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Two-photon transitions in hydrogen: A test of pseudostate summation
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%'e make another application of a remarkably efficient technique, in which the intermediate states
of conventional second-order perturbation theory are replaced by a finite set of pseudostates, and
the energy denominators are replaced by the expectation values of the unperturbed Hamiltonian
with respect to those pseudostates. In previous calculations (of van der Waals coefficients and

frequency-dependent polarizabilities) in which the pseudostates were determined by diagonalization
of the unperturbed Hamiltonian, excellent converged results were obtained with as few as five to ten
terms representing both bound and continuum states. Following the work of Bassani, Forney, and

Quattropani [Phys. Rev. Lett. 39, 1070 (1977)],we use the method to investigate the 2S-1S transition
rate using both the E-x and A p forms of the interaction. The results mirror closely those obtained
in the conventional way, even when only a small number of terms are used, and they are not strong-

ly dependent on the exact form of the basis functions used.

I. INTRODUCTION II. MATHEMATICAL FORMULATION

The problem of the choice of gauge in multiphoton
transitions was investigated some years ago by the illus-
trative method of actually computing the two-photon
transition rates between the 2S and 1S states of atomic
hydrogen in two different gauges. In agreement with
their earlier conclusions in the dipole approximation the
same results were obtained using the two interactions E x
and A p provided that a complete set of intermediate
states was used. They also showed that the sum over in-
termediate states converged very differently in the two
gauges and that the importance of continuum states was
also radically different in the two cases.

In the present work we repeat the calculation of Ref. 1

using the pseudostate summation technique which has
proven to be of remarkable efficiency in carrying out just
such intermediate-state sums in other problems. The ad-
vantage of this method, if it is successful, lies in the re-
placement of the doubly infinite sum over both discrete
and continuum states by a finite sum over tractable,
square-integrable pseudostates some of which lie in the
energy range normally occupied by the continuum. In
previous applications this finite sum has required only a
very small number of terms to achieve quite high accura-
cy. In the present calculation we wished to test the use-
fulness of the method in a new sort of problem.

In Sec. II the pseudostates are defined, and we give the
mathematical expressions for the two-photon matrix ele-
ment in both forms and also rewrite the momentum form
using a well-known commutator expression which might
not seem to be valid for the pseudostates. In Sec. III nu-
merical results are presented for all three forms and at a
range of photon energies, and excellent agreement with
the previous work is demonstrated.

The pseudostate method begins with the choice of No
basis functions of angular momentum 1 (because we are
going to use the dipole approximation for the radiation
field and are coupling two S states. ) We take them to
have the simple form

P =e '"r'+~P~ (j =0, 1, . . . , No —1),

and linear combinations of these are used to diagonalize
approximately the hydrogen Hamiltonian
(Ho = r7 2lr in rydbe—rg un—its)

, = g C(N, J')ttp~,
J

(NIHOIN') =E~&tvtv, (NIN'&=&tv'
(2)

where the elements of the Hamiltonian matrix H and the
overlap matrix 6 are given by the following simple ex-
pressions:

In what follows we will use finite sums (No terms) of
these Pseudostates 1btv or IN ) wherever infinite summa-
tions over complete sets of hydrogenic functions usually
occur and will use the corresponding energies E~ in the
denominators of perturbation sums. The parameter a is
adjustable and might be set equal to 1 corresponding to
the range of the hydrogenic 1S state or to —,

' to simulate

the 2S state. In fact, the results we will present later are
remarkably insensitive to the value of a.

The finite-dimensional eigenvalue problem correspond-
ing to the hydrogenic Hamiltonian Ho is the following:

(H E„S)IN ) =0, —
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(j+k)! s 1 1 1 . (J —k)'Hk= .
' ———+ ———(j+k)—(2a)J++' 2 a 4 a 4

(2+j+k)!
Jk (2 )j+k+3

(4)

The matrix eigenvalue problem in Eq. (3) is fairly stan-
dard, although for the larger expansion lengths Xo it is
necessary to work in multiple precision to avoid loss of
significance. Knowing the eigenvalues Ez and eigenfunc-
tions ~N ) we can proceed to the evaluation of the two-
photon matrix elements in their various forms.

