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An asymptotic theory of quasiclassical type is constructed for the quasistationary states and

branch points of terms in the problem of two Coulomb centers. In the adiabatic approximation of
atomic collision theory, the branch points and the parameters of quasistationary states, respectively,
determine the electron transitions between two bound states and between a bound state and the con-
tinuous spectrum.

I. INTRODUCTION

The probabilities of nonadiabatic transitions in diatom-
ic quasimolecular systems are determined by the parame-
ters of the branch points of E (R ) potential curves in the
complex plane of the internuclear spacing R and also, for
transitions into a continuous spectrum, by the parameters
of quasistationary states. ' An extremely topical ques-
tion in this area is the study of the branch points and
quasistationary states of the simplest diatomic system-
the problem of two Coulomb centers Z, eZ2. For one
thing, this model brings out some basic general features
of term behavior in the complex plane R which are also
characteristic of more complex systems; for another, the
Hamiltonian of the Z, eZz system is frequently used as an
adiabatic in the solution of actual cases. A very impor-
tant and useful property of the Z&eZ2 system is the pos-
sibility of separating the variables, ' which greatly
simplifies its theoretical study.

Complex branch points of potential curves in the
Z& eZz system were first found numerically, and the earli-
est studies of them are in Refs. 5 —7; their quasistationary
states were studied in Refs. 8 and 9. In the present paper
it is shown that their occurrence in the quantum problem
Z, eZ2 is closely bound up with cases of what is called
limiting motion in the classical description of this system.
They have, in fact, been studied by Legendre and are de-
scribed in monographs on celestial mechanics (cf., e.g.,
Ref. 10) with the sole limitation that celestial mechanics,
unlike atomic physics, treats both centers as centers of at-
traction. The special cases indicated occur on conAuence

of the turning points of the equations of motion. On the
basis of classical analysis we have obtained uniform
asymptotic formulas for the wave function in the problem
of two Coulomb centers, corresponding in particular to
the limiting trajectories, and also formulas for branch
points and quasistationary states. Comparison with re-
sults obtained numerically shows that these formulas
have high accuracy over a fairly wide range of variation
of the parameters of the problem.

II. LIMITING MOTION IN THE PROBLEM
OF TWO COULOMB CENTERS

Z fH =—'p
2 r

1

Z2

r2

and the projection L, of the moment of the internuclear
axis, the problem contains a further integral of motion,

The problem of the motion of a particle with unit mass
and charge e = —1 in the field of two charges Z&eZ2
which are separated by a distance R permits separation of
the variables in prolate spheroidal coordinates:

g=(r&+r )2R/, 1+(+ ao

g=(r, —r~)/R, 1~g~ —1

P=arctan(y/x), 0+/+2'. ,

where r „r2 are the distances of the particle from centers
1 and 2. Separation of the variables is possible because,
in addition to the Hamiltonian
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the separation constant A (Ref. 3):

A=L'+ZR Z] + —,'R (p, —2H) .

+ c + + V(r))=0, (4)
drl A' 1 —r} (1—

rl )

subject to the condition of their being finite for /=1, and
r)= —1, +1. In Eqs. (3} and (4) we have used the
definitions

c = ,'ER, a =(Z—,+Zz)R, b =(Z2 —Z, )R,
where E is the total energy and k is an eigenvalue of the
operator A in (2). If the energy is negative we replace c
byp = —c = ER /2—.

In this paper we study asymptotics of quasiclassical
type (A'~0) for the solutions of the system (3),(4) where
c2, a, b, and A, are of order O(1), L, =O(R), i.e.,
m =O(1). It is therefore suitable to write dependences
on A in explicit form, not using a system of units in which
%=1. The case we are studying is most important in
practical applications. In the classical limit (fr~0) it
corresponds to motion with zero projection of moment
on the internuclear axis (L, =Am~0) where all trajec-
tories lie in a plane passing through this axis. The classi-
cal equations of motion in terms of the variables g, rI can
then be written as functions of the corresponding general-
ized velocities on g and rl:

[ ' —Q(g)l'"d«4(« —1)
R &(g2 ~2)

4I(g —1)[c (g —1)+a/ —A]) '

R 2(g2 ~2)

In the quantum-mechanical description, the wave func-
tion, which is the eigenfunction of the three commuting
observables H, A, L„is expressed as a product

%'(r) = [(g —1)(1—r} )] ' U(g) V(r) )exp(img)

(m being the azimuthal quantum number) in which the
"radial" function U(g} and the "angular" function V(rl }
satisfy the following system of equations:

d(2 f 2 (2 1 (g2 1)2

quantum equations (3),(4) agree with Q(g) and P(q).
Figures 1 —3 show them for different relations between a,
b, and A, .

These figures clearly illustrate the special cases of
which the quasiclassical analysis is the subject of this
work. These all involve confluence of the roots of the
fourth-degree polynomials appearing under radical signs
in the expressions (5) for u& and (6) for u„. It is a special
feature of the generalized velocities v& and v„ that they
vanish not only at the classical turning points $„$2,rl„F12
where the generalized moments p&=[c —Q(g)]' and
p„=[e2—P(rl)]'~ vanish, but also at g= —1, +1 and
g= —1, +1. These roots are not dependent on the pa-
rameters. Unlike them the roots g„g2, rl„r12 vary with
the parameters and can merge, both with one another
and the roots +1. %e shall consider four cases of
confluence of these roots: case I, confluence of g, and q2,
corresponding to motion at an energy coinciding with the
top of the potential barrier in the angular equation (Fig.
1, curve 5); case II, convergence of F2 to —1, correspond-
ing to coincidence of the top of the barrier with the
rl = —1 pole in the angular equation (Fig. 1, curve 4); and
the analogous cases for the radial equation: case III,
confluence of g& and g2 (Fig. 2, curve 3); case IV, conver-
gence of gz to the g= 1 pole (Fig. 2, curve 2 and Fig. 3,
curve 2). Cases of triple confluence will not be considered
in this work.

