.
(b) Unconstrained fits; parameters allowed to vary free-

ly.
(c) Fits to dipole series [Eq. (18)]; dipole parameter a„

allowed to vary as a free parameter. Only the first reso-
nance in each series is given, as the remainder are defined

Between
thresholds

TABLE II. Positions and widths of resonances.

(a) Positions of observed minima, by eye

Position (eV)

4and 5

5 and 6
6 and 7
7 and 8

13.682
13.879
13.997
14.076

13.769
13.936
14.039
14.109

13.794
13.955
14.057
14.121

13.966

Between
thresholds

4 and 5

5 and 6

6 and 7

7 and 8

Position
(eV)

13.6858(3)
13.7708(3)
13.7919(11)
13.8812(3)
13.9379(2)
13.9557(1)
13.9628{1)
14.0024(7)
14.0456(7)
14.0558(2)
14.0802(10)
14.1132(2)
14.1171(3)

{b) Unconstrained fits

Width
(meV)

21.5(5)
14.1(7)
14.3(7)
1 1.6(8)
8.2(5)
5.5(13)
1.0(4)

12.4(13)
4.9(9)
0.9(2)
3.1(12)
1.39(4)
1 ~ 13(6)

(CL)

0.97(55%)

1.85(0.01%)

0.88(73%)

0.98(50%%uo)

Between
thresholds

(c) Dipole series fits; unconstrained a„
Position Width

(eV) (meV) an

4and 5

Sand 6
6and 7
7 and 8

13.6864(1)
13.8817(1)
14.0016(3)
14.0800(9)

21.4(2)
13.6(1)
8.9(1)
4.0(1)

31.3{2)
47.5(3)
73.7(13)

110.1(46)

2.8
2.7

1.5(0.7%%uo)

1.5(1.5'Fo)

Between
thresholds Qn

(d) Dipole series fits; a„from theory (Table I)
Position Width

(eV) (meV) (CL)

4 and 5

Sand 6
6and 7
7 and 8

13.6879(1)
13.8815(1)
14.0020(4)
14.0829(8)

21.1(I)
14.0(1)
11.6(17)
4.0{3)

37.70
62.95
94.20

131.45

4.9
5.6

1.7{0.06%%uo)

1.6(0.4%%uo)

Between
thresholds

(e) Dipole series fits; a„from theory; const q, o.,
Position Width

(eV) {meV)

4 and 5
5 and 6
6 and 7
7 and 8

13.6878(4)
13.8826(4)
13.9995(6)
14.0813(3)

19.8(7)
11.6(6)
14.0(14)
4.0(2)

8.4
5.9
2.6
2.9

0.32(2)
0.40(3)
0.10(4)

—0.09(4)
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by the recursion formula.
(d) As for (c), but with the dipole parameter a„fixed by

theory (see Table I).
(e) As for (d), but with the values of the parameters q

and o., assumed constant throughout the series of reso-
nances.

Uncertainties in the fitted parameters are given in

parentheses, and correspond to the change in the last
significant digit required to increase the total g by one.
This is a standard approach, although it clearly becomes
invalid if y /v differs significantly from unity.

The position of the resonance at the n =7 threshold
may be subject to additional uncertainty since it does not
appear as a full dip; in other words, only half of the
profile can be seen. There may also be a shape resonance
at the n =7 threshold (see Sec. I Cl) interfering with it,
although if it is there it should be weak.

C. Comparison of energies and widths with theory

We compare here the fitted energies and widths of the
resonances with several theoretical predictions. We begin
in Sec. III C 1 with the theoretical predictions for the en-

ergies of the lowest resonances in several different series,
and we compare these numbers with the resonance ener-
gies found from the unconstrained fits, to see if we are ob-
serving resonances from more than one series in each
continuum. Following this, we compare the fitted ener-
gies with the energies expected in a single series in each
continuum, where we find that the match is considerably
better. In this paper, "energy" refers to the photon ener-

gy (in eV) needed to reach the state in question from the
ground state.

Section III C 2 discusses the fits to the dipole recursion
formula. We then detour brieAy in Sec. III C 3 to see how
well the minima read from the data files, which we take
as the locations of the resonances, match up with the di-

pole law.
Section III C 4 shows a plot indicating the linear

dependence of the energy of the lowest resonance in each
series (below the double-detachment threshold) on the hy-
drogenic principal quantum number n [see Eq. (23)];
values are found for the screening and quantum-defect
parameters 0. and p. Section III C5 uses these parame-
ters in the Ze formula [Eq. (25)] to predict the positions of
all (lowest series) + resonances from n =3 to 10.

Section IIIC6 concludes the discussion of resonance
energies with a brief summary.

Section III C 7 compares the fitted values of the widths,
already touched upon briefly in Sec. IIIB, with some
theoretical predictions.

1. Theory versus unconstrained fits

Some theoretical predictions for resonance energies are
given in Table III. In each case, these are the energies of
the first resonance in each series, the energies of the oth-
ers following from the dipole recursion formula. The cal-
culated values of Ho and Callaway, ' Ho, and of Koya-
ma, Takafuji, and Matsuzawa, were converted from the
published energies in rydbergs (measured downwards
from the double-detachment threshold, at 14.35262 eV)
by using the infinite Rydberg constant R „=13.605 698
eV. This should be appropriate for +-type resonances,
where the nucleus is "stationary" (see the classical analog
of Sec. I C 2). The difference in photon energy in any case
amounts to no more than 0.4 meV.

The fitted energies (from the unconstrained fits) are
also included in the table. It appears that the first reso-
nance in the lowest + series of each channel matches
fairly well, but no others do, indicating that we are just
seeing that lowest + series. The calculated widths of
some of the other series of resonances are suSciently
large that we might expect to observe them; the fact that

TABLE III. Fitted photon energies of resonances (eV) vs calculated values for lowest resonances in

each series of (1) Ho and Callaway (Ref. 16) and Ho (Ref. 29), (2) Koyama, Takafuji, and Matsuzawa
(Ref. 30), and (3) Sadeghpour (Ref. 10). Again, uncertainties in fitted parameters corresponding to
Ay'= 1 are in parentheses.

Between
thresholds

4 and 5

Fitted

13.6858(3)
13.7708(3)
13.7919(11)

13.6846
13.7574

Calculated
(2)

13.6809
13.7381
13.7675
13.7831

(3)

13.6857
13.7369
13.7703

5 and 6 13.8812(3)
13.9379(2)
13.9557(1)
13.9628(1)

13.8798
13.9202
13.9710

13.8794
13.9148
13.9270
13.9432

13.876
13.9196

6and 7 14.0024(7)
14.0456(7)
14.0558(2)

14.0008
14.0254
14.0544

13.9991
14.0245
14.0391

13.9996

7 and 8 14.0802(10)
14.1132(2)
14.1171(3)

14.0783
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we do not implies that the resonances are weak, i.e., that
o., is small.

