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For the 'P'-'S', 'P'-'D', 'D'-'S', and 'D'-'P' double-electron excitation processes of He in high-

lying doubly excited states by charged-particle impact, we have evaluated the Born cross sections
using the hyperspherical wave functions. Together with our previous results [Motoyama, Koyoma,
and Matsuzawa, Phys. Rev. A 38, 670 (1988); Matsuzawa, Atsumi, and Koyama, ibid. 41, 3596
(1990)],we have theoretically found a set of propensity rules for these excitation processes between
the doubly excited states with L 2. These rules indicate that a He atom in a strongly correlated
doubly excited state tends to conserve its internal state as a flexible e-He +-e linear triatomic mole-

cule during the excitation processes except for the restriction arising from the Pauli exclusion prin-

ciple. How the exclusion principle modifies the above-mentioned propensity rules for singlet-singlet

optically allowed excitation processes depends on the radial correlation of the initial state. The be-

haviors of the doubly excited atoms in rotationally and/or vibrationally excited states as the flexible
linear triatomic molecule tend to deviate from those predicted by the propensity rules so obtained.
This is due to the fact that there are no final states available for the propensity rules to specify be-

cause of the restriction arising from the cutoff of the quantum numbers.

I. INTROOUCTION

In our previous papers' we made a theoretical inves-
tigation of the collisional properties of He atoms in high-
lying doubly excited states, i.e., in 'S'-'S', 'S'-'P',
'S'-'D', 'P'-'P', and 'D'-'D' electron-impact excitation
processes. So far, we have tried to understand how an
atom in a doubly excited state behaves when it interacts
with charged particles perturbatively. Namely, our
research interest lies in understanding the correlation
effects in collision dynamics. Therefore, we focused our
theoretical studies on excitation processes between the in-
trashell high-lying doubly excited states in which the
correlated motion of two atomic electrons play a decisive
role. In order to do this, we employed the hyperspherical
coordinate approach to generate the wave functions of
the doubly excited states and to calculate their energy lev-
els. We evaluated the Born excitation cross sections
and found some systematic trends, i.e., propensity rules
in collision dynamics involving the doubly excited atoms.
To interpret these propensity rules obtained, we relied on
the rovibrator model of the doubly excited states pro-
posed by Herrick and Kellrnan ' and the classification
scheme of the doubly excited states proposed by Lin.

Here we extend our theoretical studies to 'P'-'S',

'P'-'D', 'D'-'S', and 'D'-'P' electron-impact excitation
processes, i.e.,

e+He'*(i) ~e+He"'(f),
where i (f) denotes the initial (final) doubly excited states
of He. Furthermore, we can expect that the propensity
rules obtained here also apply to excitation processes of
doubly excited atoms by charged particles other than
electrons in the energy regions where Born approxima-
tion is valid. To confirm it, we investigate excitation pro-
cesses by C + ion impact, i.e.,

C ++He'"(i)~C ++He""(f) .

We also analyze how the angular-momentum transfer
occurs from relative motion to the excited atoms in the
'P'-'P' 'P'-'D' 'D'-'P', and 'D'-'D' excitation pro-
cesses. We summarize the propensity rules obtained so
far in excitation of He atoms in high-lying doubly excited
states with L ~ 2 by charged-particle impact using the ro-
vibrator model together with the previous results. ' Fi-
nally we translate the propensity rules based on the rovi-
brator model into those based on the molecular-orbital
(MO) model for the doubly excited states proposed by
Feagin and Briggs, ' '" and discuss their physical inter-
pretation.
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II. CLASSIFICATION SCHEMES
OF DOUBLY EXCITED STATES for A =+

min '%+1 for A =—
X+1 for A =0.

(6)
To discuss collision dynamics involving the doubly ex-

cited states, we employ two classification schemes based
on the rovibrator model ' ' and the MO model recently
proposed. ' '" Here we give a brief description of these
models, since we will refer to them in a later discussion.