Case I. Confluence of g& and g2 occurs if A, & b in the
angular equation. P (rI) then has a maximum at an inter-
nal point of the interval [—1, 1],at rl=rl

b

X+(X'—b')'" '

P(rl )= ——'[A. +(A, —b )' ]

Since P(rl )(0 the analysis of this case requires us to

V
dt

4(1 ) }
[ 2 P( )]t/2

R 2(g2 2)

4[(1—r} )[c (1 g)+by+A]—I'
R 2(g2 ~2)

(6)

where the effective angular potential P (rl) and radial po-
tential Q(g) have the form

by+A, b —
A, b+A,

2(1+rj) 2(1—q)
'

ag —
A,

—(a +A, ) (a —
A, )

2(/+1) 2(g —1)

To the principal order in A the effective potentials of the
FIG. 1. Effective angular potential P(g) (7) at b &0 in the

cases (1) A, (—b, (2) A. = —b, (3) —b (A, (b, (4) k =b, (5) k & b.
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FIG. 4. Classical trajectory of the particle at an energy coin-
ciding with the top of the potential barrier in the angular equa-
tion.

FIG. 2. Effective radial potential Q(g) (8) for a (0 in the
cases (1) A, (a, (2) A,

—a, (3) A, & a.

consider only motion with negative energy,

p = —ER /2&0. The roots g&, gz are given by the ex-
pression

1/2
b b

z z+ 1+
z z

2p 4p p

They are real if the energy is less than the potential max-
imum [p +P(ri~)) 0] and complex for motion above
the barrier [p +P(ri ) (0]. At p = P(rI )= —,'[—&
+(k2 —b~)]'~2 the roots coincide, rI& =r)2=rI . The clas-
sical trajectory then has the form shown in Fig. 4: the
particle oscillates about a g coordinate and in terms of ri

g(('))t a&0

infinitely slowly approaches the value g=g while, as
follows from the equations of motion (5),(6), the time
diverges logarithmically as r)(t)~r): t -In~r) —rj ~. In
the quantum case (see Sec. III) this situation is expressed
by the occurrence of general branch points at potential
curves having the same quantum number n&. These
occur in the complex plane R at distances of order O(rt)
from the real axis.

Case II. The top of the barrier coincides with the
ri= —1 end of the interval when A, =b. One of the roots
g&, gz then coincides with the root g= —1 and the
Coulomb potential singularity P (rI) vanishes at this point
(Fig. 1, curve 4). Of physical relevance are the negative
energies for which the point g= —1 is classically attain-
able and coincides with the greater root gz, while the
lesser root g, lies in the nonphysical region g (—1. This
occurs at values of p satisfying 0 &p & b l2 (when

p ~b/2 we have triple confluence). The corresponding
classical trajectory is shown in Fig. 5. Motion of this tra-
jectory is such that the particle oscillates about a g coor-
dinate and in terms of g infinitely slowly approaches the
value rI= —1 [t-1 (1n+ i)]r. In the quantum case (Sec.
IV) this situation, as in case I, leads to the appearance of
general branch points at potential curves having the same
n& in the complex plane R at distances of order O(h)
from the real axis.

Case III. In the radial equation the barrier exists only
at A, & a and a &0, where the total charge corresponds to
repulsion (Fig. 2, curve 3). The potential Q (g) then has a
maximum at the point

a
g+()„2 2)1/2

FIG. 5. Classical trajectory of the particle when the top of
FIG. 3. Effective radial potential Q(g) (8) for a )0 in the the potential barrier in the angular equation coincides with the

cases (1) A, )a, (2) A, =a, (3) k (a. g=1 pole.
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and has the value

(10)

Since Q(g ) &0 the turning points g„g2 coincide only at
positive energies c =ll2ER &0, i.e., in the case of
scattering. The roots g„gz are given by the expression

1/2
a a A,1+

2c 4c c

They are real if c —Q (g ) & 0, complex if
c2 —Q(g )&0, and equal if c =Q(g )= —

—,'[A, +(A,
—a )'~ ], in which case g, =gz=g . The classical trajec-
tory is shown in Fig. 6. Moving on this curve, the parti-
cle rebounds an infinite number of times from a hyperbo-
la corresponding to the turning point in the angular equa-
tion. During this process it approaches, in terms of g, the
value g=g in such a way that the time diverges loga-
rithmically. In the quantum treatment of the scattering
problem in this case (Sec. V) a series of quasistationary
states appear with lifetimes of order O(h ').

Case IV. With A, =a in the radial equation one of the
roots g„g2 merges with the pole (=1 and the Coulomb
potential singularity Q (g) vanishes at this point.

If the total charge corresponds to repulsion,
Z& +Z2 & 0, a & 0, singularities at A, =a occur only in the
scattering problem, and then at an energy for which
c & ~a~/2. The particle rebounds infinitely many times
either from the two hyperbolae g=g&, g=g2 correspond-
ing to turning points in the angular equation (this occurs
when the changes Z„Z2 are both negative, cf. Fig. 7), or
from one hyperbola if in the angular equation there is
only one turning point inside ( —1, 1) (i.e., if
Z2 &0& —Z2 &Zi, (cf. Fig. 8). The g coordinate of the
particle then approaches the value (= 1 at infinite length.
In the quantum treatment of the problem this leads to the
occurrence of quasistationary states (Sec. VI).

