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The local convergence and accuracy of wave functions obtained by direct solution of the
Schrddinger equation with the help of the correlation-function hyperspherical-harmonic method are
analyzed for ground and excited states of the helium atom and for the ground state of the positroni-
um negative ion. The inclusion of the cusp conditions into the correlation function is shown to be
of crucial importance, not only near the coalescence points, but also away from them. The proper
inclusion of all cusps yields for the ground state of the helium atom the local wave-function accura-
cy of about 10~ 7 for different interparticle distances. The omission of one of the cusps in the excited
helium atom reduces the wave-function precision to 10~ 2 near the corresponding coalescence point

and to 10 *~10"° away from it.

The problem of finding exact solutions of the few-body
Schrodinger equation is one of long standing, but the sit-
uation is still far from being satisfactory. Only very so-
phisticated variational calculations!? can match the pre-
cision of nine decimal places for the energy that is
reached in experiments with two-electron atoms.

We still do not know, therefore, the correct analytical
structure of three-body wave functions, since inclusion or
omission of logarithmic terms, suggested in Ref. 1, or
negative powers of interparticle distances, suggested in
Ref. 2, has negligible effect on the value of the variational
energy. A variational function coincides with the precise
one only on the average, and could wildly or even
infinitely deviate from it locally. The local discrepancies
could lead to wrong estimates of expectation values of
different operators which have significant contributions
from the regions of the configuration space where the de-
viations occur. The possibility of the direct precise solu-
tion of the few-body Schrodinger equation is thus impor-
tant not only for understanding of the analytical struc-
ture of the wave function, but for proper estimate of rela-
tivistic, QED, and hyperfine effects, as well as positron
annihilation in the positronium negative ion, parity viola-
tion in atoms, fusion and sticking probabilities in muon-
catalyzed fusion, etc.

The Green’s-function Monte Carlo method, which was
used for the estimate of the ground-state energy and
sticking probabilities in udt catalyzed fusion,® does not
have these limitations, but its extension to the excited
mesomolecular states, which are expected to be the most
important in the fusion process, is difficult due to the fact
that any, however small, admixture of the ground state in
the importance function will eventually dominate the nu-
merical simulation.

In view of the difficulties of the above-mentioned ap-
proaches, the correlation-function hyperspherical-
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harmonic (CFHH) method* ™ was recently introduced by
the present authors, which, in principle, can generate ac-
curate ground- and excited-state wave functions for all
interparticle distances, including coalescence points, for
three-body atomic and molecular systems. To date the
accuracy of the CFHH method in the calculation of ex-
pectation values of different operators, including the
Hamiltonian, has been verified for systems with different
mass ratios, i.e., for systems consisting of one heavy and
two light particles,* ® of one light and two heavy parti-
cles,” and of particles of equal masses.” It has been
shown that direct solution of the Schrodinger equation by
the CFHH method for bound three-body atomic systems
yields precision comparable to that obtained by elaborate
variational calculations. For example, for maximum glo-
bal momentum K,, =48, up to nine significant figure pre-
cision has been obtained for the energy of the helium
atom*~ % and seven significant figures for the positronium
ion” e e e ™ (also denoted Ps”). The values of wave
functions taken at a few representative interparticle dis-
tances and different expectation values for these systems
have shown about six and five significant figure precision,
respectively.

The purpose of this paper is to complete our study of
an accuracy of the CFHH method for the ground-state
wave functions, started in Ref. 6, and to extend it also to
excited states for which direct estimates of the conver-
gence of wave functions were not previously obtained. In
order to properly estimate the accuracy of the method,
we systematically analyzed here not only convergence
trends of wave functions themselves at many different in-
terparticle distances, but also calculate the local deviation
at the same points

_HY
A=y (1)
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and an expectation value of its absolute value
Hy

¥ > )

These two quantities were shown to be extremely sensi-
tive measures of the local and overall goodness of the
wave function, respectively, and could be used therefore
for proper judging of accuracy of any method of solving
the Schrodinger equation. For a true eigenfunction 1
both A and (A) are equal strictly to zero. However, A
becomes infinite at any of the singularities if they are not
properly included in the calculated wave function, even
when the wave function itself displays very smooth be-
havior, as shown by Bartlett ez al.'®!! many years ago.

