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Electron scattering from polar molecules is studied in a hybrid approach that uses the recently
introduced algebraic-eikonal approach to describe the forward-angle scattering and the results
of, for example, a close-coupling calculation for larger angles. The two calculations are matched
by making a partial-wave expansion and combining the high partial waves of the algebraic-
eikonal approach with the low partial waves obtained in a full close-coupling calculation. The
method is illustrated by applying it to electron scattering from a rigid-rotor molecule with a
large dipole moment.

I. INTRODUCTION AND MOTIVATION

The scattering of medium energy (5—50 eV) electrons
from polar molecules is a complicated process involving
many partial waves and the virtual excitation of many
intermediate states. i For forward angles (8 ( 60') the
scattering process is largely dominated by the long-range
dipole interaction between the incoming electron and the
molecule. For large angles the scattering is sensitive to
short-range features of the molecular dynamics such as
exchange correlations. For relatively small values of the
dipole moment ( 1 D) and for small scattering angles
the Born approximation already gives a good descrip-
tion of the experimental cross section. For larger angles
and for strongly polar molecules the channel coupling be-
tween the rotational and vibrational degrees of freedom
becomes increasingly important. The standard approach
to treat these multistep processes is that of a coupled-
channel or close-coupling calculation. In practice the
number of channels becomes, except for some very simple
systems, prohibitively large and various different meth-
ods and approximation schemes have been developed to
solve the scattering equations. For projectile energies
well above the rotational and vibrational energies one can
use the adiabatic or fixed nucleus approximation, which
becomes particularly useful for electron collisions with
polar molecules. However, even in the adiabatic limit, a
standard coupled-channel calculation presents a compli-
cated problem involving the coupling of many different
channels especially for larger (triatomic and polyatomic)
molecules. Therefore it is of great interest to find a

simple prescription that both exploits the simpli6cations
that arise from the dominance of the dipole interaction
at forward angles, and, at the same time, incorporates
the rotational-vibrational structure and internal molec-
ular dynamics at a level sufficient to calculate the cross
sections of interest at all angles.

Recently, in a series of three papers2 4 an alterna-
tive method to calculate cross sections for electron scat-
tering from polar molecules has been proposed. This
method, called the algebraic-eikonal approach, is a com-
bination of an algebraic description of rotational and vi-
brational excitation in molecules (the vibron model) and
the eikonal approximation in the adiabatic limit. It was

inspired by recent developments in nuclear physics, in
which a similar method was used to calculate the effects
of multistep processes in medium energy ( 500 MeV)
proton scattering from collective nuclei. The algebraic-
eikonal approach is very well suited to describe the for-
ward angle scattering of electrons from strongly polar
molecules. This process is dominated by the long-range
dipole coupling between the projectile electron and the
target molecule. In order to extend the calculations to
larger angles the short-range dynamics, which up to now
have been treated rather crudely by introducing a cutoff
parameter in the dipole interaction, have to be taken into
account in a more complete way.

There are several ways in which the effects of short-
range correlations, such as the exchange and polarization
potentials, and exchange correlations can be included in
the algebraic-eikonal approach. A straightforward way
would be to express these interactions explicitly in terms
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of the vibron operators. However, this will lead to many
complications and will destroy the simplicity and ele-

gance of the method. Among other things it will give rise
to nonlinear terms in the eikonal phase which are very
hard to calculate. One may also question the validity of
the eikonal approximation at larger angles, even though
in practice it seems to work for much larger angles than
expected.

Instead, in this paper we propose a hybrid procedure,
in which the results of the algebraic-eikonal approach for
the high partial waves are combined with, for example,
the methods used in Ref. 8, in which all the relevant
short-range correlations and channel couplings are in-
cluded from the outset, for the low partial waves. In
this way we hope to combine the best parts of two dif-

ferent methods, one which is better suited to the low

partial waves and another which is more efBcient for the
high partial waves, into one single theoretical framework,
that will be numerically efFicient and at the same time
presents a physically clear and accurate treatment of the
scattering problem.

In Sec. II we briefly review the main features of the
algebraic-eikonal approach to electron-molecule scatter-
ing. In Sec. III we discuss the hybrid approach both for
the eikonal and the Born approximation. The method is
illustrated in Sec. IV by applying it to electron scattering
from a rigid rotor. In Sec. V we present some concluding
remarks.

