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Higher multipole and retardation corrections to the dipole angular distributions
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We calculate first-retardation and multipole corrections to the dipole angular distributions of L-
shell photoelectrons ejected by polarized photons. The calculation is performed nonrelativistically
in the framework of the independent-particle model. It leads to general expressions for the s and p
subshell retardation correction in terms of radial matrix elements and relative phase shifts. In the
2s case the retardation effects may contribute as much as 10-30% to the angular distribution even
close to threshold, especially for higher-Z elements. In the 2p case the retardation effects are small
close to threshold but can contribute as much as 10—20% for relatively low final electron energies of
1—3 keV. %'e have also obtained simple semianalytical expressions for the retardation corrections,
based on the assumption that for inner shells screening effects beyond normalizations and phase
shifts can be treated perturbatively. The semianalytic formulas compare quite well with the results
of numerical calculations for the 2s subshell; they are somewhat worse for 2p photoelectrons, espe-
cially for lower energies and lower Z. This is due to the fact that in the latter case larger distances
become more important in the integrals determining radial matrix elements. In the 2s case the re-
tardation effects result in forward or backward peaking of the angular distributions. For the 2p ini-
tial state and linearly polarized photons, they lead to deviations from dipole predictions for a uni-
form angular distribution of photoelectrons whose momenta are perpendicular to the direction of
photon polarization.

I. INTRODUCTION

The purpose of this paper is to present results of a cal-
culation of first-retardation corrections to the dipole an-

gular distribution of the photoelectrons ejected from the
L shell by polarized photons. The calculation is per-
formed in the framework of the independent-particle
model. In a previous paper' we gave results of a similar
calculation (with unpolarized photons) for K-shell photo-
electrons. As in that paper, we mean by the first-
retardation corrections a contribution to the photoeffect
amplitude corresponding to a term linear in k.r in the ex-
pansion of the photon plane wave. This term gives a
large photon wavelength (k~O) limit of the electric
quadrupole contributions to the amplitude, whereas the
nonrelativistic dipole approximation [replacing exp(ik r)
by unity] gives the large-wavelength limit of the electric
dipole.

In the dipole approximation the angular distribution of
photoelectrons ejected by linearly polarized photons de-
pends on the angle between the polarization direction and
the direction of the outgoing electron momentum, and is
described by the well-known formula

dcT

dQ [1+PP2(cos8)],
4m.

where p is the asymmetry parameter, 8 is the angle be-
tween the photon polarization vector and electron
momentum, and o. represents the total cross section. In
general, however, the angular distribution of photoelec-

trons ejected by linearly polarized photons depends on
two angles: the angle 8 between the photon polarization
vector and the electron momentum (which may be chosen
as the polar angle in the coordinate system in which the
photon polarization is along the z direction) and the az-
imuthal angle 4. More generally, the polarized angular
distribution depends on two scalar products, p k, p e,
where p, k, and e denote the electron momentum, photon
momentum, and the photon polarization vector, respec-
tively. In the dipole approximation, only the dependence
on p.e remains.

Dependence of the angular distribution of photoelec-
trons ejected by polarized photons on both angles can be
seen in a theoretical cross section only if one goes beyond
the dipole approximation. This means, in the first ap-
proximation, either including next-to-dipole (i.e., electric
quadrupole) terms in the full multipole expansion of the
amplitude, or, at low photoelectron energy when the
large-wavelength limit is justified, expanding the photon
plane wave up to and including terms linear in k r. (The
multipole expansion corresponds to an angular-
mornentum decomposition of the amplitudes, so that
electron wave functions have been expanded in partial
waves, the vector potential of the photon in vector spher-
ical harmonics. ) This last expansion, which we call the
retardation expansion, mixes various rnultipoles in terms
corresponding to given powers of k r and should not be
confused with the multipole expansion. ' It is only the
large-wavelength (k ~0) limit of the multipole series that
corresponds to the retardation expansion.

General relativistic formulas for the photoelectron an-
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gular distribution with polarized photons and electrons
including the complete multipole expansion of the photon
field have been given previously. ' In the present paper
we perform a nonrelativistic calculation using the nonre-
lativistic expressions for the transition matrix element to-
gether with the nonrelativistic bound and continuum
electron wave functions, not taking into account the elec-
tron spin. Including terms -k.r results in a retardation
correction proportional to v/c, where v is the continuum
electron velocity. ' The relativistic correction to the
nonrelativistic matrix element is -(v/c) or (Za), so
that it is expected to be small (at low energies) compared
to the first-retardation contribution. We do not attempt
to use the general formulas given in Refs. 3 and 4 in the
nonrelativistic limit. In general, one does not expect that
the nonrelativistic (c~ ao ) limit of these general expres-
sions gives the same results as the ab initio nonrelativistic
calculation. This is due mainly to the presence of the
electron spin, which does not decouple when ciao.
That is, the initial electron bound state is, also in the lim-
it, the eigenstate of the total angular momentum J (which
is the good quantum number in the relativistic approach),
rather than the eigenstate of orbital angular momentum
and spin separately, as is usual in the nonrelativistic ap-
proach. Also, in the ciao limit we expect the presence
of the Pauli-Schrodinger term in the matrix element,
which couples the electron spin to the photon wave mag-
netic field and which is of order k; this term is not taken
into account in the fully nonrelativistic calculation.

In the next section, we derive nonrelativistic expres-
sions for the photoeffect matrix elements when the initial
electron is in the p subshell. By calculating the modulus
squared and summing over the initial magnetic quantum
number, but not over photon polarization, we obtain an-
gular distributions with polarized photons. At the begin-
ning of this section, we also quote the formula describing
the angular distribution when the initial electron is in the
s state. They have basically the same form as those given
in Ref. 1. In Sec. III we discuss results of the numerical
calculation of the parameters describing the 2s and 2p
photoelectron angular distribution in the case of linearly
polarized photons. We note here the differences between
the 1s and 2s cases, as well as some similarities between 1s
and 2p cases. The differences in the shapes of retardation
corrections for 1s and 2s initial state are due to the 2s
bound wave function having a node, whereas the 1s
bound-state function is always positive. The similarities
between the 1s and 2p cases can be related to the fact that
both 1s and 2p bound-state wave functions have no node.
We see in general that the retardation corrections in the
energy range considered here (threshold to a few keV) are
a little smaller in the 2p case than in the 1s case, especial-
ly for higher values of Z. This can be contrasted with the
relatively large values of the retardation correction in the
2s case. In Sec. III we also perform a comparison of the
numerical results with the semianalytic approach of the
same type as that described in Ref. 1. Section IV con-
tains final remarks, and some details of the calculations
from Sec. II have been put into the Appendix.