In order to 1abel the energy levels of strongly correlat-
ed doubly excited states, Lin ' proposed the classifi-
cation scheme, i.e., to employ a set of quantum numbers,
[N(K, T) "n] +'L". Here, N ( n) is the principal
quantum number of an inner (outer) electron and K, T,
and A are the so-called correlation quantum numbers.
Other quantum numbers L, S, and m are defined as usua1.
The quantum numbers E and T originate from the
group-theoretic approach by Herrick and Sinanoglu, '

and describe angular correlation. The quantum number
K is a measure of ( —r& r& ), i.e., the projection of the
inner electron radius vector onto that of the outer elec-
tron, while T is proportional to ((L.r & ) ). These quan-
tum numbers take the following values

However, for successive higher channels with A =0, n
increases by one unit for each hE= —1 instead of Eq.
(4). Here it should be noted that all the quantum num-
bers such as K, T, A, U, and n2 are approximately con-
served because the two-electron-atom Schrodinger equa-
tion is only approximately separable into the collective
modes of the e-He +-e linear triatomic molecule in the
case where electron correlation plays an essential role.

Recently Feagin and Briggs' "' ' developed the
molecular-orbital method to treat correlated motion of
two-atomic electrons. In this model, the individual
motion of the two electrons with respect to the nucleus is
considered to be approximately separable into two modes
of two-electron motions. The first is the vibrational
motion of the interelectronic coordinate R=r& —r2 with
the reduced mass of the two electrons where r, and r2 are
the radius vectors of two electrons with respect to the nu-
cleus. The latter is the motion of the center of mass with
respect to the nucleus. This motion is described by the
coordinate r=(r, +r2)/2 of the center of mass of the
electron pair with respect to the nucleus, where R and r
are a set of Jacobi coordinates of three-particle system,
i.e., two electrons and the nucleus. This center-of-mass
motion is approximately separable and described by the
MO method well known for the hydrogen molecular ion
H+

The MO's are characterized by the quantum numbers
T, t, nz, and n„. Here T is the projection of the total an-
gular momentum L onto the interelectronic axis along R,
the o, m., 5 quantum numbers in the "dielectronic" MO.
There is the gerade-ungerade symmetry of the dielectron-
ic MO. This symmetry is specified by quantum number t
if one sets t = 1 for g symmetry and t = —1 for u symme-
try. The quantum numbers n& and n„are the MO quan-
tum numbers corresponding to the spheroidal coordi-
nates A, = ( r, + r z ) /R and p = ( r, r2 )/R. —

Feagin and Briggs" discussed the correspondence be-
tween the sets of the quantum numbers of the two mod-
els. The quantum number T is the same as the vibration-
al angular momentum T previously defined in the rovi-
brator model. For other quantum numbers, they
identified the following relations, i.e.,

(3)T=0, 1,2, . . . , min(L, N —1),

(4)K=N T 1,N —T—3, . .—. , —(N —T ——1) .

The quantum number A introduced by Lin' describes
the radial correlation at the finite hyperradius
R =(r i +rz )'~ . This quantum number is set equal to +
(
—

) if an angular channel function has an antinode
(node) at the potential ridge, i.e., a=ir/4, where a is the
hyperangle defined by a=tan '(r2/r, ). Other channels
are assigned to A =0, where their channel functions do
not have substantial amplitude at a=a. /4 for almost all
R but reside away at a=0 or m. /2. Watanabe and Lin'
made a more detailed quantitative ana1ysis of the set of
the correlation quantum numbers (K, T)" using the
body-fixed frame attached to the atoms and identified the
following relation:

~( —1) + =~( —1) + +' K&L N—
0, E~L —X. (5)

This relation arises from the fact that two atomic elec-
trons obey Fermi statistics. For all states with
L ~ 2X —1, A is set equal to zero for all channels. These
states with A =0 are considered to be singly excited
states. According to the collective rovibrational interpre-
tation of the supermultiplet structure of the doubly excit-
ed states, ' v ( =N —K —1) corresponds to the quantum
number of the doubly degenerate bending vibrational
modes of the flexible ("floppy" ) e-He +-e linear triatomic
molecule, while T is the vibrational angular momentum
around the mean molecular axis. Furthermore, it is quite
useful to introduce the radial bending quantum number
n2 =(v —T) /2, i.e., the number of nodes in the vibration-
al motion in 0,2, i.e., the angle between the two radius
vectors of two electrons on the body-fixed frame. Finally
the number of the nodes in the hyperradial motion within
each channel is given by n —n;„, where n,„ is the
lowest n given by the following relation, i.e.,