Table IV lists the measured resonance energies —again
from the unconstrained fits —and compares them with
the calculated values of the lowest + resonance series in
each channel. The calculations are from Sadeghpour, '

and include both precise calculations using quantum-
defect theory and estimates froin the 2e formula [Eq.
(25)], using his values of the parameters rl [Eq. (26)] and p
as discussed in Sec. I E. The match in this case is obvi-
ously (qualitatively) extremely good throughout the entire
range of energies studied, indicating that the structure
that we see is due almost entirely to the lowest + series.

2. Dipole recursion formula fits

3. Minima "by eye" uersus recursion formula

Returning to the top of Table II, we have the positions
of the minima of each resonance (as read from the data
files) listed. If the parameter q were constant over the
range of the series, the resonances would all have the
same shape; if, then, the dipole recursion formula holds,
we would expect that any set of equivalent points on the
set of Pano profiles, and not just the centroids, should
obey the same recursion formula. Testing this with the
calculated values of a„(Table I), we find a reasonably
close agreement; the recursions of the first minima are in
each case not more than a few MeV from the observed
values. They are, however, outside the uncertainty limits,
bearing in mind the 1 meV precision of the energy scale.
This again suggests that either q is not quite constant, or
that the dipole scaling does not quite work precisely, or
both.

The fits with energies and widths constrained to the di-
pole scaling law [Eq. (18); cases (c), (d), and (e) in Sec.
III B] have a much higher y, and therefore appear to be
considerably poorer descriptors of the data than the un-
constrained fits. However, the fitted energies of the reso-
nances match the unconstrained fits very closely —within
just a few meV in each case, as shown in Table IV. The
widths do not match as well, as will be seen later.

According to a quantum-defect picture, the dipole scal-
ing law holds exactly only if several short-range parame-
ters are constant. One might infer from the fits, and par-
ticularly from the extremely large g values obtained
when q and o., are held constant, that these parameters
vary weakly with energy.

It appears, then, that the dipole scaling law is not quite
exact. At this level of precision, however, it could be that
the background continuum is not well represented by the
linear energy dependence of this model, or else that other
resonances are altering the cross section slightly. It is in-
teresting to note that in each case, when the dipole pa-
rameter a„is allowed to vary, the value obtained is
significantly lower (by some 16—25%; see Table II) than
the theoretically calculated value.

4. Lowest resonance in each series

=0.2299(5)[n +0.333(10)], (42)

where as usual the uncertainties are given in parentheses.
For this fit, the 1-meV absolute energy uncertainty was
added to each of the fitted uncertainties listed in Table II;
the reduced g was then 0.78, with a 50% confidence lev-
el.

According to the modified Rydberg formula (23), the
energies of the lowest resonance in each series (as mea-
sured downwards from the double-detachment threshold)
should be proportional to I/(n —p) . Thus, a plot of
(E, E) '~ v—ersus n should —and indeed does —yield a
straight line, as shown in Fig. 9. The energies used are
those from the unconstrained fits [case (b) in Sec. III B].
Included in this plot is the first of the dips below n =3, at
12.650(4) eV. The n =2 shape resonance is not includ-
ed since its structure is different from the other lowest +
resonances, which are all Feshbach-type resonances.

The fitted line is

(E, E) ' =0.—0765(22)+0.2299(5)n

TABLE IV. Fitted photon energies of resonances in eV; (1) unconstrained fits, (2) dipole formula fits
vs calculated values (Ref. 9), using (1) quantum-defect theory, (2) the 2e formula [Eq. (25)].

Between
thresholds

4 and 5

5 and 6

6 and 7

7 and 8

Fitted
(1)

13.6858(3)
13.7708(3)
13.7919(11)
13.8812(3)
13.9379(2)
13.9557(1)
13.9628(1)
14.0024(7)
14.0456(7)
14.0558(2)
14.0802(10)
14.1132(2)
14.1171(3)

Fitted
(2)

13.6879(1)
13.7661
13.7934
13.8815(1)
13.9326
13.9558
13.9662
14.0020(4)
14.0369
14.0551
14.0829(8)
14.1071
14.1291

Calc.
(1)

13.6857
13.7730
13.7963
13.8760
13.9347
13.9575
13.9671
13.9996
14.0382
14.0566
14.0783
14.1064
14.1217

Calc.
(2)

13.6868
13.7650
13.7930
13.8792
13.9316
13.9553
13.9660
13.9989
14.0352
14.0543
14.0783
14.1044
14.1195
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2.00

1.75

1.50

1.25

1.00

0.75

5. The 2e formula

As discussed in Sec. I, the 2e formula [Eq. (25)]

E(n, m)=E, — +2R e
n

7l

2n (n —p)

(43)

FIG. 9. A plot of the energy below the double-detachment
threshold of the first resonance in each series, (E, —E) ' vs

the principal quantum number n. Error bars are too small to be
visible on this scale.

TABLE V. Fitted photon energies of resonances in eV (from
unconstrained fits) vs calculated values from the 2e formula [Eq.
(25)], using the best fit to the lowest resonance in each channel.
The uncertainties in the calculated values arise from the uncer-
tainties in the fitted parameters g and p and are therefore not in-
dependent of the uncertainties in the measured energies. The
thresholds n are those to which the resonances converge.

Threshold Fitted
(eV)

Calc.
(eV)

Table V, beside the measured energies. Uncertainties in
the calculated energies, which are listed for the first reso-
nance in each series, are from the uncertainties in the
fitted parameters g and p, and so are not independent of
the uncertainties listed for the measured energies.

A comparison of the measured energies with the 2e-
formula predictions reveals that the energy of the second
resonance in each series is consistently underestimated by
5 —9 meV.

Figure 10 shows the 2e-formula predictions and the
measured data for comparison. The data points are large
enough to include the error bars. The ordinate is

(E, E) —', following the format of Sadeghpour and
Greene; this effectively expands the energy scale —the
few meV difference between the data and the curve for
the second resonance in each series would be almost in-

visible on a normal scale covering the 1 ~ 5-eV range from
the lowest n =3 to the highest n =8 resonance. The
abscissa indicates the principal quantum number m of the

was fit to calculated energies of the lowest resonance in
the hydrogenic n =3, 4, and 5 channels, giving values of
0.707 84 and —0.377 for the two parameters i) =(Z —o )

and p, respectively. We can instead fit it to our measured
resonance energies.

The 2e formula contains two assumptions —namely,
the modified Rydberg formula for the lowest resonance in
each series [Eq. (23)], and the dipole scaling law [Eq.
(18)]. Fitting all of the resonances to the combined for-
mula does not tell us which of the two formulas, if either,
is at fault, and so has no value beyond the fits already
performed on the formulas individually. We have al-
ready established that the dipole recursion formula is not
exact (although it does seem to be a good qualitative
predictor of the energies); building it into the fit, without
allowing for the fact that it is an approximation (perhaps
by increasing the error bars of all resonances beyond the
first in each channel to a few meV) just weights the fit
artificially in favor of the channels with more resonances
(and therefore against the n =3 dips).