II. ALGEBRAIC-EIKONAL APPROACH

The algebraic-eikonal approach was originally
proposed to describe electron scattering from diatomic
molecules. In a subsequent paper4 it was generalized to
triatomic molecules as well. In this section we will dis-

cuss briefly the main features of this approach. A more
detailed account can be found in Refs. 2—4.

For medium and high energy scattering the eikonal ap-
proximation is a good approximation for elastic and in-
elastic scattering. The Hamiltonian is in general given

by

h k~
H = + H /(() + V(r, (),

~Pe

where H ~~(() is the vibron Hamiltonian describing the
molecular dynamics, and V(r, () represents the coupling
between the incoming electron and the molecule. For
small-angle scattering (peripheral collisions) the long-

range dipole interaction is by far the dominant term in

V(r, (). We therefore take

where r is the projectile coordinate measured with re-

spect to the center of mass of the molecule and D(() is the
molecular dipole operator. d is the static dipole moment
of the molecule. The cutoff radius Rp in Eq.(2) is intro-
duced to remove the singularity at the origin (r = 0), thus
crudely modeling the short-range part of the electron-
molecule interaction. For scattering processes in which

the projectile energy is much larger than the coupling
potential and in which the projectile wavelength is small

compared to the range of variation of the potential, one

may use the eikonal approximation to describe the scat-
tering. If, in addition, the molecular motion is slow (adia-
batic) compared to the interaction time of the projectile
electron with the molecule, one can neglect H ~~(() in

Eq.(l). Under these approximations the scattering am-

plitude for scattering an electron with initial momentum
k from an initial molecular state (i) = ~v, l, m) to final

momentum k' and a final state ~f) = ~v', l', m') can be
expressed in terms of a one-dimensional integral over the
impact parameter b,

F(i -+ f~q) = . db e'~' (f ~

e'"~ l —I
~

i)
27ri

= —.i bdb J qb YL', I q L, M, l, m l', m' I, o, l, m" l', m"
0

x (v', l', m"
~

e' ' ~l —I
~

v, l, m")

where q = k —k' is the momentum transfer and g(b) is
the eikonal phase, that the projectile acquires as it goes

by the target

In the derivation of Eq.(3) we have written the projectile
coordinate as r = b + z, where the impact parameter b
is perpendicular to the z axis, which is chosen along z =
(k+ k')/~k+ k'~. Note that we use a somewhat different
set of molecular state labels from the standard ones in

Ref. 1. We use / instead of j to label the rotational state
and I for the total angular momentum, in place of J.

The transition matrix element appearing in the inte-
grand of the scattering amplitude has a very simple form
since it only depends on the z component of the molec-
ular dipole operator, D, (g). It contains the coupling
between molecular eigenstates to all orders in the cou-
pling strength g(b) and can be calculated exactly in the
framework of the vibron model. The vibron model is
similar in spirit to the interacting boson model of nu-
clear physics and provides an algebraic description of the
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rotational and vibrational excitations in molecules. Al-
though it cannot match the high accuracy for the energy
spectrum obtained in more conventional ab initio calcula-
tions, the vibron model gives a good global description of
the properties of rotational and vibrational excitations.
It becomes particularly useful in the calculation of transi-
tion probabilities, which in general involve a complicated
sum over intermediate states. Using the algebraic prop-
erties of the vibron model these matrix elements can be
expressed in terms of the representation matrices of the
group O(4), which are a generalization of the well-known
Wigner D functions for SU(2). Another attractive fea-
ture of the algebraic-eikonal approach is that the elastic
and inelastic excitation of both rotational and vibrational
states are treated on the same footing. Moreover, it can
easily be generalized to more complex systems, such as
triatomic and polyatomic molecules.

Previous studies, in which this approach was applied
to electron scattering from both diatomic [LiF, KI (Ref.
3), and HCl (Ref. 10)] and triatomic [HCN (Ref. 4)]

I

molecules, show that, in general, there is good agree-
ment with the available experimental data for forward
angles. To describe the scattering to larger angles more
accurately, a more sophisticated treatment of short-range
correlations, such as exchange and polarization poten-
tials, is required. In Sec. III we propose a method to
incorporate these effects.