If the total charge corresponds to attraction
Z, +Zz &0 then with A, =a and positive energy the tra-
jectory appears in the case Z, & 0, Z2 & 0 as a spiral with
an infinite number of turns enclosing a segment of a
straight line joining the nuclei (Fig. 9), and in the case
Z, &0&Z, & —Z2 as the curve shown in Fig. 8 and al-

FIG. 7. Classical trajectory of the particle when the turning

point z, coincides with the pole /=1 in the radial equation at
0&Z2 Zl and c'&0.

FIG. 8. Same as Fig. 7 at Z, & 0) —Z2 )Z l and c' & 0.

FIG. 9. Same as Fig. 7 at Z2 & Zl & 0 and and c & 0.

FIG. 6. Classical trajectory of the particle at an energy coin-
ciding with the top of the potential barrier in the radial equa-
tion. FIG. 10. Same as Fig. 7 at Z~ & Zl & 0 and and c' & 0.
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FIG. 11. Same as Fig. 7 at Z2)0) —Z2)Zl )Oand c &0.

points in the form

V(ri) =a V) (7) )+PV2(r) ),
V;(ri) = [z'(ri)] '

W, (z (g)),
where a and p have to be determined by matching with
solutions satisfying the boundary conditions at g=+1.
The scale function z (g) is found from the equations

[z'(ri)] ( —,'z —v)=q(r)}+A' —
—,'R [z,riJ,2 1 —m

~2 2

[z '9] =
'2

III

+ Z'

(12)

ready discussed. In the quantum treatment such limiting
trajectories are also associated with quasistationary states
(Sec. VII).

If Z&+Zz &0 then limiting trajectories exist even at
negative energies. They correspond to 6nite motion and
are shown in Fig. 10 for Z, )0, Z2 & 0 and in Fig. 11 for
Zz &0&Z, & —Zz. In the quantum problem (Sec. VI)
these singularities appear as general branch points at po-
tential curves having the same angular quantum number
n„.

At parameter ratios corresponding to conAuence of
roots in the classical equations of motion the quasiclassi-
cal formulas obtained for the problem of two Coulomb
centers in Ref. 11 are not usable, and neither is the stan-
dard technique for constructing quasiclassical solutions.
In this paper a reference equation method is used instead
which makes it possible to construct a uniform asymptot-
ics around a singularity and to describe the branch points
or quasistationary states produced by this singularity.

It must also satisfy conditions of smoothness, which
amounts to saying that the turning points of the initial
and reference equations must coincide and permit a reli-
able choice of the parameter v. Subject to these require-
ments z(ri, p, i,, b, m) and v(p, A, , b, m) are found from Eqs.
(12) as expansions in A' . In the highest order we obtain
for v an expression in terms of the elliptic integral

v= —f &—q(ri)dri .
77 91

(13)

z (ri } is defined by the transcendental equation

f ( ,'z ——v)'/ dz= f [q(ri)]'/ dr) . (14)

Having obtained the asymptotic Whittaker function
for a large argument' and also the formula (14) for z(ri)
we can obtain expressions for V, (ri) and Vz(ri) in the
classically permitted regions far away from the turning
points. To the right of the barrier (z &0)

III. UNIFORM QUASICLASSICAL ASYMPTOTICS
OF SOLUTIONS OF THE ANGULAR PROBLEM

NEAR THE TOP OF THE BARRIER

Let us write the angular equation (4) in the form

V, 2(ri)= A, 2q
' sin —f [q( )r]i' d/r}+y, z

'92

v v 1 1 iv n m
1 —ln +argI —+—+ +—+—,

2k' 2R 2 4 2A' 4 8

2

V"(ri)+ q (ri)+ V(r) )=0,
fi (1—ri )

q('9) =p ('9 '91)('9 '92)/'(1 '9 } .
To the left of the barrier (z & 0)

A ) 2 =const .

The classical turning points are given by the formula (9).
In this case the reference equation, with two turning
points which can merge and become complex on varia-
tion of the parameter v, is the equation for the parabolic
cylinder function:

W"(z}+ ( —'z —v) 8'(z) =0 .
1

g2 4

Its solution is expressed by the %hittaker function'

. Z2
IV, 2(z)=z M;( /~f) ~]/4 i1/2

with W&(z) even and W2(z) odd as z —+ —z.
Following the usual scheme of the comparison equa-

tion method we construct the solution of the initial equa-
tion (11) in the central region containing both turning

V, 2(g}=+A, 2q
'/ sin —f [q(g)]' dri+y, 2

7/)

(16)

In these formulas the estimate of the discarded term
0 (A) is uniform in v, i.e., the formulas are valid both for
finite v and for v close to zero. The I functions are non-
trivial terms with respect to conventional quasiclassics
and provide uniform asymptotics in the given region. In
the formulas (15),(16) they are isolated in explicit form.
And since these I functions have poles in the complex v
plane at v= i%/2 and v= 3iA'/2, the quasiclassical phase
in the variation of v in the neighborhood of v=0 changes
very sharply. These poles are the cause of the occurrence
of branch points on the potential-energy surfaces, which
will be considered below.

The solution V (g) which satisfies the boundary con-
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dition at g= —1 is constructed by using a Bessel equation
as the reference equation. This enables us to take good
account of the existence of a second-order pole caused by
a centrifugal term not containing a large parameter. As
the standard form we obtain

Xsin —f [q(ri)]'/ d2) —~™+—
2 4

(17)

A function V+(21) which is finite for 21=1 is obtained
I

V (g)=[y'(2))/y(ri)] '/'J —&y(g)
2

J

where J (x) is a Bessel function of the first kind' and
the scale function y (ri) is defined to the first order by the
formula

2&y(ri)= f [q(Fi)]' dt's .