The most sound approach, then, is to fit just the first
resonance in each channel —which of course we have al-
ready done in Sec. III C4. The fitted line of Eq. (43)
translates to values of i) and p of 0.6957(30) and
—0.333(10), respectively. Using these values, we may
then predict (from the dipole recursion formula) the posi-
tions of the resonances, and since we have weighted the
n = 3 resonance appropriately, along with those of chan-
nels n =5 to 8, we may expect that the formula will hold
over a wider energy range.

The predictions of the resonance energies are listed in

10

12.650(4)
12.837(4)

13.6858(3)
13.7708(3)
13.7919(11)

13.8812(3)
13.9379(2)
13.9557(1)
13.9628(1)
14.0024(7)
14.0456(7)
14.0558(2)

14.0802(10)
14.1132(2)
14.1171(3)

12.6494(126)
12.8302
12.8410
12.8416
13.3448(64)
13.4665
13.4944
13.5008
13.6874(38)
13.7652
13.7931
13.8031
13.8809(25)
13.9324
13.9557
13.9662
14.0008(18)
14.0362
14.0548
14.0645
14.0801(13)
14.1055
14.1201
14.1286
14.1354(10)
14.1541
14.1657
14.1729
14.1754(8)
14.1896
14.1988
14.2049
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1.5—
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n

TABLE VI. Fitted widths of resonances in meV, (1) uncon-
strained fits, (2) fits to dipole series vs calculated values (Refs. 16
and 29). For the dipole-series fits and for the theoretical calcu-
lations, widths beyond the first are calculated from the dipole
recursion formula. Widths considerably less than the 8-meV
resolution may not be reliable.

1.0—
P

Between
thresholds

Fitted
(1)

Resonance widths
Fitted

(2) Calc.

0.5—
2 3 4 5

I

6 7 8 9 10

FIG. 10. The 2e-formula fit to the energies of the lowest reso-
nance in each series (those lying on the dashed line).

outer electron; m =n for the lowest resonance in each
series (the intrashell resonances). Obviously, the curves
have no physical meaning between integer values of m.
The dashed line, on which the intrashell resonances lie, is
exactly equivalent to the line of Fig. 9. Note that just two
free parameters determine a/1 of the curves shown.

4 and 5

5 and 6

6 and 7

7and 8

2 1.5(5)
14.1(7)
14.3(7)
13.0(3)
10.5(3)
8.4(3)
1.4(1)

12.4(14)
4.9(9)
0.9(2)
3.1(1)
1.39(4)
1.13(6)

21.1(1)
7.56
2.7

14.0(1)
6.3
2.9
1.3

11.6(18)
6.1

3.2
4.0(3)
2.3
1.3

20
7.2
2.6

13
5.9
2.7
1.2

11.1
5.8
3.0

6. Summary of comparison of energies with theory

The energies of the lowest resonances in each series
seem to be well determined by a number of different
theoretical calculations of varying complexity; disagree-
ments between calculations typically amount to a few
meV, and this is of the order of the differences between
the calculated values and the experimentally measured
values. The dipole recursion formula seems to hold ap-
proxirnately, as expected, within each series. The simple
analytic 2e formula, based on this dipole scaling law and
the modified Rydberg formula (23), predicts the positions
of the resonances just as well as do any other calcula-
tions. Bearing in mind that each continuum partial cross
section should contain many series of resonances, this re-
markably good match seems to indicate that the lowest
+ series dominates every time, since otherwise the over-
lapping resonances would give a far more complicated
spectrum.

7. Comparison of measured widths with theory

Table VI shows a comparison of the measured reso-
nance widths versus theoretically calculated widths. The
calculated widths are for the first resonance in each
series, the remainder being given by the dipole recursion
formula.

The width of the first resonance in each channel, from
both the unconstrained fits and the dipole law fits,
matches the calculated width (to within the error bars) if
one assumes that the "uncertainty" in the calculated
value is l in the last digit. Since the first resonance
matches, subsequent resonances must match also for the
dipole formula fits. Those of the unconstrained fits, on
the other hand, seem to bear little relation to the widths
expected from the dipole recursion formula, although
there is a tendency for them to narrow as the next thresh-
old is approached.

The third of the resonances converging to n = 5 seems
to have a rather large width. This may be due to the ex-
istence of a fourth resonance in the series, the possibility
of which will be discussed in Sec. III D 3 below.

With only four channels available for analysis, it is
diScult to see any systematic trend of the widths. Those
of the first resonances converging on the hydrogenic
n =5, 6, 7, and 8 thresholds are 22, 13, 12, and 3 meV,
respectively (from the unconstrained fits}, and no pattern
is obvious from these four numbers. Since the dipole re-
cursion formula appears to hold only approximately, pre-
cise calculations of widths of higher resonances in each
series would be useful, but these do not seem to be avail-
able currently.

D. Other parameters

In this section we give the fitted values of the Fano
asymmetry parameter q, the resonance amplitude O.„and
the amplitudes and slopes of the continuum background.

1. Asymmetry parameter q

For cases (b) and (d) as outlined in Sec. III B, i.e., with
the unconstrained fits and the fits to a series with the di-
pole moment fixed by theory, the value for the parameter
q is given in Table VII. These should, however, be treat-
ed with some caution, because the apparent shapes of the
resonances, which is really what q is measuring, are
affected both by the shape of the underlying continuum
(which has been assumed to have a linear dependence on
energy} and by any other resonances that may be in the
vicinity but which are not prominent enough to have
been included in the fits. (It should be remembered that
several series of resonances, of both + and —character,
are expected in each channel, although the —resonances
should not be significant. ) Except for the first resonance
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TABLE VII. Fitted values of the asymmetry parameter q for both unconstrained fits and for fits to
dipole series of resonances.

Unconstrained fits [as in Table II(b)]
Between

threshold s

4and 5

5 and 6
6 and 7
7 and 8

0.187(14)
0.262(4)
0.456(52)

—0.09(15)

0.323(37)
0.406(3)
1.23(21)
0.650(15)

—1.20(11)
—0.064(13)

0.315{67)
—0.660(33)

—0.957(54)

Between
thresholds

Dipole series fits [as in Table II(d)]

q4

4and 5

5 and 6
6and 7
7and 8

0.292{6)
0.268(5)
0.360(32)
0.28(12)

—0.081(4)
—0.038(8)

0.008(49)
—0.18(7)

—0.193{21)
—0.206(39)
—0.391(49)
—0.317(47)

—0.863(16)
—0.51(10)
—2.00(7)
—2.0(3)

2. Resonance amplitudes o,

Resonance amplitudes cr, are given in Table VIII, as a
fraction of the fitted continuum amplitude A (see Sec.
III D 3}, for the unconstrained fits and for the fits to the
dipole recursion formula. There does not seem to be a
consistent pattern to these amplitudes, except that they
tend to be close to 1.0. Physically, they cannot be larger
than 1.0 if q =0, since this would imply that the dip is

deeper than the continuum background (neglecting the
contribution to the continuum background of the slope,
discussed in the Sec. III D 3}. This constraint, however,
is not build into the fits.