K=n, —n2=[n„/2] ni, —

A=( —1) ",
~( —1) =( —1)',

where n, and n2 are the parabolic quantum numbers of
the separated-atom 1imit, to which the MO correlates and
the symbol [x] denotes the largest integer less than x.

In the following, we mainly use the rovibrator model to
describe the collision dynamics as we did in our previous
papers' and translate our results expressed in the rovi-
brator model into those used in the MO model in Sec. IV,
and discuss their physical interpretation.
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III. NUMERICAL COMPUTATION
AND CALCULATED RESULTS

We have calculated the Born cross sections 0.;f, i.e.,

4~z2 ] k, +kf
(10)

for excitation processes (1) and (2). Hereafter atomic
units (m, =e =4=1) are used unless otherwise stated.
Here v; is the velocity of an incident particle, Z is its
charge, k; (kf ) is the wave number of an incident (scat-
tered) particle, and E; (Ef) is the energy of the initial
(final) doubly excited state. The symbol F;„(K) denotes
the generalized oscillator strength (GOS) between the
doubly excited states defined by

2(EI E; )—
F,,(SC)=, ( le;PK) I'),

where K is the momentum transfer and e;((K) is the tran-
sition form factor

2

er)K)= f Z exp(iK r, ) i) .
j=1

(12)

Here the large angular brackets in Eq. (12) mean that the
squared transition form factors are averaged over the ini-
tial magnetic substates and summed over the final mag-
netic ones. We have adopted the same procedures as
those employed in our previous papers. ' Namely, we

have assumed that the coupling of these doubly excited
states to continua associated with excited states of He+
can be neglected and that the collisional excitation pro-
cesses between the quasibound doubly excited states are
well defined for collision processes (1) and (2), as was
done in our previous papers. ' We have used the hyper-
spherical wave functions for high-lying doubly excited
states to calculate the GOS between the doubly excited
states. The 'S' channel functions are expanded over a set
of 49 basis functions, while 64 and 95 basis functions
have been used for 'P' and 'D' states, respectively. Here
the numbers of the basis functions have been fixed after
the convergence of our calculated results for the energy
levels was carefully tested. '

We have evaluated the Born cross sections for 'P'-'D',
'D'-'P', 'P'-'S', and 'D'-'S' excitation processes for col-
lision processes (1). In Fig. 1 we give some typical exam-
ples of the calculated cross sections for 'P'-'D' excitation
processes from the initial states with A =+ and
These figures show quite simple, i.e., monotonically de-
creasing energy dependence for almost all the cross sec-
tions. Therefore, we adopt the value of the Born cross
sections at fixed energy, i.e., 50 eV as the measure of the
likelihood of each excitation processes as we did in our
previous paper. Here the Born approximation remains
to be valid at 50 eV incident energy for the doubly excit-
ed states studied here, because this incident energy is
much larger than the excitation energies between the
doubly excited states, i.e., at most -2-3 eV.
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FIG. 1. Born cross sections for the 'P'-'D' excitation process of He by electron impact from the following initial states: (a)
[3(1, l )+3]'P' and (b) [3(2,0) 4]'P'. The labeling attached to each curve specifies the final state.
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TABLE I. Born cross sections for the 'P'-'D' excitation processes of He by electron impact at 50 eV
incident energy (a) 3{1,1)+3~N(K, T) "n for N =3 or 4; (b) 3(2,0) 4~N(K, T) n for N =3 or 4 with
the changes of the quantum numbers during excitation processes. The notation [x] denotes 10".