We use natural units A =m =c= 1, where m is the elec-
tron mass.

II. FORMULAS FOR THE RETARDATION
CORRECTION TO THE ANGULAR DISTRIBUTION

OF L-SHELL PHOTOELECTRONS

A general expression for the bound-free transition ma-
trix element in the independent-particle approximation
reads

(2)

R„
a =f "dr r'+'R

I ' dr
(4)

where RI, R„, are the radial wave functions of the final
and initial electron, respectively. Expression (4) for radi-
al matrix elements corresponds to the velocity form of
the transition matrix element. In a similar way as in the
standard dipole approximation (or large-wavelength limit
of the "true" electric-dipole amplitude), one can pass to
the length form; details of this type of a calculation in the
case when the quadrupole contribution is taken into ac-
count will be shown below for the p initial subshell.

The angular distribution of the ns photoelectrons eject-
ed by polarized photons is given by

(ns}
=Hie pi (1+vp k),

where the retardation correction a to the dipole ~e p~-
type angular distribution can be written as

2a'= k cos(52 —5, ),
1

with the length form of the quadrupole (Qz) and dipole
(D, ) matrix element in the large-wavelength limit given
b 8

D& =f dr r R &rRO, Q2= f dr r Rzr R o . (7)
0 0

It is evident from (5) that when the initial electron is in
the s subshell, the photon polarization effects appear only
as an overall factor in the angular distribution. In the
coordinate system in which the z axis is along the photon
polarization vector and the photon momentum is along
the x axis [Fig. 1(a)], formula (5) can be written as

where f and i denote the final and initial electron state,
respectively, k is the photon momentum and e is its po-
larization vector, and P is the momentum operator. To
calculate the amplitude up to and including the first-
retardation correction, we expand the photon plane wave
up to and including terms linear in k. The resulting an-
gular distribution formula with unpolarized photons for
the 1s initial electron state has been given previously. '

The general structure of the angular distribution of the
s-subshell photoelectrons is the same, so that we can
write, after formula (10) in Ref. 1,

i5) Q
Mf',"'=4ni(e p)(a, e '+a2e 'kp k),

where the index ns denotes the subshell of the initial elec-
tron, and p, k denote unit vectors in the directions of p
and k, respectively (p is the momentum of final elec-
trons). The radial matrix elements a& are given by
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(ns)

dO
=A cos 8(1+~sin8cos4), (8)

p2H= + V(r),
2

(15)

with the angles 8 and 4 the same as in Fig. 1(a). Direct-
ing now the photon momentum along k and the x axis
along e, we get [Fig. 1(b)]

( ns)

dQ
A sin 8,cos CE,(1+a.cos8, ) .

with the self-consistent potential V(r}. The retardation
correction can now be written as

MI,"—= ~ &fl(k.r)(e P) l~ &

=E; & fl(k r)(e r)li &
—

& fl(k r)H(e r)li & .

For the unpolarized angular distribution, we obtain

(ns)

=A sin 8&(l+zcos8, ), (10)

with 6I& being the angle between p and k.
We now calculate the transition matrix element (1)

with the first-retardation correction for the p-subshell ini-
tial electron state. This can be done either by expanding
the final electron wave function and photon plane wave in
a partial wave series, and then picking up terms of a
given order in k from the photon partial waves (as has
been done in Ref. 1), or by expanding the plane wave
right at the beginning:

This can be further transformed into

MI,"=—co& fl(k r)(e r}li&—
& fl[k r, H](e r) i &

= —co& fl(k r)(e r)li & i &
—fl(k P)(e r)li & .

Using

(k P)(e r) =(e P)(k r)+ (e Xk) ~ (r X P),
we get

= —~&f1(k r)(e r)l~ &
—1&fl(k r)(e P)li &

—i& fl(exk) (rXP)li&,

(17)

(18)

(19)

exp(ik r)=1+ik r . (11) and finally

My, =&f1(l+ik r)(e P}li & . (12)

The large-wavelength limit of the dipole contribution can
be written in the length form

M"""=—co&fir rli &, (13)

where co=EI E, is the phot—on energy and EI (E; ) is the
final (initial) electron energy. To transform the retarda-
tion correction into the length form, we use

In the present calculation, we use (11) rather than the
previous method, mainly because it allows for a simpler
transition to the length form of the matrix element.

Subsequent calculation will be done without specifying
any particular coordinate system. The final formulas for
the angular distribution wi11 then be written in two coor-
dinate systems depicted in Fig. 1. We write Eq. (2) using
the expansion (11),

(20)

g, =R„(r)Y, (r) (22)

where L is the orbital-angular-momentum operator. The
first term in Eq. (20) gives the large-wavelength limit of
the electric quadrupole contribution, and the second one
corresponds to the magnetic dipole. Due to orthogonali-
ty, the magnetic-dipole term gives a vanishing contribu-
tion, so that for the transition matrix element with first-
retardation correction we get

Mi;= co& fle rli —
&
—

—,'k~& fl(k r)(e r)li & . (21)

The wave function of the electron in the initial bound
state has the form

[H, r]= iP, —

where H is the one-electron Hamiltonian

(14) and the continuum electron wave function will be ex-
panded in a partial wave series

, IE
Z

QI= g i'(21+ 1)e 'Pi(p r)R&(r),
1=0

(23)

k, (

with obvious notation. The dipole rules pick up terms
with 1=0 and 1=2 in g&, whereas the quadrupole contri-
bution is a sum of 1= 1 and 1=3 terms (generally of 1 —2,
1, and 1+2 terms, but in the present case 1 —2(0). Ex-
plicitly, we have

&fle rli&= [e DOY& (e}

(b)

+e 'D, [Y, (e)—3(e p)Y, (p)I,
(24)

FIG. 1. The coordinate systems used in the discussion of the
photoelectron angular distribution.

where YI (n) denotes the spherical harmonic whose ar-

guments are the polar and azimuthal angles of the unit
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Dl= I dr r RI(r)R„&(r) . (25)

vector n, and Do, D2 are the usual dipole matrix elements

appearing, in the large-wavelength limit, in the dipole
contribution to the transition matrix element

Details of the calculation leading to (24} as well as to the
electric quadrupole term [(26) below] are given in the Ap-
pendix. The dipole term (24) leads of course to the well-
known dipole angular distribution (1). For the electric
quadrupole term, we obtain

(fl(k. r)(e r)li ) = — ie 'Q&[(e p) Y, (k)+(p k) Y, (e)]
5

+ ie 'Q, [—(e p) Y, (k) —(p k) Y, (e)+5(e p)(p k) Y, (p)],
5

where Q, and Q3 are the quadrupole radial matrix elements in the large-wavelength limit

Q&= I dr r R&(r)r R„(r) .