3. Background amplitudes and slopes

For each series of Fano profiles, the continuum back-
ground o b (36) was modeled by a linear function of ener-

gy~

o„=A+B(E E„), — (&4)

in the n =5—6 channel, agreement between the different
estimates of q is poor.

The values of q for case (e) in Sec. III B, where q and
0., are held constant, are given with the results in Table
II; however, the extremely large values for the reduced y
values show that the fits are extremely poor, and there-
fore that this model fails to represent the true structure.
It will not be considered further.

We discuss here some structures that appear in the
yield curves that may be due to resonances, but which are
not as clearly defined as those discussed in the preceeding
sections.

1. The n = 9 threshold + resonance candidate

The fitted 2e formula predicts that the first + reso-
nance associated with the n =9 threshold will occur at

TABLE VIII. Fitted values of the resonance amplitude o., as
a fraction of the background amplitude for (1) unconstrained fits

[as in Table II(b)], and (2} dipole recursion fits [as in Table
II(d)].

Between
thresholds

Resonance amplitudes o.,
(1) (2)

are really only listing relative cross sections, and the
quoted units of pao should in no way be regarded as an
absolute measurement.

Table IX lists the amplitudes A and slopes B of the
continuum background. Although the slopes are rela-
tively small, they appear to be essential to the fits, in that
the reduced g values increase dramatically if the slopes
are fixed at zero. The agreement between the uncon-
strained fits and the dipole scaling law fits is poor for
both the background amplitudes and slopes (except for
the background amplitude between the n =5 and n =6
threshold s).

E. Other possible resonance structures

where E„is the threshold energy (in eV) for the continu-
um channel in which the resonances are embedded —in
other words, the n =4 threshold for the resonances con-
verging on n =5, and so on.

As discussed in Appendix B, an attempt was made to
approximate the cross-section units to pao by using a
1/n scaling law, and so the quoted units of continuum
amplitude are pao. Based on the scaling law and on the
expected photodetachment cross section into n =1, the
expected continuum amplitudes are -2102, 1076, 623,
and 392 pao for the channels converging on n =5, 6, 7,
and 8, respectively. It should be noted, however, that we

4and 5

5 and 6

6 and 7

7 and 8

0.948(14)
1.124(40)
0.845(45)
0.951(12)
1.034{8)
1.424(6)
1.277(5)
0.621(43)
0.517(57)
4.4{8)
1.40(7)
2.88(11)
3.56(28)

0.717(1)
1.036(10)
1.016{11)
0.881(9)
1.117{24)
1.090(33)
0.95(13)
0.72(6)
0.76(10)
0.92(21)
1.02(7)
1.26(10)
2.20(30)
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TABLE IX. Fitted values of the continuum amplitude (in

units of approximately pao ) and slope (in units of approximate-
ly pao/eV) for (I) unconstrained fits [as in Table II(b)], and (2)

dipole recursion fits [as in Table II(d)]. See Sec. III D3 for a
discussion of the units.

Between
thresholds

Continuum amplitudes (units of pa o)

(1) (2)

4and 5

5 and 6
6 and 7
7 and 8

2074(22)
1021(8)
712(25)
473(28)

2398(5)
1013(7)
608(29)
354(17)

Between
thresholds

Continuum slopes (units of pao/eV)
(1) (2)

4and 5

5 and 6
6 and 7
7 and 8

3975(65)
1858(39)

—1665(53)
—538(416)

3579(17)
539(15)

—1075(454)
1676(353)

I

[

I 1 I

14.1354 eV, just 4.4 meV below the n =8 threshold. As
such, it should decay into the n =7 channel. The n =7
continuum fits discussed earlier were terminated at
14.136 eV, since at this energy (with 8.3 meV resolution)
the n = 8 production threshold should begin to influence
the cross section.

Inspection of the entire energy range, however, shows
a dip just before the n =8 onset. It is not a large dip, as
the first resonances in each series have been in all other
cases, but that may be expected of an n =9 threshold +
resonance (9+) coupling to the n =7 continuum.

Figure 11 shows a fit of this entire range up to the
n =9 threshold. The parameters representing the first
three resonances were held constant at the values previ-
ously found in the unconstrained fits. The amplitude and
slope of the n =7 continuum were allowed to vary, and
the 1/n scaling law was assumed to hold between the
n =7 and n =8 continua. The fitting routine was then
asked to find a resonance corresponding to the dip be-
tween 14.13 and 14.15 eV. It produced the following pa-
rameters, with a reduced g value of 1.9:

En=14. 1429(1) eV,

I =0.9(2) meV,

o, =1.8(14),
q =0.91(8),

A =425(6)(tta o,
B =846( 110) pa o /eV .

Again, the amplitude o, of the resonance is given as a
fraction of the continuum amplitude A. The fitted width
may be unreliable as it is much less than the instrumental
resolution. As before (Sec. III D 3), although units of (Mao
are quoted, A and 8 should not be regarded as absolute
measurements.

The centroid of the dip is not quite in the expected
place, although there is undoubtedly interference between
the n =8 production threshold (which does appear to
have a slightly delayed onset) and the resonance itself, in
addition to any other resonances in the vicinity (from the
8+ series). It seems quite feasible that this shallow dip is
in fact the first 9+ resonance. However, a fit to the 9+
series failed to find resonances in the right place for re-
cursions of this first dip (the best fit had y /v=3. 6). Fur-
ther investigation of this structure is highly desirable.
Note that the continuum amplitudes for n =7 and 8
seem, at least visually, to match the 1ln scaling law
quite well.

2. n =4 threshold dip

There appears to be a shallow dip just above the n =4
production threshold, centered at about 13.55 eV [see
Fig. 8(a)]. This dip is not very well defined, and its shape
is not consistent from run to run; however, it does appear
to be present in all of the runs that cover the appropriate
energy range. Its nature is unknown; a shape resonance
is possible above n =4, but if it exists it is expected to be
extremely narrow. An alternative possibility is the "tail
end" of a broad Feshbach resonance that is expected to
lie below the n =4 threshold. ' It was not included in
this analysis because of its lack of consistency.
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FIG. 11. H (n =7,8) continuum production.
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Most of the zero-field runs that cover the range be-
tween the hydrogenic n =4 and n =5 thresholds show a
small dip, or at least a plateau, just below the n =5
threshold (at 13.8084 eV). It is generally within the noise,
and often represented by a single data point, but it does
appear to repeat. It was not included in the fits because,
firstly, it is not well defined in any run; secondly, it is too
close to the n =5 threshold (bearing in mind that our
resolution is 8.3 meV); and thirdly, it is not clear that it is
a resonance in its own right rather than just a return to
the continuum level after a "dip-peak" asymmetric reso-
nance preceeding it. Obviously there would be little
meaning to a fit of such a structure to four free parame-
ters.
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TABLE X. Resonances in each series, numbered from the

lowest (i.e., as m —n +1) that are quenched by a given electric
field. Square brackets indicate that a given resonance is

significantly suppressed (-50% reduction in depth of the dip)
but not fully quenched.