Initial
states

N(K, T) "n

Final
states

N(K, T) "n

Cross
sections

(cm')

Change of the
quantum numbers

Av hT hn~

3(1,1)+3 3(0,2) 3

3( 1, 1 ) 4
3(0,0)+3
3(2,0)+4
4(1,2)+4

4.9[—15]
5.2[—16]
2.1[—16]
3.4[—17]
2.7[—17]

0
X
0
0
0

1

0
1

—1

1

1

0
—1
—1

1

3(2,0) 4 3(2,0)+4
3{1,1) 4
4(3,0)+4
3(0,0)+3

3(0,2)+4

8.2[—15]
5.3[—15]
7.7[—16]
1.9[—16]
7.6[—17]

X
0
X
X
X

0
0
0

—1

0

TABLE II. Born cross sections for the 'D'-'P' excitation processes of He by electron impact at 50
ev incident energy (a) 3(2,0)+3~N(K, T) "n for N =3 or 4; (b) 3(1,1) 4 N(K, T) n for N=3 or 4
with the changes of the quantum numbers during excitation processes. The notation [x] denotes 10'.

Initial
states

N(K, T) "n

3(2,0)+3

Final
states

N(K, T) "n

3(1,1)+3
3(2,0) 4

3(—1,1)+3
3(0,0) 4
4(2, 1)+4

Cross
sections

(cm')

1.7[—15]
2.7[—16]
6.3[—18]
3.1[—18]
9.6[—19]

0
X
0
X
0

Change of the
quantum numbers

Av AT An&

3(1,1) 4 3(1,1)+4
3(0,0) 4
3(2,0) 5

4(2, 1)+4
3(—1,1)+4

7.2[—15]
5.3[—15]
2.6[—16]
1.1[—16]
5.6[—17]

0
0
X
X

0
1

—1

0
2

0
—1

—1

0
0

TABLE III. Born cross sections for the 'P'-'S' excitation processes of He by electron impact at 50
ev incident energy (a) 3(1,1)+3~N(K, T) "n for N =3 or 4; (b) 3(2,0) 4~N(K, T) "n for N =3 or 4
with the changes of the quantum numbers during excitation processes. The notation [x] denotes 10".

Initial
states

N(K, T) "n

3(1,1)+3

Final
states

N(K, T) "n

3(0,0)+3

3(2,0)+4
4(1,0)+4
4(3,0)+4

4{—1,0) 4

Cross
sections

(cm')

1.9[—15]
3.0[—17]
1.4[—18]
1.2[—18]
6.1[—20]

Change of the
quantum numbers

Av hT An&

1
—1

1
—1

3

3(2,0) 4 3{2,0)+4
4(3,0)+4
3(0,0)+4
4(1,0)+4

3{—2,0)+3

4.3[—15]
1.6[—16]
5.1[—17]
3.7[—18]
8.6[—19]

X
X
X
X
X

0
0
0
0

—1
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TABLE IV. Born cross sections for the 'D'-'S' excitation processes of He by electron impact at 50
eV incident energy (a) 3(2,0)+3~1V(K,T) n for N =3 or 4; (b) 3(1,1) 4~%(E,T) n for N =3 or 4
with the changes of the quantum numbers during excitation processes. The notation [x]denotes 10".

Initial
states

N(E, T) "n

3(2,0)+3

Final
states

X(EC, T)"n

3(0,0)+3
3(2,0)+4
4(3,0)+4
4(1,0)+4

3(—2,0)+3

Cross
sections

(cm )

3.5[—17]
9.1[—18]
4.4[—19]
1.1[—19]
5.7[—20]

Change of the
quantum numbers

Av hT bn2

3(1,1) 4 3(0,0)+4
3(2,0)+5
4(1,0)+4

3(—2,0)+3
4(3,0)+4

4.6[—17]
1.9[—17]
8.5[—18]
8.5[—18]
4.7[—18]