III. HYBRID APPROACH

The proposed hybrid approach is similar in spirit to the
procedure outlined in Refs. 11 and 12, in which the low

partial waves obtained from solving the coupled-channel
equations were matched with the high partial waves cal-
culated in the Born approximation. In the present paper
we use instead the algebraic-eikonal approach to calcu-
late the high partial waves. To do the matching we first
have to calculate the partial-wave T-matrix elements. We
expand the eikonal scattering amplitude of Eq.(3) into
partial waves according to

F(i -+ flq) = ) Y& „(k) ) Yg „(k')i" " ) T (I'A'lIA)(l, m, A, plL, M)(l', m', A', p'lL, M),

where k' = k +2p, (E„(—E„~p)/h The T-m. atrix elements appearing in the right-hand side can be obtained simply
by inverting the above equation

I
T (I'I'(lk) =, ) (I m k p(IM) ) (I' m,', I', q'~L, M) dkYq„(k) f dk Y„;„(k'') T(I f~q).

fA) P m', p'

The quantity of interest is the differential cross section, summed over the final magnetic substates and averaged
over the initial ones. It can be expressed explicitly in terms of the T-matrix elements asrs'4

—) lF( - flq)l'
dQ 2l+1 k

)

= 2 ) A„P„(cos8),
R=O

where 0 is the scattering angle with cos8 = k k' and

z'-z
AI, ——

z ) ) ) T '(I'A', lier)'Z(AiL)A/L2, 1v)Z(A', LrA2L2, I'v)T '(I'A2lIAg),

where Z is a geometric coefBcient

Z(abed; ef) = (—1)& +'&I

x g(2a + 1)(2b + 1)(2c + l)(2d + 1)
x (a0c0l f0)W(abed; ef). (9)

Next we combine the eikonal approach for the high par-
tial waves with the coupled-channel approach for the low

partial waves, by replacing the T~'s in A„by the close-
coupling T-matrix elements 4 for L ( Lo, while keep-
ing the eikonal T-matrix elements of Eq.(7) for L & Lo
Calling these new coeflrcients B„(IO), the summed and

averaged dift'erential cross section can be written as

da(i f lq) dry(i f lq)
dO dO

Vp

+2 ) B„(I.o) —A ' P„(cos 0),
v=O

0

with B„(0)= Aer . The values of Lo and vo are deter-
mined such that the differential cross section of Eq.(10)
is in good agreement with that obtained by solving the
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full coupled-channel equations. The total cross section
and momentum-transfer cross section can be obtained
by integrating the differential cross section,

(' f) f ( flq)
dO

= or(i ~ f)~,;k+8rr Bo(lo) —Ao'"

and

the relevant expressions for the T-matrix elements in the
first Born and the unitarized Born approximation. Again
we use the vibron model to describe the rotational and
vibrational excitations of the molecule. In analogy with
Sec. II one could call this method the "algebraic-Born"
approach. The scattering amplitude in first Born approx-
imation (Bl) can be obtained from that in the eikonal
approximation by expanding the exponential in the tran-
sition matrix element and keeping only the leading-order
term,

o (i ~ f) = (1 —cos8) dQ
do(i ~ f~q)

dQ

= o~(r ~ f)~eik+ 8rr[Bo(l o) Ao' ]

[Bi(Lo) —Ai' ].
3 (12)

F(i ~ f~q)

dr e'~" v', l', rn' U r, v, l, m .

A similar hybrid method has been employed by many
authors using the Born approximation for the high par-
tial waves. In order to compare the different methods
for the high partial waves we also present in the following

Using Eq.(6) one can easily derive the expression for the
T-matrix elements

[T (I'A IIX)]ai ——4iV'Irlr, ' —
2 r drj&(kr)j& (k'r)V(r)( 1)' ~—g(2A+ l)(2A'+1)/3 (A, P, P', P(1, P)

0

(v' I'IID(4)llv I)
l l'1

The matrix element of the dipole operator D(g) can be derived simply in the vibron model, especially in the SO(4)
limit, which in the limit of a large number of vibrons, N, reduces to a three-dimensional Morse oscillator. ' In this case
the dipole operator is diagonal in the vibrational quantum number and the reduced matrix elements of the rescaled2
dipole operator in the SO(4) basis are given by

(N —2v —l)(N —2v + I + 2)
N(N+ 2)

v I+ 1 6', i+i

(N —2v —I + 1)(N —2v + I + 1) ~
N(N + '2)