Between
thresholds 12

Electric field (kV/cm)
25 63 87

4and 5

5 and 6
6and 7 3[2]

3

2[1]

[2]
2

F. Eft'ects of electric fields

TABLE XI. Downward shifts in energy (meV) for the vari-

ous production thresholds of neutral hydrogen.

Electric fields were also applied to the interaction re-
gion, to study the quenching of the resonances. The po-
larization of the light was a mixture (approximately
50%—50%) of m and o (parallel and perpendicular to the
field). The fields, perpendicular to the plane of interac-
tion of laser and particle beams, were produced by apply-
ing a potential difference between a pair of steel disks
held 1 cm apart across the interaction region; the electric
field I" in the barycentric frame is then y times the field
F in the laboratory frame. (A fairly weak magnetic field,
of strength 8~ =yPF~/c, is also produced by the relativ-
istic transformation of the electric field; this amounts to
no more than 250 G.)

The data from the electric-field runs are displayed else-
where. The effects of the fields are twofold; firstly, to
quench the resonances; and secondly, to shift the thresh-
olds downward in energy (and to change their shape).

Table X indicates the resonances that are quenched in

given electric fields. Background levels caused problems,
and the quality of much of the data is not optimum.
Nonetheless, the quenching process is clearly demonstrat-
ed for all but the very strongest resonance (the first in the
series below the hydrogenic n = 5 threshold). There does
not appear to be any appreciable change of shape (or shift
in energy) of the resonances, as might have been expected
from mixing, prior to the quenching.

The threshold shifts, probably due both to field-assisted
tunneling from the ground state of H and to the chang-
ing of the threshold shapes by the linear Stark effect, are
also visible in the data. Unfortunately the changing
shapes of the thresholds, and the existence of structure
below them, makes it difficult to pinpoint the onset of
production. From a fairly clear step function at zero
field, the threshold smears out into a slope as the linear

Stark effect splits the degenerate levels into the different
parabolic substates.

Table XI lists the approximate shifts in the threshold
energy of n =4, 5, and 6 as the electric fields are applied.
These are measured from the base of the (zero-field) step
to the base of the (field-induced) slope.

IV. CONCI. USION

—2n.( m —n) ia„+2R e
1

2n

0.696
(n +0.333)

(45)

This semiempirical formula is not a firm theoretical pre-
dictor, but it is an extremely good qualitative guide to the
energies of the observed resonances.

The doubly excited states investigated in this study ap-
pear to be, in each case, series of Feshbach-type reso-
nances associated with the hydrogenic thresholds below
which they lie. They are due entirely to electron correla-
tions. The good agreement with ongoing theoretical cal-
culations of their energies seems to indicate that we are
observing the lowest-lying resonances of + character,
and their recursions. The lowest lying in each series, for
which m =n, is a so-called ridge resonance, for which the
two electrons are entirely equivalent; the recursions
represent a series of states which become increasingly
"planetary, " as one electron with the nucleus forms a
core about which the other orbits, until finally the limit
of an excited hydrogen atom with the additional electron
in the continuum is attained.

Calculations of the widths of the resonances are not so
abundant, but those that are available also seem to be in
good agreement with the data. Calculations of the cross
sections, however, appear to be nonexistent. This makes
fitting the data to theory more difficult, since not only the
nature of the resonances but also the form of the underly-
ing continuum in which they are embedded is unknown
to us.

Fits of the resonances that are unconstrained yield en-
ergies that are very slightly different (a few meV) from
those fit to the dipole recursion formula (which is built-in
to the 2e formula above),

A century has passed between the first spectroscopic
studies of atomic hydrogen and the current investigations
of the negative hydrogen ion. Balmer discovered a sim-

ple recursion formula that predicted almost exactly the
energies of the excited states of the hydrogen atom; now
we are able to confirm a similar recursion formula for the
energy levels of the doubly excited states in H

E(N, n)=E, —R

n 2

25

hreshold shifts (meV)
Electric

field
(kV/cm) 63 87

E„—Ek 2n. /a (46)

30(5)
35(10)
35(10)

45(10)
45(10)

55(10)
60(20)

the quality of the latter fits are, however, considerably
worse than those of the former. It is conceivable that the
dipole recursion formula is not working precisely, but it
also seems quite possible that the shape of the underlying
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continua are being distorted by the presence of weaker
resonances.

The energy range included in this study was from the
production threshold of H (n =4) up to that of
H (n =8). (Some data were taken up to the n =9 thresh-
old, but the signals were too small and noisy to observe
structure. ) The region between n =7 and n =8 is of par-
ticular interest; the first resonance associated with n = 8
lies right at the n =7 production threshold, and so in
channels higher than this the first resonance of each
series should be "displaced" by a channel. Future ex-
plorations could also make the link with the previously
studied resonances near the n =2 and 3 thresholds, by in-

vestigating the region between n =3 and 4.
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APPENDIX A: EXPERIMENTAL DETAILS

The beamline equipment, illustrated in Fig. 12, in-
cludes apparatus for all of our current experiments. An
overview is given here of each component, beginning with
the characteristics of the H beam itself.

1. The H beam and the high-resolution atomic beam facility
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FIG. 12. Schematic diagram of beamline apparatus.

MeV mean kinetic energy, with a momentum spread
5p/p =5X10

The divergence of the beam in the vertical direction
may be limited, by dedicated strippers, to less than 10
prad. The necessity for extensive steering prohibits
achieving a similar level of collimation in the horizontal
plane.

The HiRAB facility includes a large vibration-isolation
slab, made of concrete on a bed of sand. Studies ' have
shown this to be effective in considerably reducing
motion from heavy plant operations going on elsewhere,
although the optical tables showed an unfortunate ten-
dency to resonate at low frequencies.

The LAMPF linac provides a H beam of 120 macro-
pulses per second, each lasting for up to 700 ps, and each
in its turn consisting of many micropulses spaced a
minimum of 5 ns apart. The use of choppers allows con-
siderable flexibility in the spacing (and therefore intensi-
ty) of the micropulses, depending upon the needs of the
users.