In the length formulation, the second-order perturba-
tion sum involved in the two-photon transition in which
we are interested takes the following form:

1 1+, & Pse ~~s (5)
1++% co 4 +@N+

In the momentum formulation the corresponding expres-
sion is

1 1 Q isQ2s

1+E'Jv —co —,
' +E~ +co ~(3/4

(6)

In these expressions the length and momentum matrix
elements are defined as follows:

~ks f"~r r X.vXks Qks f dr r y~yks . (7)
0 0

Here the functions gz are the radial parts of the pseudo-
state functions gz defined in Eq. (1), the functions yks
are the corresponding parts of the 1S and 2S eigenfunc-
tions of hydrogen, and they are all unit normalized in the
usual way. The quantity co is the energy of one of the
photons emitted in the transition; energy conservation re-
quires the energy of the second photon to be equal to
3/4 —co and this condition has been used to eliminate its
mention.

If the functions gz were true eigenfunctions of the
Hamiltonian H we could make use of the well-known
commutator relation V = [r,Ho]/2 to rewrite the second
form of matrix element as

( 1+E~ )(1/4+ E~ )

1s 2s (3/4 )
(8)

It will be interesting to see how close this third form of
the matrix element approaches the second in spite of its
even more approximate nature.

III. RESULTS AND CONCLUSIONS

We will now present our numerical results for the three
forms D„D2, and D3 of the two-photon transition-

TABLE 1. Pseudostate energies E„obt ianed by solving the
matrix eigenvalue problem Eq. (3). Results are given for the
scale parameter a = 1 and 0.55.

matrix element to be compared with the results of Ref. 1.
First, however, we would like to present, in tabular form,
the energy values Pz generated in the diagonalization
process discussed above; two different values of the scale

TABLE II. Convergence of the matrix elements for
co=0.3750, a =1, and %0=20. The cumulative sum over N
is shown; D3 is not distinguishable from D2 under these condi-
tions. Items in parentheses are the results of Ref. 1 for the sum
over discrete states and total, respectively.

D2

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

—0.250 000 000
—0.111 110988
—0.062 144 252
—0.030 756 376

0.012 423 677
0.073 441 629
0.155 140 247
0.262 302 992
0.402 262 529
0.586 056 239
0.830 537 004
1.162 203 753
1.624 445 117
2.292 104 254
3.303 178 358
4.935 224 971
7.816 342 057

13.630 802 343
28.296 327 562
87.071 218 883

—0.250 000 000 0
—0.111 111 111 1
—0.062 499 999 6
—0.039 993 737 3
—0.027 020 193 7
—0.013 633 007 6

0.005 564 222
0.031 983 483
0.067 384 920
0.114609 309
0.178 109 107
0.264 970 794
0.386 886 306
0.564 149 133
0.834 402 826
1.273 850 916
2.056 203 128
3.651 314 772
7.727 908 591

24.376 920 544

Energy EJv !Ry!
a=1 a =0.5

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

—17.878 45
—14.796 88
—14.066 45
—13.518 32

( —13.382 4)
—12.989 60
—12.562 92
—12.255 91
—12.052 57
—11.926 89
—11.854 14
—11.814 80
—11.795 07
—11.786 02
—11.782 30
—11.780 98
—11.780 59
—11.780 50
—11.78048
—11.78048
—11.78048

{—11.780 5)

= 10-"
—2.705 36
—3.620 47
—4.448 77

( —4.692 4)
—5.447 67
—6.501 14
—7.522 84
—8.457 96
—9.275 35
—9.961 33

—10.514 76
—10.943 16
—11.259 70
—11.480 95
—11.625 13
—11.71072
—11.755 22
—11.77409
—11.779 71
—11.780 48

( —11.780 5)
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7
8

9
10
11
12
13
14
15
16
17
18
19
20

—17.878 45
—14.796 93
—14.102 61
—13.825 77
—13.650 75
—13.441 05

( —13.382 4)
—13.19498
—12.933 69
—12.675 66
—12.436 69
—12.229 38
—12.062 26
—11.938 91
—11.857 50
—11.811 18
—11.789 69
—11.782 27
—11.780 65
—11.78049
—11.78048