(15)

r 2iR~5—
(TB2)~j =

I I. I

= [2Tai(2+ Tai) ]ij~g1 —iRI-),,
(16)

For N -+ oo the expression for the T-matrix element
reduces to the one derived in the classical rotor model. ii

Since for transitions with ~AI~ g 1 the first Born ap-
proximation vanishes, we use instead the unitarized Born
approximation (B2). In this case the reactance matrix
is treated in the first Born approximation, R = iT&, /2.
As a result the T-matrix elements can be expressed in

terms of those in the first Born approximation as

tial waves the (body fixed) B2 T-matrix elements are a
good approximation to those obtained exactly in a close-
coupling calculation. It is, however, important to note,
that in general it is much harder to calculate the T
matrix elements in a systematic way in the unitarized
Born approximation than it is in the (algebraic-) eikonal
approach. In Sec. IV we will show that, especially for
strongly polar molecules, the algebraic-eikonal approach
offers in many cases a better starting point for a hybrid
calculation than the (unitarized) Born approximation.

IV. APPLICATIGNS

where the subscript ij is a shorthand notation for the
channel (IA}. Unlike the first Born approximation the
unitarized Born approximation satisfies the unitarity
constraints. In Ref. 17 it was shown that for large par-

In this section we investigate the scope and applicabil-
ity of the hybrid approach by presenting a set of model
calculations for electron scattering from a rigid-rotor
molecule. %e introduce a cutoff for the short-distance
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electron-rotor coupling of the form given in Eq.(2) with

Rp ——0.5 A. All calculations are performed in the labo-
ratory frame. We consider two values of the rotor dipole
moment, 1 D, a relatively small value, and 6 D, a large
value typical of a molecule like LiF. We calculate the scat-
tering at four projectile energies, 1, 5, 10, and 50 eV. The
exact scattering calculations 8 taken from a full coupled-
channel calculation are compared with calculations using
the algebraic-eikonal method, the unitarized Born ap-
proximation, the first Born approximation (where appro-
priate), and with hybrid calculations where each of these
approximate schemes is mixed with low partial waves
from the exact calculation. We are particularly inter-
ested in how many exact waves we need to take into
account before the cross sections converge to the exact
answers. Since the exact waves are more difficult to cal-
culate, the utility of the method depends on the crossover
partial wave being relatively small. In the following we

only study rotational transitions from the ground state.
It is easy to show that for realistic values of the dipole
coupling the scattering amplitude, Eq.(3), depends on
Al = (1 —I'~j, rather than on the initial and final rota-

tional states separately. We can therefore without loss of
generality take lv = 0+ and thus reduce the calculational
eKort considerably.

The first calculation we present is that for elastic scat-
tering from the ground state of a molecule (0+ ~ 0+)
with a dipole moment of 1 D for projectile energies of
1, 5, 10, and 50 eV. In Fig. 1 we show the diff'eren-

tial cross section calculated in the algebraic-eikonal (AE)
(solid line) and the unitarized Born approximation (B2)
(dotted line) for the four scattering energies. Since in
our simple model the electron-molecule coupling is pure
dipole, the first Born approximation does not contribute
to elastic scattering. The short-dashed and the short-
dash-dotted lines are the result of hybrid calculations
where the exact coupled-channel (CC) waves are mixed
with either the AE or the B2 waves, respectively, with
I p

——10. For such a large value of the matching Lp these
two cases give identical cross sections, which are in turn
identical with the exact coupled-channel result. Figure
1 shows that AE is a better approximation than 82 for
forward-angle scattering. For larger angles, in particular
for backward angles, neither approximation is very good.
When used in a hybrid calculation to complete the high
partial waves for sufficiently large values of Lp both con-

verge to the exact results.
In Fig. 2 we repeat the calculation of the elastic differ-