The high-resolution atomic beam (HiRAB) experimen-
tal area at LAMPF is a dedicated atomic physics facility.
Since the cross sections for atomic physics processes are
extremely large in comparison with those of nuclear
physics, very low beam currents are required. Because
HiRAB was the primary user, the temporal structure of
the beam was tailored to its needs, so the macropulses
were compressed to just 500 ns instead of the normal 700
ps. The peak intensity of each micropulse was therefore
higher, allowing the average current to be held corre-
spondingly lower, typically in the range 1 —50 pA. The
kinetic energy of the beam was nominally 800 MeV, with
our measurements yielding an actual value of 797.3+0.3

2. Nd:YAG laser

The resonant structures in the H continuum lie at en-
ergies of 10.9—14 eV above the ground state. These high
energies mean that, even with the Doppler-tuning facili-
ty, it is necessary to use ultraviolet photons. We used the
fourth harmonic of a Q-switched Spectra Physics DCR-
2A Nd: YAG laser, which has a wavelength of 266. 1 nm.

The laser beam is 8 mm in diameter, with an estimated
divergence of 0.5 mrad. The temporal structure of the
laser pulse was monitored by a fast vacuum photodiode,
the output of which was observed on a fast oscilloscope.

The harmonics were separated by a quartz Pellin-
Broca prism on the optical table, the ultraviolet light
then following the optical train via a succession of dielec-
tric mirrors and into the larger of the two scattering
chambers. Transmitting optics were all made of fused
quartz.

The harmonic-generating crystals, in particular for the
fourth harmonic, are sensitive to the angle of the incident
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laser beam. The tuning of this angle was done by turning
the ammonium dihydrogen phosphate harmonic-
generation crystals remotely with a pair of stepper mo-
tors.

3. Foils

Two specially designed vacuum boxes (known as the
rotating foil-box and the sliding fo-il box, described in de-
tail elsewhere ) held our neutralizing foils, the majority
of which consisted of vacuum-deposited carbon of
thicknesses 15—300 pg/cm . Steppermotor-driven actua-
tors allowed the foils to be remotely inserted to and re-
moved from the beamline. The foils were used to pro-
duce a H beam for energy calibration.

An additional benefit was that the optical alignment was
simplified considerably with the chamber on its side.

A pair of polished steel plates with a 1.00-cm separa-
tion could be remotely inserted to surround the interac-
tion region. Computer-controlled high-voltage power
supplies were used to provide an electrostatic field (up to
100 kV/cm, barycentric frame). One of the plates also
had a small fluorescent screen attached to aid in the
alignment of the particle beam.

5. Little Chamber

A small scattering chamber was designed and built
specifically for a multiphoton detachment experiment.
It is described in detail elsewhere.

4. Big Chamber

The Big Chamber is the first of the two laser —H
beam interaction chambers. Inside it, a mirror system
consisting of three (1-in. 45 angle-of-incidence) dielectric
mirrors, is mounted on an optical bench; this in turn is
attached to a turntable, allowing rotation in the vertical
plane. The laser beam follows the axis of rotation—
horizontal, and perpendicular to the H beam —into the
chamber, where the first mirror deflects it to one side; the
second mirror turns it to become parallel to the axis, and
the third turns it in to the point where the axis of rota-
tion intersects the H beam. Rotation of the turntable
thus changes the angle of intersection of the laser and
particle beams, providing Doppler tuning as illustrated
schematically in Fig. 5.

The turntable is belt-driven. The 0.5-in. -wide steel
belt, made from 0.005-in. -annealed 304 stainless-steel
shim stock cut to length and laser welded, passes around
a 1.000-in. drive shaft, giving the turntable a 10-to-1
step-down gear ratio. The shaft, coupled to a vacuum
feedthrough, is driven by a stepping motor (200 steps per
revolution) via a 100:1 gearbox. The motor takes a total
of 2X 10 steps per revolution of the turntable, which is
equivalent to a step size of 31 prad.

A 14-bit encoder (BEI model 5V 242 BX), also coupled
to the turntable by a steel belt, measures the angle with a
nominal precision equal to the 31-prad step size. In
1988, the number of encoder steps for a complete revolu-
tion was measured, and found to be 198 777.7, by aligning
a mark on the turntable with the crosshair in a telescopic
sight and turning the turntable until the mark lined up
again. This figure implies an average of 552.16 steps/deg,
but over any given region there will be some variation
from this figure from bearing runout. Because the en-
coder makes 12.2 revolutions as the turntable turns
around once, it is also necessary to specify the "sector, "
as measured with a potentiometer connected to the drive
gearbox, to determine the angle absolutely.

The Big Chamber was originally designed for rotation
in the horizontal plane. However, the H beam at the
HiRAB facility may achieve a divergence in the vertical
of better than 10 rad; by turning the chamber on to its
side and allowing the plane of intersection of the beams
to be vertical also, the low divergence of the particle
beam could be used to obtain the optimum resolution.

6. Electron spectrometer

The electron spectrometer uses a magnet to steer elec-
trons out of the ion beam, through a very thin Havar
window and into a scintillator. However, sufficiently ex-
cited neutral hydrogen atoms are also stripped in the
magnetic field (which is perceived as a strong electric
field in their rest frame). The electrons produced are then
steered into the scintillator. Thus, by changing the field
of the spectrometer, we may detect either free—
"convoy" —electrons traveling along with the beam, or
excited (Rydberg) H atoms. The range of sensitivity of
the spectrometer is from n =10 upwards. If a slit is used
to restrict the entrance aperture of the scintillator, the
spectrometer may be tuned to be selectively sensitive to a
particular excited state, although there is sufficient over-
lap of the magnetic substates that the peaks for n =14
and above tend to merge. The field in the spectrometer
was computer-controlled, and was monitored by a Hall-
probe magnetometer.

7. Magnets

There were a number of magnets present in the beam-
line; each is listed here with a short explanation of its
purpose.

(i) HiRAB steering magnets HISM2-X and -Y. These
are just upstream of the HiRAB area; they are controlled
from the central control room (CCR), in the first instance
to steer the beam down our line during the initial tuning,
and thereafter under our direction as required to make
small corrections to the steering. The long lever arm be-
tween these magnets and the interaction region makes
them ideal for displacing the beam while minimizing the
angular displacement, to which the Doppler-tuning of the
lasers is sensitive.

(ii) Vertical steering magnet. Used in conjunction with
HISM2Y, this allowed us to make essentially parallel dis-
placements of the H beam. It also provided a much
more flexible response to changing vertical steering
needs, as it was controlled directly from the HiRAB
counting house (as were the remaining magnets in our
beamline). Another important function served by this
and sweep magnet together with the HISM2 magnets,
was to steer the H beam clear of the neutral hydrogen
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and protons produced upstream by collisions with residu-
al gas.

(iii) Sweep magnet. This magnet provided horizontal
steering, and also separated the H beam from the
residual-gas stripped background beams. Located down-
stream of the foil boxes, it is also capable of field strip-
ping any high Rydberg atoms produced in the foil; so, if
the laser is tuned to excite H *(n =4) to H *(n =16),
say, we can be sure that the H "(n =16) states we detect
in the electron spectrometer are not foil produced.