Far from the poles, in the left-hand region the asymptotic
V (ri) has the form

V ( ri) =const X q

from V (2I) by the transformation 2)~ —ri, b~ —b,
which does not change the angular equation but relocates
the end point of the interval. In this way we obtain in the
right-hand region of connection

1

V+(ri}=constXq ' sin —f fq(ri)]' dpi
1™—+—

2 4

(18)

On connecting the solution V(ri)=aV1(ri)+pV2(ri) to
V (2)) and V+(2)) and then eliminating a and p we ob-
tain a quantization condition in the form of an equality of
ratios of %ronskians:

[V+ V2] [V- V2]

[V+ V1] [V- V1]

The Wronksians [V, V, ],[V, V2 ] are calculated using
the asymptotic formulas (16),(17) for the left-hand region,
while [ V+, V, ],[ V+, V2] are calculated using the asymp-
totic formulas (15),(18) for the right-hand region. The
Anal version of the condition of quantization is

cos(4+ —4, )
F(p, o, k,,)=C1++4& +(—1) "arcsin —m.(n„+—,

'
) =0,

[1+exp( —2m v/1r1)]'
(19)

where n„ is the number of zeros of the angular function
within the interval [—1, 1], and 4+(p, b, A, ),4 (p, b, k)
are given by the following asymptotic formulas, which
are uniform in a neighborhood of v=0:

4+ =—f [q(2))]'/ d2)+40,
"I2

=—f [q ( )ri]' d/ri+ 40, (20)

V V 1 . v vm
40—= 1 —ln —+—'arg1 —+i—

Here 2)„ri2, and v are given by the expressions (9) and
(13).

These uniform asymptotic formulas take simpler forms
both for energies far from the top of the barrier
[v=O(1)] and for energies close to it [v=O(1)1)].

Far away from the barrier, either above it or below,
when qz

—q, and v take values of unit order, Stirling's
formula' can be used for the I function in (20) and the
quantization condition (19) then coincides with the ones
obtained in Ref. 11.

If, on the other hand, the energy is close to the barrier,
g2

—g] and v take smal1 values and Striling's approxima-
tion for the I function is not usable. In that case we can
simplify the elliptic integrals in the expressions (20) for
4+ and 4 . We introduce the notation

and consider the range of parameter values in which
5=0(1), that is, 2)2

—ri, =O(R '
), v=O(fi). Substi-

tuting (21) in (18) and (20) and expanding the elliptic in-
tegrals into asymptotic series with A' —+0, rio =0(1),
5=0(1)we obtain

v=%5(1+0 (A') ), (22)

[( 1 —
bio )

' +2)oarcsinrio]fi

——'51n (1—
21 ) +—'argl ( —'+i5)+8p 2 3/2 & ] ~

xaam

2
(23)

q gdq+ —V 1 —1n
1 1 V/R

'I2 2 2

for 4+. An important point to note is that (23) can be
obtained more simply than from (20) by directly con-
structing an asymptotic solution of the angular problem
by the comparison equation method for the range of pa-
rameters where F2

—2), =0(1)1'/ }. This is done in the
Appendix.

All these formulas can be simplified for identical
centers, Z, =Zz, b=O. In this case we have g, =qz,
21o=0, 4+ =4 and the quantization condition (19) can
be written in the form

b

2p

6= p'(1+no)
8g( 1 212)1/2 2p fg( 1 ~2)1/2

(21)

1 1 . V/A+A argI —+—+i
2 4 2

m+1 1—m6 9+
2 8

+— (24)
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where

2 25=—f &—
q (i})di}, i}i=(1—

A, /p )'
0

n2 being the parabolic quantum number. The upper sign
in (24) corresponds to u symmetry, the lower sign to g
symmetry. If the energy is close to the top of the barrier
(23) is converted to the form

g2, which passes through the value g = —1 at A, =b, and
for the inAuence of the second-order pole associated with
the centrifugal term not containing fi. The Whittaker
function is a solution of (28) which is regular at z=0.

In accordance with Ref. 4 we construct a solution of
the angular equation which is finite at g = —1 in the form

T

l(i})=[z'(i})] ' 'M,«„~i —yz(i})
h

p ——'5iii ln + iri argI —+——4p 1 1

2 4 4p
2

)
1/2

(29)

m+1 1
n2 (25)

and 5=(p —
A, )/2Ap.

The potential curves E (R ) of the two Coulomb center
problem are obtained from the quantization condition
(19), in which we have to substitute the quasiclassical
solution of the radial spectral problem A, =A,„(p,a):

n~, m

F(b,p, A,„(p,a)}=0 . (26)

At branch points we obviously have

p d
dR dR [—'R & 2E(R—)]—+ ~ (26a)

(because near a branch point —Rii, E =Eii +const
X QR —Rii ). This condition leads to the equation

"r}F dF 8+ A,„(p,a)=0 . (27)

The branch points are found as roots of the system of
transcendental equations (26),(27) and, as analysis shows,
they lie at a distance of the order of 0 (fi) from the real R
axis. It is found that the T and P series of branch points
(to use a terminology introduced in Ref. 6}are respective-
ly associated with the poles of the I function and the
poles of the argument of the arccos function in Eq. (19).