( —11.780 5)

10
—19

—2.705 31
—3.573 22
—3.970 11
—4.240 14
—4.587 79

( —4.692 4)
—5.037 47
—5.578 19
—6.19979
—6.89040
—7.633 92
—8.408 08
—9.182 85
—9.920 03

—10.575 37
—11.104 84
—11.476 51
—11.685 94
—11.766 67
—11.78048

( —11.780 5)

factor a have been used. In Table I these energies are
shown for the expansion length No =20 and for a =1 and
0.55. Notice that in the first case only four of these ener-
gies are negative and thus represent the true discrete
spectrum of the hydrogen atom, while in the second case
there are seven of them. In addition, the highest-lying ei-
genvalue in the first case is much higher than in the
second case. Nevertheless, we shall see later that in both
cases the matrix elements are very well represented. It is
also interesting to note how well the lowest negative ei-
genvalues approximate the true hydrogenic values of—1/(N+1) . (Similar results are obtained for smaller
values of No. )

In Tables II and III the convergence of the sum over N
is shown, for one particular value of co, for both values of
a, and again for the expansion length NO=20. Notice in
both tables that the part of the sum representing the
discrete spectrum is quite close to the discrete sum done
the usual way in Ref. 1, while the complete sum is in ex-
act agreement to five decimal places for both values of a.
It is not surprising that the separation into "discrete" and
"continuum" parts of the sum is not exact; perhaps more
startling is how good the separation actually is and how
excellent is the total.

Finally, in Table IV we display the co dependence of the
matrix elements, as compared with the results of Ref. 1.

TABLE III. Convergence of the matrix elements as in Table

II, but for a =0.55.

Dl

TABLE IV. co dependence of the three forms of matrix ele-
ment and their convergence with expansion length. For each
value of co the first line is the result for NO=5, the second for
No =10, and the third for No =15 (a =1). The results of Ref. 1

are in the last column.

0.3750 —11.779 1
—11.78048
—11.780 483

0.5250 —14.720 5
—14.731 87
—14.731 87

0.6750 —40.738 8
—41.148 36
—41.148 41

0.6875 —49.052 1

—49.687 68
—49.687 78

0.7000 —61.606 8
—62.659 28
—62.659 47

0.7125 —82.590 6
—84.524 75
—84.525 17

0.7250 —124.360 6
—128.682 43
—128.683 52

0.7375 —246.273
—262. 161 05
—262. 165 42

0.7475 —1042.68
—1334.247
—1334.3261

D2

—11.780 7
—11.78048
—11.780 483
—14.735 0
—14.731 87
—14.731 87
—41.470 2
—41.148 44
—41.148 41
—50.268 3
—49.687 84
—49.687 78
—63.802 2
—62.659 63
—62.659 47
—87.098 3
—84.525 64
—84.525 17

—136.046 5
—128.685 28
—128.683 52
—299.359
—262. 177 39
—262. 165 42

—2296.20
—1334.794
—1334.3262

Ref. 1

—11.092 4
—11.786 00
—11.780 449
—13.903 0
—14.738 44
—14.731 83
—38.831 4
—41.163 68
—41.148 32
—46.804 8
—49.705 74
—49.687 67
—58.847 9
—62.681 45
—62.659 34
—78.976 4
—84.553 78
—84.524 99

—119.032 8 —128.683
—128.725 23
—128.683 26
—235.798
—262.245 22
—262.164 90
—991.00 —1334.33

—1334.662
—1334.3236

—11.7805

—14.7319

—41.1484

—49.6878

—62.6595

—84.5252

—262. 165

In addition, we show their convergence with No, and it is
clear that no more than about 15 terms are needed to
match the accuracy (six significant figures) of Ref. 1. As
expected, the form derived from the commutator identity
(D3 ) converge slowest.

We conclude once again that the pseudostate summa-
tion is an accurate, powerful, and effective technique for
carrying out the second-order sums common in atomic
theoretical calculations. Since it does not require sums
over large numbers of discrete states and difficult integra-
tions over continuum functions, this method should con-
tinue to prove useful.
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