(26)

(27)

The shape of the photoelectron angular distribution up to and including the first-retardation correction is given by

(np)

dQ
—y [lM~'&~«l~+2 Re(M~'~ «M«'«t)] (28)

Substituting (24) and (26) and using the summation formula for spherical harmonics,

I

P((a b)= g Y(' (a)Y( (b),
m= —I

we obtain

(29)

g lM~, l

= tD +2D +(2D 4D D —o & )P (le pl)
3

+ —,k[(p k)FO)+(p k)(1 —5le pl )F03+(p k)(1 —6le pl )Fq, +(p k)(1+4le pl )Fq3]I, (30)

where

~n =5I 5i , FII =. DiQI cos~II . (31) [1+BiPi(p k)
unpol

The dipole combination has been cast into the familiar
form with the second Legendre polynomial and the asym-
metry parameter, which from (30) can be seen to be

where

+BzPz(p k)+B3P3(p k)], (35)

2D 2 4DoD2cos520

D +2D
(32)

as expected. Since the first-retardation correction is ei-
ther quadratic or of zero order in le pl, it can be also ex-
pressed in terms of Pz( le pl ). Simple calculation gives

5 F23 5 F2I +2Fo)
B& =a ——'b =—'k

5 lo D2 +2D20 2

Dp 2DODpcoskpp

D +2D

2FO3 5F23+ 5 F21
B = ——'b= —'k

&o &o D2+2D20 2

(36a)

(36b)

(36c)

do'

dQ

where cr is the total cross section, and

—', Fo& —,'F2, ——', Fo3+ —', F23a=k
Do+2D2

5 F23 2F03
&

F2b=k
D +2D

I 1+PP~( l~ pl )+(p.k)[~ +bP~( l~ pl )]I,
4m

(33}

(34a)

(34b)

Expressions (36) for B„coefficients agree with the formu-
las obtained previously by %ang for the unpolarized an-
gular distribution with the first-retardation correction.

Choosing a coordinate system with the z axis along the
linear polarization vector and the x axis along the photon
momentum [Fig. 1(a)], we obtain

I 1+PPz(cos8)+sin8cos@[a +bPz(cos8)]J .do cT

dQ 4m

(37)

with F&I. given by (31). Summing over photon polariza-
tions, we find

In the coordinate system in which the z axis is along the
photon momentum and the x axis is along the polariza-
tion vector [Fig. 1(b)], we have
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I I+—,'P(3 sin 8,cos 4]—1)
dQ 4~

+cos8, [a+ ,'b—(3sin 8,cos 4]—1)]I . (38)

B» [Bo] corresponds to B] in (42)]. In the nonrelativistic
approximation to the p-subshell photoelectron angular
distribution, we found that there are simple relations be-
tween some of these parameters, namely

Using 6]/2B B —
(

]o }1/2B
02 ~ 13 3 03 (44)

sin 8, =—,
' [1—P2(cos81)],

cos8, sin 8, = —,
' [P, (cos8, )

—P3 (cos8, )],
cos 4]=

—,'(cos24]+ 1),
Eq. (38) can be written as

(39)

dO' 0
[ 1+B,P, (cos8, )+ B2P2(cos8, )+B3P3(cos8])

dQ 4m

—cos e][6' B d (8 )

and there are only three independent parameters, not
five. The first of the relations (44), corresponding to the
dipole angular distribution, has also been given in Ref. 4.
One may expect that, in the nonrelativistic approach, the
angular distribution with polarized photons will be de-
scribed by the same number of independent parameters
as in the unpolarized case up to an arbitrary order in the
retardation expansion, though we do not have a general
proof. One should also expect more relations of the type
(44).

+( —", }'"B3d2o(8»] I (40) III. NUMERICAL RESULTS AND DISCUSSION

where

d (8 )=—,'6 ' sin 8

d20(8])= —', ( —,', )' cos8, sin 8, ,
(41)

%'e can see that in the nonrelativistic approximation
the angular distribution of photoelectrons ejected by po-
larized photons is determined by the same three parame-
ters that determined angular distribution in the unpolar-
ized case, i.e., B,,B2,B3 or, equivalently, p, a, and b [cf.
(33)]. The general relativistic expression for the photo-
electron angular distribution in the case of polarized in-
cident photons reads

1+ g Bo]P](cos8])
d0 CT

4m. l&1

(g]cos2e]+$2S1n241) y B]]d2O(81)
1&2

(43}

with, in principle, independent sets of parameters 80I and

are the (2,0) matrix elements of the rotation matrices in
the l=2 and 3 representations of the rotation group.
Equation (40) is a particular form of the general formula
obtained by Huang.

Formula (33}can also be written for the case of an ar-
bitrary photon polarization (complete or partial). Using
the Stokes parameters' (],(2,g3, we need to make the re-
placement

~e p~ —+ —,
' sin 8](1+(]cos24]+$2sin24]),

where the angles 8, and 4] are shown in Fig. 1(b). For
the angular distribution, we obtain

der 0.
{1+B,P, (cos8, ) +B2P2(cos8, ) +B 3P3(cos8, )

dQ 4m

—(g]cos24]+ (2sin24] )

X[6' B2d21](8,)+( —", )' B3d20(81)ll

In this section, we discuss results of the numerical cal-
culation of the retardation correction to the dipole angu-
lar distributions of 2s and 2p photoelectrons. We also
give simple semianalytic formulas for these corrections,
which agree quite well with the numerical calculation.
The numerical calculations were performed with the use
of the program PHOTO. "

A. The 2s case

The 2s angular distribution is described by formula (5):

der(2s)
0 =Air pi (1+~cos8),

where

(45)