ential cross section for a dipole moment of 6 D. Now there
is much more structure in the cross sections. Although
AE is somewhat better than B2, neither is adequate ex-
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FIG. 1. Dim'erential cross sections for electron scattering
from a rigid-rotor molecule with a dipole moment of 1 D for
the 0+ ~ 0+ transition. The scattering energies are (a) 1
eV, (b) 5 eV, (c) 10 eV, and (d) 50 eV. The solid line is the
algebraic-eikonal calculation, and the dotted line the unita-
rized Born approximation. The third line is a superposition
of two curves, the hybrid algebraic-eikonal (short-dashed) aud
the hybrid unitarized Born (short-dash-dotted), each mixed
with the exact amplitudes up to I = 10.
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FIG. 2. Same as Fig. 1 but with a dipole moment of 6 D.
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cept at the smallest momentum transfers. Again both
methods converge to the exact cross sections when com-

bined with the exact coupled-channel T-matrix elements
with I p & 10. We next study the differential cross section
for scattering to the erst rotational excited state of the
rotor, 0+ —+ 1 . In this case there is also a contribution
from the first Born approximation (Bl). For this transi-
tion we only discuss the result for 6 D, since in the 1 D
case Bl dominates at all energies. In Fig. 3 we show the

angular distribution for the 0+ ~ 1 transition at the
same four projectile energies and for a dipole moment of
6 D. %e show separately the AE, B2, and Bl calculations
and each of these crossed with the exact amplitudes with

I p ——10. Except in the minimum, where the hybrid B2
shows a deviation, the three hybrid calculations give the
same results. In Fig. 4 we show the calculation for the
0+ ~ 2+ transition with a dipole moment of 6 D. In
this case there is no Bl and AE and B2 are very similar.

They both converge to the exact value when matched at
I p

——10.
VVe now turn to a study of the rate of convergence of

the hybrid approach. We want to study convergence as
a function of the matching partial wave I p. We chose to
make the detailed comparison at 5 eV since at 1 eV there
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FIG. 4. Same as Fig. 2 but for the 0+ ~ 2+ transition.
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are too few partial waves to be interesting, while for 10 or
50 eV, the simple approximation schemes begin to work
"too well. " Figure 5 shows the results for elastic scat-
tering of 5-eV electrons from a molecule with a dipole
moment of 6 D. The short-dashed line in Fig. 5(a) is
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FIG. 3. Same as Fig. 2 but for the 0+ ~ 1 transition.
Now there is also a contribution from the first-order Born
approximation (long-dashed line). The long-dash-dotted line
represents the hybrid first-order Born and coincides with the
hybrid algebraic-eikonal and unitarized Born curves.

FIG. 5. The differential cross section for electron energy
of 5 eV and dipole moment of 6 D for the 0+ ~ 0+ transition.
In (a) we show the results for the algebraic-eikonal approach
(short-dashed line) and the corresponding hybrid calculations
with Ls = 0 (dotted), Ls ——1 (short-dash-dotted), Ls = 2
(long-dashed) and the exact result with Lp = 10 (solid line).
In (b) we present the same set of calculations for the unita-
rized Born approximation.
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FIG. 6. Same as Fig. 5 but for the 0+ ~ 1 transition. In.
(b) we show the results for the first-order Born approximation. ,

pure AE, whereas the other curves represent the results
of a hybrid calculation in which the low partial waves are
replaced by the exact ones from a coupled-channel cal-
culation, with the matching successively at Lp ——0, 1, 2,
and 10. We see that already for Lp ——2, the result is es-

sentially exact, a remarkably rapid convergence. Figure
5(b) shows the same thing but starting from B2. Again

by Lp ——2 the convergence is complete even though the
starting point of B2 is not nearly as satisfactory as that
of AE. In Fig. 6(a) we show the convergence for the
0+ -+ 1 transition for the AE case. Again for Lp ——1, 2
we are there, even in the minimum. Figure 6(b) shows
the same calculation for the Bl. In this case we have to
match at a much higher value of Lp to obtain a similar
convergence (Lp —7, 8). Figures 7(a) and 7(b) show the
convergence for the 0+ ~ 2+ transition in the AE and B2
cases, respectively. Although AE converges much more
rapidly than 82 in the forward angles, and it is these
angles that dominate, getting the correct answer in the
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vicinity of the deep backward minimum requires match-
ing at Lo ——4, 5 in either case.