The scale function z(i}) and the parameter ir are found as
usual in the form of power series in A from an equation
analogous to (12) allowing for the requirements of
smoothness of z (rI). To the first order ir is given by

J'2
ir= —+f &—q(y)dy,

7T' —1

while the function z (ri) is implicitly defined by
' 1/2

dz'= f "V'q (y')dy' .
"I2f z(g) y

2

—4~/y' 4 z'

(30)

(31)

The formulas (30) and (31) are valid from large nega-
tive I,—b to large positive A. —b, including A, =b, at which
the turning point passes through the value q= —1. For
A, &b we have i}z& —1, v&0, and for A, (b we find

g, & —1, K&0.
Using the relations (29)—(31) and the asymptotic for-

mula for the Whittaker function with large argument'
we obtain an asymptotic expression, uniform in the
neighborhood of A=b, for V. (i}) in the classically per-
mitted region —the region in which it has to match with
the solution V+(i}) which satisfies the boundary condi-
tion at g= 1. We have

V (i})=constXq ' sin —f &qdy+y

IV. UNIFORM QUASICLASSICAL ASYMPTOTICS
OF SOLUTIONS OF THE ANGULAR PROBLEM

EN THE NEIGHBORHOOD OF A, =b 1 —ln
Ay

——(m —1)
4

m+1 lK
(32)

IV"(z)+ 1

f 2

b k 1 —m2—p +—+—+
2 z 4z2

8'(z) =0 .

which enables us to allow properly for the turning point

In this case, as was shown in Sec. III, the negative en-
ergies for which p & b/2 are also of interest. The situa-
tion is characterized by the fact that with A, =b the
Coulomb singularity of the angular potential P (i})
changes sign at the point g= —1. This causes a jump of
m/4 in the phase of the quasiclassical function. ' The true
phase does not have this jump. Its uniform quasi-
classical asymptotic in the neighborhood of A, =b is con-
structed by the comparison equation method.

In the neighborhood of q = —1 the reference equation
has to be the Whittaker equation

An asymptotic expression for V+(i}) was constructed in
the preceding section and is given in the matching rela-
tion by (18).

On matching the solutions V (i}}(32) and V+(i}}(18)
we obtain a quantization condition in the form

3m 2v'q (y)dy+y ir n—
Y/ 4

=0 (33)

This asymptotic formula simplifies in the case that A, —b
is of the same order as A, and b [A, —b =O(1)], and also in
the case that the order of A. —b is less than that of k and b
[A, —b =O(fi)].

If Ab=O(1) the tu,
—rning point i}i lies at a finite dis-

tance froin —1 and v is of order O(1). The condition (33)
then becomes the usual condition" both for A, & b (x.& 0)
and for A (b (a (0).



42 QUASICLASSICAL EXPRESSION FOR PARAMETERS WHICH. . . 6373

If A, is close to b, however, suitable formulas can be ob-
tained by assuming A.—b=O(iri) and using the notation

p=(b/2p )', e=(b —A. )/2'(b+A, —4p )'i

[e is of order O(1)]. The elliptic integral in (33) then
simplifies and the quantization condition takes the form

2—p [(p —I )'~ +p arcsinp ']

—E ln (p —1)
pA

m+1 3m 2+argI
2

+is —n. n +
g 4

=0 . (34)

regular at g= 1, and M„(y) is a Whittaker function. '

The index p and the scale function z (g) are defined to the
first order by

p= I" d (36)

f ( ,'z—'—p, }' '= f v'r(g')dg'. (37)
z&p

These formulas are valid both below the top of the bar-
rier (p )0, g&, gz real), and above it (p )0, g&, gz complex),
and also when the roots g&, gz coincide (p=0).

In classically permitted regions far from the turning
points the asymptotics of the functions U~(g) and Uz(g)
are given by formulas analogous to (15) and (16). On the
right of the barrier (z )0)

The potential curves of the Z, eZz system are found
from (33) or (34) after substitution in these equations of
the quasiclassical solution on the boundary-value prob-
lem for the radial equation, i.e., X=A,„(p,a). As in

case I (Sec. III), the confluence of the roots i)z and
g= —1 is associated with the occurrence of general
branch points on therms with different n„ in the complex
R plane. These lie in the neighborhood of poles of
I (( m + 1 ) /2+ is ) and are found from the system of
equations (26),(27) using as the function F(p, b, k. ) the
left-hand side of (33) or (34}.

U, z(g)=C, zr '~ sin —f v'r(g')dg'+p& z
—]/4

2

P& z= 1 —ln +argI' —'+—'+ +—+—,
2% 2A 4 2iri 4 8

and on the left of the barrier (z & 0)

U, z(g)=+C& zr
' sin —f t/r(g')dg'+4, z

(38)

(39)

V. UNIFORM QUASICLASSICAL ASYMPTOTICS
OF SOLUTIONS OF THE RADIAL PROBLEM

NEAR THE TOP OF THE BARRIER

The technique used for constructing a uniform asymp-
totic expansion of the solution of the radial equation near
the top of the barrier (Sec. II, case III, Fig. 2, curve 3) is
basically the same as in the analogous equation for the
angular equation (Sec. III). The difference lies in the fact
that in the radial case motion near the top of the barrier
corresponds to a continuous spectrum function (F. )0)
which in the region to the right of the barrier does not
have to satisfy the conditions of matching as in the angu-
lar equation. In this region we are now required to calcu-
late an asymptotic of the radial function as g~ ~.