X
X
X
X
X

1

—1

1

3
—1

0
1

0
—1

0

Table I shows typical examples of the singlet-singlet
optically allowed 'P'-'D' excitation cross sections at 50
eV from the intrashell initial states and from the inter-
shell initial states together, with the information on the
change of the quantum numbers for the rovibrator mod-
el, which occurs during the excitation process. Here we
list the change of the quantum number v instead that of K
as we did in Ref. 3. This enables us to easily understand
the character of the transitions based on the rovibrational
interpretation of the collective motion of the two atomic
electrons. For the initial states with A =+, the process-
es with Av =5T= 1 and with all other quantum numbers
unchanged are most likely to occur in each manifold.
The rovibrator model tells us that a He atom in a doubly
excited state of a Qoppy e-He +-e linear triatomic mole-
cule tends to be vibrationally excited in the doubly degen-
erate bending vibrational modes and to be rotationally
excited around the mean molecular axis. This systematic
trend is quite similar to that seen in the 'S'-'P' excita-
tion. For the initial states with A = —,the excitation
processes with b, MAO and with all other quantum num-
bers unchanged are most likely to take place. Here it
should be noted that the 'S' states have only A = +.

Table II indicates that for the singlet-singlet optically
allowed 'D'-'P' excitation processes, the trends similar
to those for the 'P'-'D' processes can be seen. Namely,
for the initial states with A =+, the excitation process
with Av =AT=1 and with all other quantum numbers
unchanged is most likely to occur in each manifold while
for the initial state with A = —,the excitation process
with b, A%0 and with all other quantum numbers un-
changed is most likely to take place.

For the singlet-singlet optically allowed 'P'-'S' excita-
tion processes, Table III indicates that for the initial
states with A = —,one sees the trends similar to those
obtained in other optically allowed 'P'-'D' and 'D'-'P'
excitation processes. However, the initial states with
A =+ show the trends different from those for the
'P'-'D', and 'D'-'P' excitation processes, i.e., the excita-
tion process hv =1,6T= —1,hn2=1 with all other
quantum numbers unchanged is most likely to occur.

For the optically forbidden 'D'-'S' excitation process-
es, Table IV gives some typical example in which the fol-
lowing transitions are most likely to take place, i.e., (i)
b v =2 and all other quantum numbers are unchanged f'or
the initial state with A = + and (ii) b, A %0, b, v = 1,
AT= —1, hn2=1 and other quantum numbers are un-
changed. This behavior is different from that for the
'S'-'D ' excitation processes.

We have also investigated collision process (2) in the
energy region where the Born approximation is valid, for
example, at E = 10 MeV for C + ions. We have
confirmed that excitation of He by heavy-ion impact
shows the same systematic trends, i.e., the propensity
rules as those found for process (1) with EL=0, 1,2
[hL =Lf L;, where—L; (Lf ) is the total angular
momentum of the initial (final) state].

Here is should be noted that our numerical calcula-
tions have been performed using the hyperspherical coor-
dinate approach, i.e., quite independently of the models
which we employ in order to interpret the physical mean-
ing of our calculated results.

IV. DISCUSSION AND CONCLUSIONS

In our previous paper we have pointed out that the ra-
dial propensity rule AA =0 and the angular propensity
rules hv=6, T=O (bn2=0) hold for the 'S'-'S' and
'S'-'D' excitation processes involving the doubly excited
states. This is interpreted as a result of isomorphism of
the surface density plot of the squared hyperspherical
channel functions between the initial and final states.
This means that the doubly excited atoms tend to keep
their internal states, i.e., their shape as the "triatomic
linear molecules" in the body-fixed frame the same as
that in the initial state. Because of relation (5), the radial
and the angular propensity rules are incompatible with
one another for the 'S'-'P' excitation processes. The ra-
dial propensity rule prevails over the angular ones. The
latter are modified into Av=ET=1, though An2=0
remain unchanged. In Ref. 3 we have found that the ra-
dial propensity rule hA =0 and angular propensity rules
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b v =6T=0 and hn 2
=0 also apply to the excitation pro-

cesses with AL =0, though only one electron participates
in these transitions between the strongly correlated dou-
bly excited states.