(iv) Ionization magnet. Designed to produce a strong
horizontal magnetic field over a short region of space,
i.e., a large 8 with a small fB dl, this magnet could strip
the electrons from laser-excited neutral hydrogen atoms
of n =6 and above, while minimizing the steering of the
beam. It had a compensating pole piece to offset any
steering that did take place; furthermore, because the
field was horizontal, it steered only in the vertical plane,
to which our detectors were not especially sensitive.

(v) Bending magnets. These magnets performed the
same function as the ionization magnet, but their higher
fields (approximately 4 kG) allowed stripping of
H (n =4). Their residual fields were too large for the
higher Rydberg states, and so they were removed from
the beamline when necessary and the ionization magnet
was used instead.

(vi) Long Skinny magnet. In order to study the
double-detachment threshold, a means of separating the
signal protons from neutral hydrogen atoms without field
ionizing the highly excited neutrals was required. A long
magnet was therefore employed, the weak field of which
could gently separate the three charge species. This mag-
net consisted of four copper rods running parallel to the
bearnline, each on the corner of a square concentric with
the beam line as viewed in cross section; each rod, 21 ft
long, carried a current so as to produce a vertical (up-
ward) magnetic field. The arrangement resembles an ex-
tremely stretched pair of Helmholtz coils, as illustrated in
Fig. 5. In reality, background problems limited the
threshold study, so this magnet mas usually run at a fairly
high current in order to maximize the separation of the
three beams.
As mentioned above, with the exception of the HISM
steering magnets, all of these magnets, in addition to the
electron spectrometer, were controlled from the HiRAB
counting house. The latter two magnets —the Long
Skinny magnet and the bending magnets —were powered
by a Dual Transrex high current supply (up to 750 and
500 amps, respectively).

8. Detectors

Photomultiplier tubes in combination with fast organic
scintillators were used for detection of electrons, protons,
and neutral hydrogen atoms. Both the H+ and H detec-
tors were on actuators that allowed remote positioning in
the transverse horizontal direction; in the case of the H+
detector, the scintillator itself was in the vacuum, and a
light guide passed through the vacuum seal to the pho-
tomultiplier.

In anticipation of the need for a wide dynamic
range —a single pulse might contain one signal particle,
or it might contain a hundred or more —highly linear
phototubes (Amperex XP22038) were obtained. Details
of the tube and of the base circuit are published else-
mhere.

The H detector, which was outside the vacuum (the
H beam had to pass through a Havar window before
reaching the scintillator), had a phototube at either end
of the scintillator, one being kept at a higher voltage than
the other to give a still wider dynamic range.

9. Beam-current monitors

The photodetachment yield is obviously directly pro-
portional to the current of the H beam; it is therefore
important to monitor both short- and long-term fluctua-
tions in the beam current. The primary normalization to
beam current is done with a Faraday cup. The absolute
charge-collection eSciency of this device is better than
1%. A current digitizer (Ortec model CD 1010) emits a
pulse whenever the cup collects 100 pC. During the ex-
periment, the angle of intersection of laser and particle
beam was changed whenever the number of such pulses
reached a preset figure.

The Faraday cup measures integrated current, for on-
line normalization; however, it is also important to ac-
count for pulse-to-pulse variations in intensity. For this
purpose, we employ a fast ion chamber (FIC), which con-
tains three mire grids at high voltage in a hydrogen-filled
container; as the beam travels through, the ions pro-
duced create a shower, generating a current which passes
through a resistive load. A voltage-to-frequency convert-
er then puts out a series of pulses that are counted by a
scalar in a CAMAC crate to provide a measure of beam
current on the time scale of a macropulse.

In addition, a scintillator-phototube combination (the
"paddle" ) allowed observation of individual micropulses.
In the end, this latter method proved somewhat unreli-
able; we believe that the scintillator was unable to
respond properly to, and may in fact have been damaged
by, the full current of the H beam, which was focused
to a spot only 2 —3 mm in diameter. However, it was still
useful for providing timing information, and to confirm
the presence of the micropulses.

10. Vacuum Pumps and Gauges

In order to minimize backgrounds from collisional
stripping of H by residual gas, it was necessary to keep
the pressure down to the 10 —10 -Torr range. Al-
though the only vacuum gauges available to us were cold
cathode gauges, which were not capable of measuring
below 10 Torr, fairly low currents in the three ion
pumps in the line —one by the foil boxes, one on the Little
Chamber, and one downstream of the skinny magnet—
assured us that the vacuum was in fact in the desired
range. In addition, two cryogenic pumps were employed,
also attached to the Little Chamber and to the beam pipe
downstream of the skinny magnet.
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APPENDIX B: DATA REDUCTION

1. Normalization of signals

unobtainable. With the backgrounds subtracted, each
run could then be normalized to its H signal and scaled
appropriately to produce the relative cross section.

As discussed elsewhere, in order to obtain the relative
cross section from the count rate, the signal must be mul-
tiplied by a factor of sina/(1+/cosa). However, in the
case of the resonances, an alternative form of normaliza-
tion was available; the cross section for the production of
the H atoms stays relatively constant over the photon-
energy range under consideration, and so the H signal
automatically includes the normalizing factor, in addition
to any fluctuations that may be related to changes in the
laser or in the particle beam.

Before normalization to the H signal could take place,
it was necessary to subtract any backgrounds present in
both the H+ and H channels. This was sometimes
diScult because, although several runs included signals
taken at a few angles with the laser blocked, not all did; it
was not obvious at the time that the background levels
were changing, sometimes slowly drifting up or down and
sometimes jumping.

Each of the two signal channels (H+ and H ) had a
background channel associated with it. By looking at the
H signal for the periods where the laser was blocked,
and comparing it with the average value for the H back-
ground (i.e., data taken during the background gate), it
was determined that the background count rate needed to
be multiplied by 2.4+0.1 in order to make it compatible
with the true background levels in the H signal channel.
The uncertainty in this ratio is a systematic error, and so
is not included in the error bars, which are purely statisti-
cal, as discussed later.

A similar subtraction of backgrounds was required
from the H+ signal channel. The cross section, of course,
dropped to zero below threshold, in which case the back-
ground level could be determined even when the laser
was not blocked. The relevant ratio between background
levels in the signal and background channels again fluc-
tuated significantly, but the signal-to-background ratio
was much smaller (often less than 1), making these fluc-
tuations more important. A different approach was
therefore adopted here. First, a particularly "clean" run,
where all conditions were stable throughout the run, was
chosen for each of the hydrogenic excited-state channels
studied —n =4, 5, 6, 7, and 8. These runs also had to
cover the entire energy range for the relevant channel, in-
cluding some data points below the threshold, for which
the true signals would be zero. (Many runs did not in-
clude such regions, and so did not have clearly defined
background levels. ) The background subtraction was
done for each of these sets of data as for the H signals,
and the H+ signals were then normalized to the H chan-
nel for these runs.