2
«.=k cos(52 —5, ),

where the dipole and quadrupole matrix elements in the
large-wavelength approximation, D] and Q2, respective-
ly, are given by (7). In Fig. 2 we show the 2s retardation
correction ~ as a function of the photoelectron energy. A
comparison with the 1s case, displayed in Fig. 3, shows
that both the general shapes of the curves and the signs
of x at threshold for various values of Z are now different.
The extrema of «(2s) are in general more pronounced
than in the 1s case, and for larger Z the retardation
correction has both a maximum and a minimum in the
energy range considered here, whereas the 1s retardation
correction only had a minimum. Among the cases shown
in Fig. 2, the maximum is especially visible for Z=36.
For all three cases shown in Fig. 2 (Z=6, 10 and 36), the
sign of ]~(2s) at threshold is opposite to that for ls photo-
electrons. In Table I we show the values of «(2s) at
threshold, with «( ls) also shown for comparison.

It was noted previously' that the sign of the 1s retarda-
tion correction coincides with the sign of cos(52 —5, ). In
this case, both Q2 and D, are positive from threshold to
high energies. This changes in the present 2s case with

Q2 &0 and D])0 at low energies and Q2 changing sign
once. Therefore, the sign of «(2s) at threshold is opposite
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~ 't ~ ~
g

~ FW$ ~ ~ ~ ~
/

~ I F ~0n~ ~

0.2

—0.2

to that of cos(52 —5, ), and, at the same time, opposite to
the sign of s( ls) for the same value of Z.

The negative sign of Q2(2s) at low energy can be ex-
plained by noting that, contrary to the 1s bound-state
wave function, the 2s wave function for Z=10 has a node
at a distance of =0.1 A from the nucleus and for Z=36
at =0.03 A, and is negative for distances bigger than that
at which the node occurs. With the continuum radial
function positive for r=0 and starting to oscillate (at low
energies) for rather large distances, at which the bound-
state wave function is already small, a significant portion
of the integration comes from the region where the in-
tegrand is negative. In the present case, this region dom-
inates for Qz but not for D, . Compared to the dipole ma-

trix element, the quadrupole matrix element at small dis-
tances has two more powers of r in the integrand, which
diminishes the contribution from the region where the in-
tegrand is positive, leading to negative values of Q2.
Though the integrand of D, also vanishes at the origin,
due to the smaller power of r (for r ~0) the region where
the integrand is positive contributes more than in the Qz

~ ~ ~ ) ~ ~ ~ ~
/

~ I ~ W ( ~ ~ ~
/ ~ 1 ~ ~

0.4- is

26 g ~ /

0 4 I I ~ I I I ~ ~ ~ I I ~ I ~ I ~

10 I 0
E (kev)

FIG. 3. Retardation correction to the angular distribution of
1s photoelectrons (Ref. 1). These results are shown here for the

purpose of colnparison with the 2s and 2p cases.

~ ~ i ~ I a ~ a el ~ a a ~ I ~ ~ ~ al a a ~ a

~04 10 ~

E (kaV)

FIG. 2. Retardation correction ~ [Eq. (46)] to the angular

distribution of 2s photoelectrons as a function of energy.

6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

5.92 x 10-'
4.96x 10-'
3.96x 10-'
6.73x10 '

—4.14x 10-'
—9.23 x 10-'
—1.21x 10-'

5.15 X 10
3.12x 10-'
5.60x 10
2.02 X 10

—8.45 x 10-'
—1.67 x10-'
—1.15X 10
—1.87x 10-'
—2.49 X 10

5.68 x 10-'
4.30x10-'

—5.77 x 10-'
—4.19x 10-'
—2.92 x 10-'
—1.30x 10-'

1.21x 10-'
3.37 x 10-'
5.08 x 10-'

—2.60x 10-'
—1.72 x 10-'
—3.24 x 10-'
—1.24 x 10-'

5.39 X 10
1.10X 10
7.98 x 10
1.36x 10-'
1.89 X 10

—4.54x 10-'
—3.58 x 10-'

case, so that D, is positive. With increasing energy of the
final electron, the oscillations of the continuum wave
function damp the contribution from larger distances,
moving the dominant region of integration toward the
origin, so that the quadrupole matrix element Qz be-
comes positive with increasing energy. The position of
the zero of Q2 increases with Z, which is connected to
the fact that the node of the bound-state wave function
moves toward the origin with increasing Z and, to obtain
a positive integral, the continuum wave function must
start oscillating at smaller distance, which means higher
energy.

This discussion is somewhat related to a recent discus-
sion of whether the number of zeros in the radial matrix
elements is even or odd. ' The general theory described
in that paper predicts an odd number of zeros in the
quadrupole radial matrix element (in the long-wavelength
limit) for the transition from a bound ns state (n & 1) to
an ed final continuum state (cf. Table I in Ref. 11). This
agrees with the presence of one zero in our Qz quadru-
pole radial matrix element. The theory also predicts an
odd number of zeros (i.e., at least one zero) in the dipole
matrix element for the transitions from the ns (n& 1)
state to the ep state. The zero in some cases can occur in
the negative energy regime. Manson' has pointed out
that for 2s no zero occurs in the continuum. This agrees
with our result, where we observe no zero in the dipole
D, radial matrix element for positive electron energies. '

We also note that a reasoning of the type presented in the
previous paragraph does not apply to the quadrupole
1~1—2 and l~l transitions (which do not occur for s
subshells). According to Ref. 12, the radial matrix ele-
ments in these two cases have an even number of zeros,
so that, in particular, there may be no zero in QI or Q&

The reason we cannot apply our previous argument to
the l~l, l —2 transitions is that for lower angular mo-
menta the continuum radial function starts to oscillate

TABLE I. First retardation correction to the 2s photoelec-
tron angular distribution at threshold. 1s retardation (Ref. 1) is
shown for comparison.

x(2s)
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sooner and may damp the contribution from regions
where the integrand is negative.