Tables I and II for the singlet-singlet excitation pro-
cesses with ~AL

~

= 1 show that the same arguments as
that for the 'S'-'P' excitation processes apply to the
'P'-'D' and 'D'-'P' excitation processes with the initial
states with A =+, though one has different propensity
rules for the 'P'-'S' excitation. For the initial states with
A = —,we have seen the same trends for the 'P'-'D',
'D'-'P', and 'P'-'S' excitation processes. In the singlet-
singlet excitation processes with

~
b,L

~

= 1, two types of
the propensity rules are incompatible with one another,
because of the Pauli exclusion principle for the two atom-
ic electrons [see relation (5)]. However, in the case with
A = —,the angular propensity rules dominate over the
radial propensity rules for the 'P'-'D', 'D'-'P', and
'P'-'S' excitations. In these cases, the latter is modified
into b, AAO. For the 'O' 'S' ex-citation, the systematic
trends are quite different from those for AL =2. The de-
viation from the propensity rules for the 'P'-'S' and
'D'-'S' excitation processes is considered to originate
from the fact that there is no final state available which
the propensity rules specify because of the cutoff of the
quantum numbers K (or v) and T for the 'S' final state.
Here is should be noted that An2 =0 also applies to the
cases studied here except for those of the 'S' final states.
Table V summarizes the propensity rules obtained so far
together with the physical interpretation based on the ro-
vibrator model. In this table we have excluded some re-
sults for the 'P'-'S' and 'D'-'S' excitation processes be-
cause of the strong restriction for the final 'S' states aris-
ing from the cutoff of the quantum numbers K (or v) and
T. We stress here that the propensity rule bn2 =0 holds
for all cases listed in Table V.

In Ref. 3 we investigated double-electron excitation

e' '= g (21+1)ij'l(Kr)PI(cos8),
1=0

(13)

where 8 is the angle between K and r. Here I can be in-
terpreted to be the angular-momentum transfer from the
relative motion to the atom. For example, the 'P'-'P'
GOS is decomposed into the two components, i.e., l =0,2
while the 'D'-'D' GOS is decomposed into the three
components, i.e., 1=0,2, 4. For both cases, the l =0
component mainly contributes to single-electron excita-
tion listed in Table V while the l =2 component gives rise
to the double-electron excitation with the changes of the
angular correlation quantum nuinber K (i.e., v) and T.
On the other hand, the 'S'-'S' GOS has only the l =0
component, which can cause electron-pair excitations
only in the stretching mode, because no angular-
momentum transfer occurs from the relative motion to
the atom. We have also applied this analysis to the
'P'-'D' excitation processes where the 'P'-'D' GOS is
decomposed into the I=1 and 3 components. Here we
have found that the l = 1 component mainly gives rise to
the electron-pair excitation processes listed in Table V as
in the 'S'-'P' excitation.

For the double excitation processes with hL =0, we

processes for the case of hL =0. We found that there is a
sharp difference between the propensity rule for the
'S'-'S' excitation and that for the 'P'-'P' and 'D'-'D'
excitation. Namely, for the 'P'-'P' and 'D'-'D' double
excitation processes, the rotational and vibrational modes
as the floppy linear molecule are more likely to be excited
than the stretching mode in the 'S'-'S' excitation pro-
cesses. In order to study this difference, we have made an
analysis of the GOS in terms of the components of
angular-momentum transfer I from the relative motion to
the excited atom. The plane wave is decomposed into the
partial waves, i.e.,

TABLE V. The propensity rules based on the rovibrator model in charged-particle impact excitation
of He in the doubly excited states for ~hL~ 2. Some exceptional cases for the 'P' 'S'and 'D' 'S'exci---
tation processes are excluded because of strong restriction arising from the cutoff of the quantum num-
bers K and T of the final states.