The "master" data files produced in this manner were
used for scaling all of the other (zero field) runs, so that
comparisons could fairly be made between runs taken at
different beam currents, with different backgrounds and
so on. Fitting of the the scale factors between the data
sets allowed the background levels to be determined for
those runs for which they would otherwise have been

2. Calculation and propagation of uncertainties

Propagation of error bars was the cause of some con-
cern. Initially, when the backgrounds were subtracted,
the uncertainties were added in quadrature; and when the
normalization to the H channel was done, the relative
uncertainties were added, again in quadrature. Such is
the norma1 procedure —for data that are independent.
However, there are of course strong correlations between
the fluctuations in the H+ and H signals —it is for this
reason that we normalize to the H channel in the first
place. The error bars were therefore too large and need-
ed to be recalculated.

The mean signal x per laser shot is simply given by

where N is the number of laser shots (usually 100—200 for
the Nd:YAG laser) per angle. The standard deviation of
this mean is o. , where

0-2—
X

1/2
(x —x)

X(X—1)
1/2

(x —x ) (B2)

Although of course the mean signal per laser shot is pro-
portional to the beam current (since the higher the

I /n scaling

The actual distribution of excited neutral hydrogen
states is expected to obey a 1/n power law, where n is
the principal quantum number. In other words, for every
H (n =2) atom, eight H (n =1) atoms would be pro-
duced; for every H (n =3), 27 H (n =1) atoms and so
on. (As the double-detachment threshold is approached,
however, a Wannier-type power law, o. ~ (E, —E)' '

where E, is the double-detachment threshold energy, is
believed to become dominant}. Although no attempt was
made at the time to determine the actual ratios of pro-
duction of the successive n channels, later analysis shows
production of n =4 to n =5 in the ratio of approximately
1.35, and n =5 to n =6 in the ratio of 1.75; these are to
be compared with the expected ratios from the 1/n law
of 1.95 and 1.72, respectively. This would seem to indi-
cate that the 1/n law applies, but that the magnets were
not perfectly efficient in stripping n =4; this is to be ex-
pected with a 4-kG field.

The cross section for production of H (n =1) in this
energy range is approximately 0.13ao. On the basis of
this, and the 1/n law, a multiplicative factor was ap-
plied throughout each data file, so that the units labeled
"arbitrary" in the figures showing relative cross sections
versus energy should in fact be units of approximately
10 a o.
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current, the more photodetachments occur in each pulse),
normalizing to the H signal removes this dependence.

Given some function S =S (x,y) the uncertainty in S is
obtained from the uncertainties 6x =o.„,6y=o by a
Taylor expansion of S evaluated at x,y:

2=os
BS
Bx

2

o + BS
2

0. +2 BS BS
o„.(B3)

Bg

The third term accounts for correlations between the
quantities x and y; it is generally close enough to zero to
be ignored when x and y are totally independent, but in
our case the signal and background channels will have
correlated fluctuations if there are fluctuations in the
beam current, and the H+ and H signals will also have
significant correlations if there are fluctuations in the
laser power. The factor cr„ is calculated, in a manner
analogous to cr, and 0. , by the formula

g(» —x )(y —y )

X(X—1)
(B4)

In our case, S =x —y, and the uncertainty in the net
signal after background subtraction (in both the H+ and
H channels} is

o =(cr +o —2o )'S x y xy (B5)

where x and y are the values from the signal and back-
ground channels, respectively. The normalization of the
H signal S+ to the H signal Sp, giving a total signal

S+ yp =S+ /Sp then requires further propagation of
these uncertainties, thus [from Eq. (B3)]

CT+/p

S+ /p

2 2 20+ Oo 0+o2+2 2
S+ Sp S+Sp

(B6)

The resulting error bars represent the true statistical
fluctuations in the signals. This method is in contrast to
our usual procedure of estimating the number of particles
in each pulse from a pulse-height analysis, and assuming
Poisson statistics, where the mean fluctuation in the num-
ber of particles is simply equal to the square root of that
number. Since the H detector did not give clearly
resolved peaks for single, double, triple, and other multi-
ple counts (the individual particle signals were too small),
it was impossible to calculate the multiplicity of hits.

The error bars do not give any indication of systematic
uncertainties. These would tend to smear out all of the
error bars by the same amount. Since fitting routines as-
sume that the error bars represent only statistical fluctua-
tions, possible systematic errors —for example, uncer-
tainty in the overall background levels —have not been
included.

Once the data files from the individual runs had been
prepared, they were binned together to produce the data
sets seen in Figs. 8(a) —8(d). Within each bin, a weighted
average was taken in the normal way, producing a net
signal

with its standard deviation
1/2

o=
1 I

The bin sizes were adjusted so that in each case the ener-

gy range covered included about 80—100 data points (just
as the angular step size was adjusted during the actual
runs for the same reason).

3. Fitting

The fitting routine used here was MINUIT, a powerful
package developed at CERN, that uses several different
methods to minimize a specified quantity; for this
analysis, the quantity used was g, defined as

f (x) d, (x)—
(B9)

ia I /2
E —E +iI /2

(B10)

and a phase difference P with the continuum on which it
lies. The amplitude of the continuum was modeled as
linearly increasing with photon energy. Thus, the total
amplitude for a series of n resonances is

iPk
n lak e

Q, (E)=b +cE+ g . , (Bl 1)

where the factor of I /2 in the numerator of Eq. (B10)
has been included in the constant ak. The function f (x)
is then given by the cross section (or intensity},

f (x)=o(x)=g'P . (B12)

Usually, three resonances were used to model the data;
because each has an amplitude, a phase, a width and a
centroid, there would be 12 free parameters together with
another two for the continuum background and slope.
When MINUIT had made reasonable estimates of the pa-
rameters of the continuum and of the largest of the reso-
nances, these could be "fixed" and a fourth resonance
added in for "fine tuning. " In no case were more than
four dips visible in one channel.

It emerged that the resonances were narrow enough (in
comparison with their spacing) that there was little
danger of their overlapping; in this case, the intensities
could be added directly (rather than adding the ampli-
tudes), and so they were also fit to sets of the more stan-
dard Fano profile,

where d;(x) are the data points with uncertainties o, and

f (x) is the function (with up to 30 parameters, up to 15
of which may be varied at once) to which the data are be-
ing fit.

In the case of the resonances on the continuum back-
ground, each resonance has an amplitude (see Sec. I F).

gy, /o;
(B7}

o o'b+g o' (q+e)
1+v

(B13)

The o.
b here is a little different from that of the usual
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Fano profile, since an extra o., has been subtracted from
it [see Eq. (34)], and it is also assumed to have a linear en-

ergy dependence. Note that there is a slight difference
here from the "coherent amplitude" model, in which the
amp1itude of the background continuum was assumed to
be a linear function of the photon energy [b +cE in Eq.
(Bl 1)].

In addition, the widths and energies of each series of

resonances (in each hydrogenic n continuum channel)
were fit to the recursion formula (see Sec. I D)

E —E —27r/a (B14)

Section III contains additional discussion of the fits car-
ried out, together with their results.
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