Due to the zero of Q2, the 2s retardation correction
has one more zero than cos(52 —5, ), i.e., one more zero
than a.( ls) for the same value of Z. For instance, in the
Z=6 case (Fig. 2), there is a zero of ~(2s) at E=0.03
keV, corresponding to a zero of cos(52 —5, ), and a zero at
E =0.07 keV connected with a zero of Q2. A minimum
of the curve occurs between these two energies and, since
the positions of the two zeros are close to each other and
neither cos(52 —5, ) nor Q2/D, vary rapidly, the value of
a(2s) at minimum is small. A similar pattern can be seen
for Z=10 with a zero of cos(52 —5, ) at E=0 08 ke. V and
a zero of Q2 at E=0.2 keV. The 2s retardation correc-
tion for Z=36 has three zeros, with the first two of them
being due to the zeros of cos(52 —5, ) and the last one
coming from Q2. Again, the position of the second zero
at cos(52 —5, ) and of the zero of Q2 are close to each oth-
er, so that the value of a.(2s) at its minimum is small.

We also performed a comparison of the numerical re-
sults for a(2s) with the approximate semianalytic expres-
sion, analogous to that considered in Ref. 1. In the semi-
analytic approach we write the ratio Q2/D1 as

Q2

Dj

N2 Q2

Ni Di
(47)

where Ni are the normalization factors of corresponding
continuum radial functions, and Q2 and D1 are approxi-
mated by corresponding point-Coulomb expressions, with
the shifted energy E, determined by the point-Coulomb
energy conservation equation

E, =co—
—,'(Za) (48)

Q2 (5)2 vc

D lc (Z )2 ( 2+4)2
(49)

where v, =Za/p„p, =(2E,)', and c denotes Coulomb,
we obtain

This approximation, which is based on the assumption
that for inner shells screening effects come mainly from a
change in normalization, as compared to the Coulomb
case, and from the shift in energy corresponding to (48),
as was described in more detail in Ref. 1, gives quite good
results in the 1s case. In general, it can be expected to be
correct for inner shells, where distances small on the
atomic scale dominate the integration, since then the
screening effects beyond normalization can be treated
perturbatively. ' Denoting by n1 (=Ni/Nf ) the ratio of
the screened to Coulomb normalization at the physical
(not shifted) energy E, and using

where p is the electron momentum and v=Zcx/p. For
the retardation correction we get

U "2 (v +4)'
a(2s) = 8 — cos(52 —5, ),

c n& ~~+4
(52)

where v is the electron velocity. The corresponding ex-
pression in the ( ls) case reads'

x(ls)=2 —— (v +4)' cos(52 —5, ) .
c n,

(53)

lt follows from (53) that the sign of K(ls) is the same as
the sign of cos(52 —5, ). Expressing v, +4 as'

v, +4= 4'
ru —,'(Z—a)

(54)

we see that v, +4&0 for co& —,'(Za), i.e., below the
point-Coulomb threshold energy for the 2p subshell.
Therefore, for final electron energies below —,'(Za) —es,
where c.& is the screened binding energy of the 2p state,
the sign of the right-hand side of (52) will be opposite to
that of cos(52 —5, ). We may deduce in this way the sign
of Ir(2s) at threshold. We may expect (52) to be a good
approximation for higher energies since the semianalytic
method of dealing with screening effects is better at
higher energies. ' The comparison between semianalytic
and numerical results in the 2s case is shown in Table II.
The agreement between the two types of results, though
in general quite good, especially for higher electron ener-
gies, is now worse than in the 1s case. This is due to the
fact that for L-shell photoelectrons, larger distances play
a more important role than in the E-shell case. The
agreement improves with increasing Z, since then the
perturbative treatment of screening effects gives better re-
sults. "

B. The 2p case

2 3
cosA

5 D0

7D2 Q3+ COSA 3P5 Dp Dp
(Ssa)

Retardation corrections to the dipole angular distribu-
tion of photoelectrons ejected from the 2p subshell are
determined by the coefficients a and b in formula (33).
According to (34) and (31) they can be written as

1 3Q1 3D2 Q1a=k cosk ip coskpi
1+2(D, /D, )'

n2 ¹2(5)27 v,
x(2s) =k cos(52 —5, ) .

n1 ¹,(Za) (v, +4)
(50)

8D2 Q3 Q3b=k COS63$ 2 cos63p
1+2(D2/Do) 5 Do Do Do

From (48) we have k =
—,'(Za) (v, +4)/v„and the ratio

of the Coulomb normalizations Nz/N', is given by

12D2 Q
coskpi

0 0
(55b)

P
( 2+4)1/2

1Q
(51)

where b II =BI—5&. and the dipole and quadrupole matrix
elements are given by (25) and (27). Many more radial
matrix elements and phase shifts are required to deter-
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TABLE II. Numerical and semianalytic values of the retardation correction in the 2s case. The
semianalytic values have been calculated according to Eq. (52) with n„n I, 62, and 6& calculated numer-
ically.

E (keV) ~ (num)

Z= 10
~ [Eq. (52)] a. (num)

Z=36
s. [Eq. (52)]

10-4
10

5X10
10

5X10
10-'

2x10-'
sx10-'

1.0
2.0
3.0
5.0

3.96x10'
5.28 x 10-'
6.65 x 10-'
6.82 x 10-'
2.60x 10-'

—6.97 x 10-'
—6.63 x 10-'

5.34 x10-'
1.40 x 10-'
2.63 x10-'
3.52 x10-'
5.02 X 10

2.12x 10
2.96x 1Q

4.43 X 10
5.28 x 10-'
3.12x 10-'

—1.01x 10-'
—1.74x 10-'

4.45 x 10-'
1.36x 10-'
2.62x 10-'
3.54x 10-'
4.94 X 10

—2.94x
—2.10x

8.77x
2.88x
3.37 X
2.93x
2.12x
7.46x

—7.20x
—1.69x

2.77 x
1.44x

10-'
10-'
10
10
10-'
10-'
10-'
10
10
10
10
10-'

—2.51 x
—2.10x

9.34x
2.98 X
3.45x
2.99x
2.15x
7.43 x

—1.04x
—2.04 X

2.59x
1.45 x

10-'
10-'
10
10-'
10-'
10-'
10-'
10
10
1Q

10
10-'

mine a and b than in the s-subshell case, where to deter-
mine the retardation correction ~ it was necessary to
know just one matrix element ratio Q2/D, and one
phase-shift difference 5z —bt. We therefore have not
prepared a simple discussion, e.g., of the sign of a and b
at threshold, of the type presented in the previous subsec-
tion.