Transitions

hL =0
Propensity rules

hA =0
Av=AT=O, hn, =O,

AN=0, hn =1

Interpretation based
on the rovibrator model

Single electron
excitation

hL =1 or —1 A=+ AA=0
tv=AT=1, An2=0,

AN=En =0

Bending vibrational
excitation and rotational

excitation around the
molecular axis

A = —;AAWO,
Av =ET=0, An2=0,

AN=6, n =0

Change of radial
correlation

AL =2 hA =0,
Av=ET=O, hn2=0,

EN=En =0

Rotational excitation
as a whole
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b, A =0, (14)

and the angular propensity rules

hv =AT=0 (15)

hold for the excitation processes of He atoms in the
high-lying strongly correlated doubly excited states by
charged-particle impact. The latter propensity rules lead
to the propensity rule

An2=0 . (16)

The propensity rules (14), (15), and (16) indicate that the
doubly excited He atom as the floppy linear triatomic
molecule tend to conserve its shape, i.e., its internal state
on the body-fixed frame during the excitation processes
while it interacts with other charged particles perturba-
tively. This is interpreted as a result of isomorphism of
the charge-density plots of the channel wave functions
between the initial excited states and the final ones. This
means that there is no change of the nodal structures be-
tween the initial- and final-state channel function and
guarantees that the overlap of the initial- and final-state
wave functions becomes the largest. The behaviors of the
doubly excited atoms in "rotationally and/or vibrational-
ly" excited states tend to deviate from the propensity
rules in the cases where, in the final channel of collision
process (1), there are no final states available that the
above propensity rules specify because of the cutoff of the
quantum numbers E (or v) and r.

For the singlet-singlet optically allowed excitation with
~bL

~
=1, the radial propensity rule is incompatible with

the angular ones because the two atomic electrons obey
Fermi statistics, i.e., because of the Pauli exclusion prin-
ciple for two atomic electrons, i.e., relation (5). For the
initial states with A =+, the angular propensity rules
Av =ET=0 are modified into

have seen that the propensity rule hn2 =0 holds except
for the 'P'-'P' and 'D'-'D' excitation processes from the
initial states with A =+. For the 'P'-'P' excitation
processes we have the propensity rules, Av =2, b T=0,
hn2=1, and all other quantum numbers unchanged.
However, in the final 'P' states, there are no states avail-
able which can satisfy AT=2 because of the cutoff of the
quantum number T. Actually for the 'D'-'D' excitation,
we have found that for the X =3 manifold of excitation
processes the excitation processes with hv =2, AT=2,
hn2=0, and all other quantum numbers unchanged
occur comparable with the excitation processes with
Av =2, ET=0, hn2=1, and all other quantum numbers
unchanged though the former is a little less likely to take
place than the latter. Furthermore, for the manifold with
N =4, we have seen that the situation changes, i.e., the
former is more likely to occur than the latter. Therefore,
we may conclude that the propensity rule An& =0 also
applies to the double-electron excitation processes with
EI.=0 except for the cases where this rule does not hold
because of the cuto8' of the quantum numbers. Hence,
our results are summarized based on the interpretation of
the rovibrator model as follows; the radial propensity
rule

Au=AT=1, (15')

under the condition that the propensity rule (16) remains
unchanged. The propensity rule (16) also tends to hold
for the double excitation processes with AI. =0. For the
initial states with A = —,the angular propensity rules
dominate over the radial one. The latter is changed into
the propensity ru1e

b, AWO . (14')

The propensity rules (14), (15), and (16), i.e., the concept
of the isomorphism with their variants (14') and (15'),
give the unified understanding for a wide class of dynami-
cal phenomena involving the doubly excited states. We
have also theoretically confirmed that the set of propensi-
ty rules (14), (15), and (16) with their variant (15') apply
to the excitation of the ground state He as long as the
conditions 6%~1 and An ~1 are satisfied. ' In the
threshold excitation of He in the ground state by electron
impact, ' the singlet-triplet transitions are allowed to
take place. Therefore, the radial propensity rule (14) and
the angular one (15) can coexist with the relation (5). The
propensity rules (14), (15), and (16) can explain experi-
mental findings observed in Ref. 18 as was pointed out.
Experimental findings on photoabsorption for the double
electron excitation of the ground-state helium' ' can
also be explained by the propensity rules (14), (15'), and
(16) as pointed out previously. The concept of the iso-
morphism can apply to the systematics of the autoioniza-
tion width, i.e., the partial width is the largest when the
continuum channel corresponds to propensity rules (14),
(15), (16), and hN= —1. Therefore, we conclude that
the concept of the isomorphism in the rovibrator model
governs a wide class of dynamical phenomena involving
the doubly excited states under the conditions that suit-
able modifications arising from the Pauli exclusion princi-
ple are taken into account, if necessary. In other words,
the atom in the doubly excited state tends to conserve its
internal state as a floppy triatomic linear molecule except
for the restriction arising from the Pauli exclusion princi-
ple when they interact with other charged particles per-
turbatively.