We write the radial equation (3) in the form

(40)

On sewing the functions U(g)=aU, (g)+PUz(g) and
U (g) together, using Eqs. (39) and (40) for them, we ob-
tain, for the ratio a/P,

[Uz, U ]
[U„U ]

sin[P+argI ( —,'+i(p/2iri)+ —', ir) Cz

sin[P+argI ( —,'+i(p/2A')+ —,'n. ] C,

where C, and Cz are constants.
A solution U (g) regular at )=1 is constructed by

means of a Bessel function like U (g) in Sec. III. In the
sewing region —between the pole (= 1 and the g& turning
point —the U (() asymptotic has the form

r

U =const X r sin — v'r (g')d g' — +-—] /4 1 g r r vTm 7T

2 4

1 —mU"(g)+ r(g)+ U(g)=0,
z (gz 1)z

where

(35) where

P= —f v'r (g)dg+ 1 —ln
1 p p am
fi 2A 2A 2

(41)

r(g)=c (( g, )(g—gz)—/(g —1)

and the classical turning point are given by (10). The
solution in the region containing both turning points is
constructed exactly as in Sec. III. %'e have

U(g) =a Ui(g)+PUz($),

The spheroidal phase 6 is defined by means of an
asymptotic expression for U(g) as g—+ ~ (Ref. 4):

U(g') = const Xsin —g+ ln +b,c ti 2c
g~ oo iii 2c A' iii

~mr, +iz4

(n +m)—
2

(42)

where a and P are constants whose ratio a/P is deter-
mined from the conditions of matching with a solution

Using the results obtained for U&(g), Uz(g) (38), and
for (41), it is not hard to obtain an expression for the S
matrix:
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I '( —,
' —i(p/A'))+(2ir) ' exp[ —

2ig+ harp/2k+(ipliri)ln2]
2ih 2i (g+ P)

I '{—,'+i(p/R)}+(2n. )
'/ exp[2ig+irp/2iri —(ipliri)ln2]

where

(43)

+ Qr —c — dg+ + 1 —ln —cg2 — ln
'7T 1 a 2p a
4 iii fi ~ 2c( 2 fi 2c

L

2c(,
(44)

c(k —ki)'
8g((2 I )i/2

c (go+ I)+A.

2$c(g 1)i/2

(45)

and expanding the elliptic integrals in (36), (41), and (43)
in asymptotic series with Pi~0, go=0(1), po=O(1) we
obtain

This asymptotic expression is uniform in the neighbor-
hood of p=O. It simplifies both for p of unit order and
for small p. When p, is of order O(1) we can use Stirling's
formula for I ( —,'hip, /iri) and (43) becomes the usual
quasiclassical expression. " For small p suitable formulas
can be obtained by treating p as of order O(A'), which
corresponds to a short distance between the roots,
$2

—
gi =0 (iri ' ). Introducing the notation

a
ko =-,'(4(+4)=-

2c

VI. UNIFORM QUASICLASSICAL ASYMPTOTICS
OF SOI.UTIONS OF THE RADIAL PROBLEM

IN THE NEIGHBORHOOD OF A= a

In the case of positive energies (when with a & 0 the in-
equality c &

~
a

~
/2 must be satisfied), with A, =a the

greater of the roots g„g2 (10) coincide with the g= 1 pole,
i.e., the root g2, so that there are no other turning points
in the physical region g & 1 (Fig. 2, curve 2; Fig. 3, curve
2). A uniform asymptotic of the solution of the radial
equation, regular at g = 1, is then constructed by means of
the Whittaker function exactly as in the case A, =b for the
angular equations (Sec. IV):

V(g)=[z'(g)] M((r/r) ~/~ (4c +a+A, ) z(g)

(50)
(46)

To the first order in A the index y is equal to
' 1/2

1 &~ X —ag c (51)

—pin (go —1) / (47)

c + —(4c +a+A, )'/ ~
p 4. z'

and the scale function z (g) is defined implicitly by
1/2

dz'

—pin (g —1} [g —
(go

—1)' ] +—. (48)
fC 2+a/ A,

2
1

1/2

(52)

From (43) we see that the S matrix has poles at com-
plex values of the parameters for which the denominator
in (43) becomes zero. These occur close to the poles of
I ( —,'+i@/fi) where the exp—onential becomes equal to
I ( —,'+ip/A'). The equation defining the poles of the S
matrix thus has the form

In this approximation the phase b, defined by (42) is equal
to

1/2

lim — c+
2

d —c '

a 2c(' y v
ln +—1 —ln +argI

m+1 +i
2c A A fi 2

1 I —,'+ exp +i 2$ —+ln21P KP
V'2ir ' I 2iri +—(2n +m +1) .

4 7J
(53)

(49)

To find the positions of the poles in the three-
dimensional (3D) ZieZ2 problem, i.e., the relation be-
tween c, a, b (or between E,R,Z(, Z2) for which the S ma-
trix has a pole, we need to solve (49) together with the
quasiclassical quantization condition.

It is uniform in the neighborhood of A, =a and is valid for
both positive and negative a (in the latter case, however,
only for

~

a
~

& 2c —as c ~ —
~
a

~
/2 we have triple

confluence of the roots in the classical problem —Sec. II).
The expression (53) simplifies both for large and for small
/A.

—af.
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A, +a
4c2

1/2

and expanding the elliptic integrals (51) and (53} with
Pi~0, p =0(1), q =0(A), we obtain

b, = —(1 —2p) — ln —(1+p) — in-c a c 2 q c 16p
fi 2eh A 4' fi (I+p)

If A,
—a is small compared with A, and a, suitable for-

mulas can be obtained if we suppose that A,
—a is of order

0 (A'). Introducing the notation

where

+g ——2n~ +——1
m

2 & 2

g =+ 1 —in+ +argI m+1 +1
2

' 1/2

neighborhood of A, =a then has the form
]/2

1 &2
2 a(' —A,

G(p, a, A, )= —f —p +
2 dg

fi

(57)

+argI
m+1 . m'

2 A 4
+i+ +—(2n +m+1}, (54)

dg,

r= q

4p

3q' 2 2 2(1—p) fi (1——m ) 3+—
32cp 4p4 p'.