But, despite the much greater complexity of expres-
sions (55) as compared to the relatively simple formula
(46) in the s-subshell case, the behavior of a and b as func-
tions of photoelectron energy is numerically quite similar
to the behavior of Ir( ls). In Fig. 4 we show the a- and b-
retardation corrections for Z=6 as functions of photo-
electron energy, together with the point-Coulomb results
given for comparison. The coeScient a for Z=6 is posi-

tive, whereas b is negative at threshold and goes through
zero once. Both the shape and magnitude of a and b and
a in the ls case (Fig. 3) are similar. The plots of a and b
for Z=10 (Fig. 5) look similar to those of Z=6, with a
always positive and b negative at threshold and going
through zero once. This situation changes with increas-
ing Z. For Z=18 (Fig. 6), both a and b have two zeros
and there is a minimum at energies close to 0.1 keV. This
minimum becomes deeper with increasing Z (cf., Fig. 7
for Z=26 and Fig. 8 for Z=36), though it is, in general,
less deep than in the 1s case. Also the magnitudes of the
retardation corrections are now in general smaller than in
the 1s case, especially at threshold. The corrections a
and b are small at threshold also for these values of Z for
which the ~( ls) or a(2s) corrections are relatively large.

0 4-
~

I ~ 5
/

~ ~ I g ~ I ~0.

a 0.2-
0 4-

2

0-2-

I . . I

(a)

0.4—
~ I 0 ~ I \ v

I
~ w I ~

~ a I ~ i I I I a . I i a

~ 6 ' I I I0

0.4—

0-2—

a s I s I I I a t a a I I

104 10 2

E (keV )

) . I s I I I . I a I I

)0 4 )0 P

E (keV)
FIG. 4. Retardation corrections a and b [Eq. (55)] to tfre 2p

photoelectron angular distribution, for Z= 6. FIG. 5. Same as Fig. 4, for Z= 10.
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~ 6 ~ a I a r t a ~ $ a a I
'
~ a0. ~ 8 a \ I a a I a a I ~ a I a a0.

2
s

0 4 2 C

0.2—

a . I a . I . ~ I a . I ~ a

a I $
~ f ~ a

g
~0 A

a I a a I a . I a ~ I a a

'a a I ~ ~ I ~

0 4—
0.8-

0.4—

(b)
a . I a a I a ~ I a a I a

)0 10

E (kev)

FIG. 6. Same as Fig. 4, for Z=18.

E a I i I I ~ I a I ~ ~

to 4 io'
E (kev)

FIG. 8. Same as Fig. 4, for Z= 36.

This is due to the large denominator 1+2(D2/Do) in Eq.
(55), which is composed of the dipole radial matrix ele-
ments D2 and Do, and, as the numerical calculation
shows, D2 &Do at threshold. This denominator is of or-
der of 10 (e.g., =12 for Z=6 and =20 for Z=36) and
therefore a and b are an order of magnitude smaller than
k(Q, /D, ), which are of the same order of magnitude in
the ls, 2s, and 2p cases. As can be seen from (46), the s-
subshell retardation corrections can be expected to be of
the order of k(Q2/D, ), except at those energies for

8 a ~ I a a $ a ~ I a a
I

aO.

Z =26
s

0 4 2 C

(o)
a a I a a I ~ a I a a I ~

0.8

0
I a I ~ I I a I I a I I I

)0 )0
E (kev)

FIG. 7. Same as Fig. 4, for Z=26.

which cos(5z —5, ) is small.
Again in the 2p case, we have performed a semianalytic

calculation similar to that described in Ref. 1 and in the
previous subsection. The ratio of large-wavelength
quadrupole-to-dipole matrix elements are now given by

k =SZaQ3 n3 [(v +1)(v +4)(v +9)j ~ v,

Do no V v, +4
(56a)

Qi
k = —2Za

Do no

(v +1)'i
(56b)

D, n, [(v2+1)(v2+4) ~irz

Do no
4

V
2 v, +42

(56c)

where n&/nl, v, and v, have the same meaning as in the
previous subsection. Table III contains comparisons of
the numerical and semianalytic results for the retardation
corrections a and b as well as for the asymmetry parame-
ter P. The agreement between both types of calculations
improves with increasing energy and increasing atomic
number, and is in general better for the asymmetry pa-
rameter P than for the retardation corrections a and b
The reason is that the highest angular momentum of the
final state in the expressions for a and b is higher than for
P (3 for a and b, 2 for P). Therefore, large distances play
a more important role in the integrals determining the re-
tardation corrections than in the case of the asymmetry
parameter, and this results in a deterioration of the accu-
racy of the semianalytic approach for a and b as corn-
pared to P. For a similar reason, the agreement between
both types of results is in general worse in the 2p case
than for s subshells, especially when compared with the
very good agreement in the 1s case. ' Though in the
present 2p case the semianalytic approach is significantly
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worse than in the 1s and 2s cases, it can still be used to es-
timate general tendencies in the behavior of the retarda-
tion corrections as functions of energy. We note, for in-
stance, that the semianalytical approach predicts correct-
ly the number of zeros of a and b, though the magnitudes
and signs close to the energy at which zero occurs may
not agree with the numerical values. The semianalytic
approach can also be used to predict whether a, b, and P
are increasing or decreasing functions of energy.

To determine how large the inhuence of retardation
corrections on the angular distribution of photoelectrons
ejected from the 2p subshell by linearly polarized photons
is, we examine the differential cross section (37) for the
momentum p of the final electrons perpendicular to the
photon polarization vector, so that 8=0 [Fig. 1(a)]. In
the dipole approximation, the angular distribution in this
case does not depend on the angle 4, and

dO'
1p

dA
(57)

In Table IV we show the values of 1 —
—,'p and a ,'b—fo—r

Z=6, 10, 18, and 36, and energies ranging from 0.01 to 3
keV. At low energies (basically below 0.5 keV), the retar-
dation effects do not contribute more than 10% to the
constant dipole angular distribution, and for energies
below 50 eV this contribution is of the order of 1—2%.
The contribution of the retardation effects becomes more
significant at energies of the order of 1 keV, where it can

Including the retardation effects leads to the N-dependent
angular distribution

de
dQ

—1 ——'P+(a ——'b)cos@ .

TABLE III. Comparison between numerical and semianalytic results for the 2p retardation corrections a and b [Eqs. (55) and (56)]
and for the asymmetry parameter P [Eqs. (32) and (56)]. Numerical and semianalytic results are given in column I and column 2, re-
spectively.