Using the correspondence' ""' between the rovi-
brator model and the MO model including relations (7),
(8), and (9), we can translate the propensity rules based on
the rovibrator model into those based on the MO model.
These are written as follows: one has for the radial pro-
pensity rule (14)

hn„=O or even,

and for the angular propensity rules (15),

(17)

AN=E[n„/2] —bn&, b, T=O .

AN=6 [n„/2] —bnq+b, T . (19)

Here, judging from the overlap between the initial and
final wave functions, we may assume that hn„=O is most
likely to occur in (17). In this case, one has b,n&=0 for
AN=0. The propensity rule (16), i.e., hn2 =0 is translat-
ed into
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TABLE VI. The propensity rules based on the MO model in charged-particle impact excitation of
He in the doubly excited states for ~hL~ ~2. The propensity rules hA =0 (AAAO) is translated into
hn„=O (An„=1}.

Transitions

hL =0
Propensity rules

bnq=O, bn„=O
AT=0,

AN=0, hn =1

Expressions for ET=0 or 1

in the conventional MO
quantum numbers

'S'-'S'; o.
g og

1 el e.D D o'g ~o'g kg ~Kg
5g ~5g

hL =1 or —1 n„=even; An& =1, hn„=O,

b T =1, EX=En =0

'S'-'P' ~g M

5Q g'D'-'P' o ~m.
g Q

n„=odd; dna=1, An„=l,
AT=0, KN=bn =0

1P0 lDe.
M g'D'-'P' n.
g Q

1PO 1Se.
Q g

hL =2 hnz =0, hn„=O,
ET=0,

EN=En =0

'S'-'D',
erg

o.
g

The propensity rules (17) and (18) with An„=O show that
the doubly excited atom as the "dielectronic molecular
ion" tends to keep its internal state the same as that for
the initial state. However, the MO model does not give a
simple physical interpretation for the propensity rule
(19).

For the optically allowed excitation processes with
~b,L

~
=1, either one of the propensity rules (14) and (15)

has to be modified because of the Pauli exclusion princi-
ple for two atomic electrons. The propensity rules (15')
for n„even are translated into the following ones, i.e.,

b,N =A[n„ /2] b,n z+ 1, b,—T= 1 (18')

while for the initial states with A = —,i.e., for n„odd
the propensity rule (14') is written as

hn„=1 or odd . (17')

Again, judging from the smaller overlap of the initial and
final wave functions with larger An„, we may assume
b,n„=l for (17'). The propensity rules (18) lead to
An&=1, AT=0 for AX=0 and so forth. These results
are summarized in Table VI, which is the MO version of
the propensity rules translated from the rovibrator ver-
sion given in Table V though the translation cannot be
done uniquely.

The propensity rules with
~
b L

~

= 1 are equivalent to

the selection rules of photoabsorption by the atom as
pointed out previously. The most important case is the
'S'-'P' excitation. For the initial states with n„even, we
have (17) and (18') as the propensity rules. This leads to
An&=1, An„=O, AT=1 for 61V=O. We can rewrite
b T=1 in terms of the conventional MO quantum num-
bers, i.e., agan„etc. , using relation (9). This is analo-
gous to the selection rule of electronic transition of the
diatomic molecule for photoabsorption ' as is expected.

We have seen that the two models originating from
quite different physical pictures can give a reasonable
physical interpretation for the propensity rules obtained
here in logically consistent manners. This fact is quite in-
teresting and may have a deeper physical meaning for the
electron correlation which we have not yet fully under-
stood. Further study is desirable for the elucidation of
the correlation effects in collision dynamics involving the
doubly excited atoms.
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