(55)

From (53) and (54) we see that the S matrix contains a
factor of

g, being the left-hand turning point (Fig. 3, curve 2). As
in all the other cases considered, this equation simplifies
both for large X—a [y =0(1)] and for small A,

—a
[y =0 (R)]. For y =0(1) the formula (57) becomes the
usual quantization condition" both for y)0 and for

For y =A. —a =0 (R) it is convenient to introduce the
notation

m+1
2 A'

m+1
2

go=(a/2p )'~, e= —,'(A, —a)(a+A, —4p2)

which has poles at pure imaginary y.
T

Rek
I

m+1
y =i' n'+

2
n'=0, 1,2, . . . . (56) 2-

(

These poles correspond to quasistationary states and are
the quantum-mechanical expression of the singularities of
classical motion at y=a (Sec. II, Figs. 7—11). To obtain
the relation between E,R, Z&, Zz which correspond to a
quasistationary state we have to solve Eq. (56) with y
given by (51) or (55) and in place of y the quasiclassical
solution of the spectral problem for the angular equation,
y=y„(c,b). The results of calculation of quasi-

stationary states by the quasiclassical formulas, and the
corresponding results of accurate numerical calculation,
are shown in Fig. 12.

An important feature of these quasistationary states is
that they occur in the fully 3D Z&eZ2 problem. In the
isolated radial problem, considered with fixed real A, , the
poles of the S matrix in the complex c plane are pure
imaginary. In our case they are shifted towards the real
axis because of the 3D problem A, is not an independent
parameter but is dependent on c in a way determined by
the solution of the angular problem.

The width of these quasistationary states is proportion-
al to A. In this respect they di6'er from the usual quasi-
stationary states caused by the particles being locked into
a region enclosed by the potential barrier, the width of
which becomes exponentially small as h ~0.

When the total charge corresponds to attraction
(a )0) the singularities associated with confluence of the
roots at A, =a occur not only in the continuous but also in
the discrete spectrum, for energies such that p (a/2
(Fig. 3, curve 2). A quantization condition uniform in the

060

8 Rek

060

8 Rek

, 060

FKJ. 12. Accurate (solid) and approximate (dashed) trajec-
tories of Smatrix poles: (a) Z&=Zp=1 (b) Z]=1 Z2= 1 (c)

Zl =Z2 = —1. Values of R in parentheses, quantum numbers

n, I, rn in square brackets.
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Proceeding as in the derivative of (54) and expanding the
elliptic integral in (57) with fi~0, @= 0 (A'), (0=0(l), we

obtain a quantization condition in the form

p [—($0—1) ' +$0arccos/0 ']

16P (g2 1}3/2
)r)g()

m+1 m 1+A argI
2 S ~ 4

+i —=he n +——— . (58)

IO—

5
LLI

C3

po

&der

4.fg

In complete analogy with the case considered in Sec.
IV the I function in (57) and (58) is responsible for poten-
tial branch points in the complex R plane, but in this case
they join energy curves having different radial quantum
numbers n& and the same angular quantum number n„,'
these are known as the S series of branch points. The
position of such branch points is calculated from a sys-
tem of equations similar to (26) and (27) except that in

G(p, a, A, ) we have to substitute the solution of the angu-
lar spectral problem A, =A,„(p,b):

I I I I

5

E, a.e.
lO

FIG. 13. Accurate values (solid) and values approximated by
(63) (dashed) of C (E) for the H2+ system. Classification of
n, I, m states is the same as in Ref. 8.

G(p, a, A,„(p,b) )=0,

BG BG B~n„,m(p b}

Bp M, Bp

(59)

(60)
C (E)= 2n)ri (n .+m)! ay

BE
2i(Z) +Z2 )/k

tained. Using this fact Eq. (62) [rather than (61)] enables
us to determine C in the complex R plane and with ex-
pression (53) for b, we find

VII. ENERGY SPECTRUM OF OUTGOING ELECTRONS

The quasiclassical formulas obtained for the S matrix
in the preceding section permit analytical description not
only of the quasistationary levels but also of the energy
spectrum of electrons emitted in the process of ioniza-
tion. The probability density of the electron energy dis-
tribution is expressed by the quantity C„~ (E) (Ref. 8),
which is an analytic extension to positive E of the nor-
malization constant of the bound state:

Xexp(2ib, '),
m+16'= b —argI

2
+l

1 &o I,—ag z
C

1/2

a(0= — + + +1
2 4 2 2

1/2

(63)

C, =2~a, J )P,dr, (61)

2(ZI +Z~ )/K
C =n(2ia )

' ' '. lim (k i~k)e '—
k~lK j

(62)

The quasistationary states which we have considered
are an analytic continuation of the potential-energy
curves E.(R) to the half axis E &0 (Ref. 8). Further-
more, in this analytic continuation the relation (62) be-
tween C (E) and the residue of the S matrix is main-

where the bound-state function at large r satisfies the con-
dition

[ —) +(Z~ + Z& )]/v —v r-Frr I 2

p~ oo

where ~ =Q 2E (R)lh' and —Y(r) is an angular func-
tion normalized to unity on a sphere.