E (keV)

0.0001
0.001
0.005
0.01
0.05
0.1

0.5
1.0
2.0
3.0
5.0

—1 ~ 87x10-'
1.98 x 10-'
6.82 X 10
1.05 x 10-'
3.42 x 10-'
6.19x 10-'
1.48 X 10
2.15 x10-'
3.03 x 10-'
3.65 X 10
4.89 x 10-'

—3.39x 10
—4.09x 10-'

6.73 x 10-'
1.21 X 10
4.02 x 10-'
6.78 x 10-'
1.59x 10-'
2.21x 10-'
3.08 X 10
3.74x 10-'
4.81x 10-'

Z=6
—6.37X10 '
—4.72 x 10-'

3.29 x10-'
1.03 x 10-'
5.43 x 10-'
1.02 x 10-'
1.95 X 10
2.49 x 10-'
3.04x10 '

3.44 X 10
4.52 x10-'

—2.59 x 10
—2.17x10 '
—5.39X10-'

7.36x 10-'
6.57x 10-'
1.13X 10
2.19x 10-'
2.63 x 10-'
3.18X 10
3.63 x 10-'
4.38 x10-'

1.99
4.75 X 10
1.00
1.25
1.52
1.41
6.85 X 10
4.22 X 10
1.76x 10-'
8.00 x 10-'

—4.58 X 10

3.21 X 10
5.49 x 10-'
1.01
1.24
1.50
1.38
7.05 x 10-'
4.32 x10-'
2.45 x 10-'
1.73x10 '

1.15 x 10-'

0.0001
0.001
0.005
0.01
0.05
0.1

0.5
1.0
2.0
5.0

1.60x 10-'
1.13x 10-'
3.05 x 10-'

—4.70x10-'
—6.95 x 10-'

6.61x 10-'
1.11x10-'
1.97x 10-'
3.07 x 10-'
4.93 x 10-'

2.79 x 10-'
1.94 X 10
1.59 x 10-'

—8.19x 10-'
—1.12x 10-'

5.50x 10-'
1.22 x 10-'
2.11x10-'
3.25 x 10-'
S.isx iO-'

Z=18
4.61 X 10
3.33 X 10

—2.99x 10-'
—2.09x10-'
—3.37x10-'
—1.12x 10-'

1.78 x 10-'
3.20x10 '

4.72 X 10
6.43 x 10-'

8.40 X 10
5.60X 10

—5.75 x 10-'
—3.67 X 10
—5.32 x 10-'
—2.12 X 10

1.97x 10-'
3.51 x 10-'
5.13x 10-'
7.03 x 10- '

1.63
1.30
7.14x 10-'
5.86 X 10
9.88 x 10-'
1.26
1.46
1.32
1.04
5.54

1.57
1.27
7.52x 10-'
6.39x 10-'
9.92 x 10-'
1.24
1.45
1.33
1.09
6.90

0.0001
0.001
0.005
0.01
0.05
0.1

0.5
1.0
2.0
3.0
5.0

3.39x 10-'
2.22x10 '

—8.98 x 10-'
—1.05 X 10
—3.68 X 10
—5.46 x 10-'

1.13x10-'
9.29 X 10
2.13X 10
3.34 X 10
4.82 x 10-'

4.59x
2.43 x

—1.96x
—1.51x
—4.51x
—6.31x

1.65 x
9.94x
2.46x
3.53 x
5.08 x

10
10
10
10
10
10
10
10
io-'
io-'
io-'

Z= 36
1.02 x10-'
6.48 X 10

—1.56 x 10-'
—5.31 X 10
—1.00x 10-'
—1.20x 10-'
—3.71 X 10

1.29 x 10-'
3.77 x10-'
5.51x10-'
7.8i x iO-'

1.40x10-'
2.10x10-'

—2.35 x 10-'
—7.45 X 10
—1.32 x 10-'
—1.49 x 10-'
—4.29 x 10-'

1.4OX 1O-'
4.05 X 10
5.91x 10-'
8.41x 10-'

1.48
1.18
7.06x 10-'
5.77x 10-'
7.57 x 10-'
9.64x 10-'
1.38
1.46
1.43
1.35
1.17

1.45
7.17x 10-'
7.25 x10-'
6.06x 10-'
7.72 x 10-'
9.63 x10-'
1.35
1.44
1.43
1.38
1.26
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TABLE IV. Parameters characterizing angular distribution of 2p photoelectrons in the plane perpendicular to the direction of the
photon linear polarization [Eqs. (57) and (58}].

Z

0.01
0.05
0.1

0.2
0.5
1.0
3.0

1p

3.75 X 10
2.40x 10-'
2.95 X 10
4.40x 10-'
6.57x 10-'
7.87 X 10
9.72x 10-'

a ——'b
2

5.35 X 10
7.05 x 10-'
1 ~

10x10-'
2.15 X 10
5.05 X 10
8.95 x 10-'
1.97 x 10-'

lp

7.24 X 10
3.35 x10-'
2.60x10 '

2.70x 10-'
4.10x10-'
5.75 X 10
8.24x10 '

10
a ——'b

2

8.88 x10-'
9.00x 10-'
1.06x10-'
1.51x 10-'
3 15X10
6.20x10-'
1.60 X 10

1p

7.07 x 10-'
5.06 x 10-'
3.70x 10
2.85 x 10-'
2.70x 10-'
3.40 X 10
5.82 x 10-'

18
a ——'b

2

5.75x10 '
9.90x 10-'
1.22 x 10-'
1.52 X 10
2.20 X 10
3.70x 10-'
1.06 X 10

1p

7.12x10-'
6.22 x 10-'
5.18x10-'
4.20x10 '

3.10X 10
2.70x10-'
3.25 X 10

36
a ——'b

2

1.61x 10-'
1.32 x10-'
5.40x10-'
5.90x 10-'
1.79x10-'
2.84 X 10
5.85 x10-'

exceed 10%. This can be contrasted with the s-subshell
photoeffect, where, in some cases, the retardation effects
may contribute as much as 20% to the angular distribu-
tion even close to threshold. Plots of the angular distri-
bution at 0=90' for a few values of Z and energy are
shown in Fig. 9.