For all three transitions studied with Al = 0, 1, and
2 the hybrid approach offers a great advantage over an
exact calculation in the coupled-channel approach, since
one only has to calculate a few T-matrix elements ex-
actly to get a good convergence. In a full coupled-channel
calculation of the differential cross section according to
Eqs. (7) and (8), one has to sum over many T-matrix el-
ements to obtain a similar convergence. For the Al = 0
and 2 transitions the differential cross section summed to
L = 20 still shows an oscillatory behavior, while for the
6/ = 1 transitions the differential cross section diverges
at forward angles. For the Al = 3 and 4 transitions the
high partial waves do not contribute very much to the
differential cross section. The coupled-channel calcula-
tion is already converged when summed to L = 4, 5. In
this case there is not much to be gained from a hybrid
calculation with either the eikonal or the unitarized Born
approximation.

Finally we study convergence in a global way. We con-
sider the momentum-transfer cross section of Eq.(12) as
a function of matching wave Lo. This cross section is
a more stringent test than the regular integrated cross
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FIG. 7. Same as Fig. 5 but for the 0+ ~ 2+ transition.

FIG. 8. The momentum-transfer cross section as a func-
tion of the matching parameter I.o relative to the exact value
for the 0+ ~ 1 transition. We show the four energies, (a) 1

eV, (b) 5 eV, (c) 10 eV, and (d) 50 eV all for a dipole moment
of 6 D. The solid line is AE, the short-dashed line is B1, and
the long-dashed line B2.
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7 between 1 and 50 eV. We have no explanation of the
relative constancy of the optimal Lo with energy.

V. SUMMARY AND CONCLUSIONS
8
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FIG. 9. Same as Fig. 8 but for the transition 0+ ~ 2+.
In this case there is no Bl.

section, since in the former the forward angles are sup-

pressed. All approximations seem to work well at forward

angles, where the cross sections tend to be largest. In Fig.
8 we show the ratio of the momentum-transfer cross sec-
tion matched at Lo to the exact momentum-transfer cross
section as a function of Ls We consi.der the 0+ ~ 1

transition with 6 D and study the same four energies as
before for the three approximations, AE, B1, and B2.
We see that at all energies convergence is achieved for
AE and B2 at Lo ——2, 3, while for Bl one needs to go
to about Lo ——5. This slower convergence for Bl is also
seen in Fig. 6(b). Figure 9 shows the convergence of the
momentum-transfer cross section for the 0+ ~ 2+ transi-
tion. Now there is no B1. The convergence is "noisy" but
essentially complete by Lo ——5 for both AE and B2. The
erratic convergence reflects the fact that as a function of
Lo, the AE T-matrix elements oscillate when compared
with the exact value. The B2 T-matrix elements do so
as well, but less. This oscillation is particularly marked

in the 0+ -+ 2+ case.
Finally we note that for each transition, convergence

seems to occur for the same value of Lo independent of
energy. This is surprising if we think in terms of some

scattering radius R and believe that it is kR that governs

the matching point. Note that kR changes by a factor of

We have discussed here an extension of the algebraic-
eikonal approach, combining it with the results of a
coupled-channel calculation for the low partial waves.
The approach not only corrects the improper use of an
eikonal-based approximation for large angles, but more
importantly permits the introduction of new short-range
interactions such as exchange correlations in the electron-
molecule dynamics. Such a mixed scheme exploits the
simplicity of the algebraic-eikonal technique for correctly
summing the full effect of channel coupling in the pe-
ripheral waves, while still allowing complete freedom for
introducing dynamical details in the low waves that sense
the molecular interior. In our model calculation we find
that very few exact interior waves are required to give
convergence. Our simple model, involving just a rigid ro-
tor, does not have any interesting interior dynamics. But
the success of our method suggests that the interior dy-
namics can be easily introduced, and we plan to turn our
method to some real molecular examples in subsequent
work.

We find that the hybrid scheme works almost as
well for the unitarized Born approximation as for the
algebraic-eikonal approach (but much less so for the first
Born approximation). However, the unitarized Born ap-
proximation amplitudes are far more difficult to calculate
in a systematic way than those of the algebraic-eikonal,
even in the simple case of the rigid rotor. In extensions
to more complicated cases, for example triatomic and
polyatomic molecules, the comparison will be even more
stark. We do plan to extend our hybrid method to poly-
atomic molecules where it may only be necessary to in-
clude the overall molecular dipole moment to model the
peripheral waves. This may further enhance the scope
and applicability of this approach.

In summary, the first results are very encouraging and
indicate that the proposed hybrid approach may provide
a powerful framework to study electron scattering from
polar molecules.
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