It is not difficult to find the relation of the C to the
residue of the S matrix at the pole k =i ~ corresponding
to the bound state. It is entirely similar to the one which
exists in the spherically symmetric case' '" and
has the form (k =&2E )

In Fig. 13 we compare the results of calculation of the
C (E) by the quasiclassical formula (63) with those of nu-

merical calculation.
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APPENDIX

To construct an asymptotic solution close to the top of
the barrier, in the range of parameters where

qz
—q)=O(fi' ) it is convenient to use the notation of

(21) and rewrite the angular equation of the form

p (g ri0} 2pA5(1 ——g())'/—
V"(g)+

A ~(1 —g)
2

+ V(g) =0 . (Al)
( 1 ~2)2
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W"(z)+ ( —,'z —fee}W(z) =0,1
(A2)

where K can vary from zero to a value of the order of uni-
ty. The odd and even solutions of (A2) are given by the
expression

2—1/2 ~ Z
Wl 2(z) =z M'z/2 +1/4 (A3}

Here 5, rl, m, p are quantities of the order of unity. The
absolute value of v is then of order O(iii), so that the
comparison equation for the central region containing
both turning points can be written in the form

1 i6
X sin qr(rl ) +argI' —+

4 2

V (rl)= constX(il —
rl )

'/ (1—
rl )'/

3 i5
Xsin y(rl)+argl —+

4 2

3m

8
(A8)

(A7) for z (rl ) and v, we obtain expressions for V, (rl) and
Vz(rl) in the classically permitted regions far from the
turning points. On the right of the barrier, with g) gp,

V, (rl)= constX(rl —rlo)
'/ (1—

rl )'/

As in Sec. III we construct the solution of Eq. (Al) in the
central region in the form

where
2

Zp

V(rl)=aVi(rl)+PVz(rl),

V;(rl)=[z'(rl)] ' W;{z(rl)),
(A4) —5ln

1/2 2(1 —
rlo) (rl —rh)

(1—rlrlo)+ [(1—rlo2)(1 —rlz)]'/z
where a and P have to be found from the condition of
matching to solutions regular at g=+1. The scale func-
tion z (rl ) satisfies the equation

(z') ( —,'z —iriir) —[p (rl —rlo) —2p5iri(1 —rlo)'

+Pi (1—m )/(1 —
rl )]/(1 —rl )+—,'iii [z, rl] =0,

(A5)

which is obtained by substituting (A4) in (Al) and using
(A2). The function z (rl ) and the index s are constructed
in the form of asymptotic series in powers of fi:

(A9)

W"(y)+ —+
$2 y 4y2

W(y) =0, (A 10)

On the left of the barrier, with g (gp, the expression for
Vi(rl) is the same as in (A8) while for V2(rl) the sign
changes.

A solution V (rl) satisfying the boundary condition at
g= —1 is constructed as in Sec. III using as reference
equation the Bessel equation

z(rl) =zo(rl)+uzi(rl)+A z2(rl). . .

K=Kp+AK&+A K2. . .
(A6) W(y)=&2J ('p&y /vari), V =[y'(rl)] ' 'W(y(rl)),

(A 1 1)
Equation (A6) is substituted into Eq. (A5), and the
coefficients of successive powers of A' are compared. This
leads to a recursive system of equations which must be
solved under the condition that Z (rl) has no singularities.
For the principal terms in the expansion (A6) we obtain

Kp=5,

where J (x) is a Bessel function of the first kind. Substi-
tution of (Al 1) in (Al) and using (A10) leads to an equa-
tion for the scale function y (rl ):

p' 1 —m' P'(n —no)' —2P&5(i —no)'"y'', +
fi y 4y iri (1—rl )

zoz, =25 ln

—arcsinrl }],
[ 1 rlrlo+[(1 r—l )(1—'9o—)]' Izo

2&2p (n —no)(1 —no)'"

zo2 =4p [(1—rlo)'/ —(1—rlz)'/2+rlo( arcsinrlo

(A7)

1 —m+ + —,'[y, rl] .
(1 2)2

Its solution is constructed as an asymptotic series

y (n) =yo(n)+&y i(n)+&'y 2(n)

(A12)

(A13)

Using the asymptotic expressions for the Whittaker func-
tion with large argument, ' i.e., the expressions (A6) and

I

in which the coefficients satisfy the boundary condition
y;( —1)=0. For the principal terms of (A13) we obtain

+yo =—(1—rl )'/ +rlo+ —+arcsinrl

y, =p '5+yolnI ~1
—

rlrlo
—+[1—

rl )(1—rlo)]irl —
rlol I . (A14)

(A15)

Using these expressions and the asymptotic form of the Bessel function' we obtain an asymptotic expression for V (rl)
far from the pole, in the region where the solution a V, +PVi must be matched

(1 ~2)i« ~ zo(0)+P (4+2irrlo)
sin y+5 ln 2 ~ (1—rlo) +—(2m —1) .

i

1/2 fg 4' 4
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zo(0)+l2 (4—2mrio) +—(2m —1) . .
4A 4

( 1 2)1/4
V+=, sin y+51n 2+

i

Oi1/2
+2)3/4 (A16)

with g(2)) given by (A9). A solution V+(21) satisfying the boundary condition at g=+1 is obtained from V (ri) by the
transformation q~ —

21, bio~ —
rlo F. ar from the pole at 7) =1 the asymptotic of the solution for V+ (ri) has the form

I /2

When the solution aV, +pV2 has been matched with the solution V (ri) on the left and with the solution V+(71) on
the right, and a and P have been eliminated, the quantization condition has the form ([A,B] is the Wronksian
A '8 —AB')

[V,V, ][V,V ]=[V,V, ][V,V ] .

On calculating the Wronksians in this formula by means of the asymptotic expressions (A8), (A9), (A15), and (A16) we
obtain the quantization condition in the form (19) with 4+ given by (23)
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