IV. FINAL REMARKS

We have investigated in this paper higher retardation
and multipole corrections to the angular distributions of
photoelectrons ejected by polarized photons from the L
shell. In the case of the 2s subshell (and in general for ns

f.2
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FIG. 9. Angular distribution of 2p photoelectrons in the plane perpendicular to the linear photon polarization. The quantity plot-
ted is (4m. /o )(do /d Q), with the dashed line representing the constant dipole result [Eq. (57)] and the solid line representing the an-

gular distribution with retardation [Eq. (58)].
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subshells}, the retardation effects beyond the electric-
dipole approximation are described by one energy-
dependent parameter a. [Eq. (46)], which, even at low
photoelectron energies, can be as large as 0.2—0.3, espe-
cially for higher values of the atomic number Z. For
linearly polarized photons, a nonrelativistic calculation
predicts vanishing s-subshell angular distribution when
the electron momentum is perpendicular to the polariza-
tion vector of the photon [cf. Eq. (45)]. This result is in
agreement with a recent fully relativistic calculation of
Scofield, ' who obtained a very small ( —10 ) relative
differential cross section for 2.57 keV (U/c=0. 1) elec-
trons ejected from the 3s»2 subshell of sodiumlike bari-
um. Even at energies as high as 40-50 keV (U/c=0. 4),
the relativistic relative cross section is of the order of
10

The leading-order retardation effects beyond the nonre-
lativistic dipole approximation in the 2p case can be de-
scribed by two parameters a and b [Eqs. (33) and (35)] or
B, and B3 [Eqs. (35) and (36}]. The retardation effects in

general are now small close to threshold and can contrib-
ute as much as 10—20%%uo to the angular distribution at rel-
atively low final electron energies of 1—3 keV (cf. also Ref.
13).

The retardation effects described theoretically in this
paper can be observed experimentally as forward or back-
ward peaking (depending on the sign of ~) of the angular
distribution in the 2s case and, in the 2p case, as devia-
tions from constant nonrelativistic dipole predictions for
the angular distribution in the plane perpendicular to the
linear photon polarization vector.

we note that Y, (r) is a homogeneous polynomial of or-
der 1 in the x„and can therefore be written as

Thus

(r)= gab xb .
b

(A3)

I, = g ab ~fde, xb
b

J, = g ab ' fd~2(p r).x,xb .
b

Using

fdQp, xb = 5,b

(A4)

(A5)

we obtain

(m)4m
a 3 a (A6)

3A +B =fde (p r)=0, (A8)

and multiply both sides of (A7) by p„pb and sum over a
and b, which gives

To calculate J„we note that the angular integral is a
symmetric tensor of rank 2, and, with two terms of this
type available, i.e., 5,b and p,pb, is of the form

f dQ&2(p r)x, xb= A5,b+Bp,Pb . (A7)

To 6nd A and B, we contract with respect to indices a, b
which leads to
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APPENDIX

A+8='
15

(A 10)

From (A8) and (A10) we have A = —4~/15, B =4~/»
so that

Expressing (p r) as a combination of Pz and Po and us-
ing the orthogonality relations for the Legendre polyno-
mials, we get

5e 'D2 fd Q.,Pz—(p.r)e.r Y, (r), (Al)

where Do and D2 are the dipole radial matrix elements
(25). There are two types of angular integrals that we
need to calculate:

This Appendix contains details of a calculation leading
to formulas (24) and (26) for the transition matrix ele-
ments and to formula (30) for the angular distribution.

There are two contributions, 1=0 and 1=2, to the
large-wavelength limit of the dipole matrix element:

(f~e r~i) =e 'Do f dQ.,e rYi (r}.

dQ&2(p r)x, x, = — (5.b —3p.pb)15

and

For the matrix element (Al) we have

(f~& r~i) = Ie 'DOY, (e)

+e 'Dz[Y, (e}—3e pY, (p}]],

(Al 1)

(A12}

(A13)

I, =fdOP, Yi (r),

Ja d+~r2 p r Xa Y]m
(A2)

where x, denotes the ath component of the unit vector r
(i.e., x, =x, /r). To perform this integration effectively

which is the same as (24). In passing from (Al 1) to (A12),
as well as to (A13), we used (A3) with r replaced either by
6 or p.

To calculate the electric quadrupole matrix element
(26), we note first that for the p initial state there are only
1=1 and 1=3 contributions. We have, therefore,
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&fl(k r)(er)li&=3t 'e 'Q, fdic&, (p r)(k r)(er)Y, (r) —7i 'e 'Q, fdQ&3(p r}(k r)(er)Y, (r). (A14)

(A15)

with I= 1 and I=3. Using (A3), we obtain

The two angular integrals that have to be calculated are

I.', =fdQ, Pt(p r)x. ,xb Y,~(r),
4m5W+8 =
3

(A19)

I,'b= &a,' 'f d&~t(p r}x,xbx„. (A16) which gives

The angular integral is a totally symmetric tensor of rank
3, and must therefore be of the form

0
& P r x,xbx, = A,bP, + „Pb+ b,P,

4m.
~

4'
~ ~ 4m'~

15 ' 35 7
(A20)

Substituting (A20) into (A17) and then into (A16) yields

+~P.PbPc

The equations determining A and 8 are

53+8= QW& p r jr
3A +8 =fdfLPt(p r)(p r. )

(A17)

(A18)

I3
ab

15
[&.b Yi (p)+a. 'P"b+ab

35
[&,b Y& (p)+a™pb+ab p ]

+ P.Pb Yt. (P»

(A21)

Using x =P, (x),x =
—,'P3(x)+ —,'P&(x), we obtain and, upon substituting (A21) into (A14), we obtain

(f~(k r)(e r) ~i ) = — ie 'Q, [( ep) Y, (k)+(p k) Y, (e)]

+ ie 'Q3[ —(e p)Y, (k) —(p k)Y, (e)+5(e p)(p k)Y& (p)],
5

(A22)

which is the same as (26).
To find the angular distribution, we use (28) with

M '~"'= co(f()e r—~i),
M"'= —

—,'cok(f~(k r)(e r)~i) .
(A23)

In performing the summation over the magnetic quantum
number, we use the summation formulas (29) for spheri-

cal harmonics, noting that

g Yf (k)Y, (e)= k e=0, (A24)

X Y)m(n)Ytm(n)=-=3 =3
m

(A25}

where n may denote any of the unit vectors k, p, or e.
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