In the CFHH method*™® one writes the wave function
as a product of two factors

v=x¢, (3)

where y is the “correlation function” and ¢ is expanded
in the usual hyperspherical-harmonic (HH) functions. If
the correlation function y is chosen to describe the singu-
lar features of i (like cusps), the convergence of the HH
expansion for ¢ should be rapid. The solution for ¢
proceeds as in the usual HH method, except the potential
V is replaced by an effective velocity-dependent potential
V'

<|A|>=< —1

1 V¥
V'=V———>—(Viny)v, 4
2 % (Viny) (4)
where V is the six-dimensional gradient operator. For
systems of two identical particles a correlation function
x=exp(f) of the simple spatially symmetric form has

been normally employed:
f=—7/(r13+r23)—5r12 N (5)

where particle 3 is the unlike mass and parameters ¥ and
6 are chosen to describe cusps or other physical features
of the wave function.*~°

Two obvious choices for these parameters are used in
calculations presented in this paper. The first one is
based on requirements of absence of Coulomb singulari-
ties in the equation for function f [cusp parametriza-
tion,*”° for which y=MZ /(M +1) and §=—0.5].
Clearly, the cusp parametrization is expected to work
best for small systems, and therefore was used in our cal-
culations of the ground-state helium atom, since electrons
there are close to the nucleus and to each other. An al-
ternative description could be given by the uncorrelated
cusp parametrization for which y=MZ /(M +1) and
8=0. This choice takes care of the singularity of interac-
tion between the nucleus and the electron, which are at-
tracted and therefore closer to each other, but neglects
those between two electrons which are more distantly lo-
cated due to their repulsion. Such parametrizations
could be most appropriate for loosely bound and
clustered systems, such as the positronium ion Ps™ or ex-
cited 2 'S state of the helium atom He*. These systems
are adequately represented, respectively, as a positronium
or He' core with an extra loosely bound and nearly un-
correlated electron.
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The results of calculations are presented in Tables
I-VII. In order to estimate the influence of the inclusion
of all cusp conditions, the extended system He* is calcu-
lated in both cusp and uncorrelated cusp parametriza-
tions. The resulting energies E and expectation values of
the Hamiltonian { H ) (which in our approach are not au-
tomatically equal to each other*) are presented in Table I.
One can see that for higher K, > 32 the values of ( H ) in
both parametrizations are approximately equally good, so
the quality of the wave function is of decisive importance
in choosing the proper parametrization. Tables II, III,
and V show that the inclusion of all the proper cusp con-
ditions in the calculation of the helium atom gives an ex-
tremely good wave function accurate (in case of the
ground state) up to 1077 near the coalescence points.
Table IT shows that such accuracy for the ground-state
wave function holds in fact over nearly the whole range
of values of the interparticle distances, including the
asymptotic ones. This is not true, however, for the
excited-state wave function, displayed in Table III, due to
the fact that the inclusion of the repulsive electron-
electron cusp, represented by a growing exponential,
tends to distort the description of the asymptotic behav-
ior of the wave function, which results in inferior conver-
gence of the wave function at larger distances. On the
other hand, a failure in cases of the excited helium state
and of the negative positronium ion to include even the
least important cusp condition, corresponding to the two
repelling electrons generally located far from each other,
leads to the wave functions (displayed in Tables IV and
VI) which are much less accurate not only near the
coalescence points (~1072) but also away from them
(~107*-1077). This shows up most dramatically in the
huge values of local relative deviation A near the coales-
cence point r{, =0. Away from the coalescence points A,
though reasonably small, does not yet in some cases
display the convergent behavior. The inclusion of the
electron-electron cusp condition for the excited helium
atom, as can be seen from the comparison of Tables III
and IV), immediately reduces the value of A at the coales-
cence points by 5-6 orders of magnitude. (Even a more

TABLE 1. Eigenvalues E and expectation values of the Ham-
iltonian (H) (a.u.) for the excited helium atom. The numbers
in the first and second lines of each entry are calculated in the
uncorrelated cusp and cusp parametrizations, respectively.

K., —E K, —E —(H)
0 1.5865273 24 2.14592128  2.14597260
1.752 2815 2.14507277  2.14595111
4 1.7757997 32 2.14595375  2.145973 44
1.923 7454 2.14573278  2.14597102
8  2.1402364 40 2.14596521  2.14597376
2.0752848 2.14589943  2.14597354
12 2.1458083 48 2.14596976  2.145973 85
2.155 6280 2.14594836  2.14597377
16  2.1458095 exact 2.14597405
2.1416743
20 2.1460331
2.1479710




6326

M. 1. HAFTEL AND V. B. MANDELZWEIG

42

TABLE II. Ground-state helium wave function ¥ (a.u.) and the local relative deviation A (%) at different interparticle distances

713,

and ry,,

in the units of their corresponding expectation values

(Ref. 5)

(ri3)={(r,;)=0.929472341 and

(r;;)=1.422070455 a.u. The three consecutive numbers in each column correspond to the maximum global angular momenta
K,, =32, 40, and 48. The value of the normalization integral (| ) is 8.068 527X 10~ * for all K,,. The values marked zero in the
table were actually calculated at distances equal to 10~ %{r,; ). The numbers in brackets represent powers of 10.

713 723 T2 4 A ri3 723 " L4 A
0.0 0.0 0.0 6.099432910[ —2] 0.412 1.0 1.0 1.0 2.859228 718[ — 3] 0.002
6.099431812[ —2] —0.211 2.859227732[—3] 0.005
6.099 431 705[ —2] 0.473 2.859228 115[ — 3] 0.003
0.25 0.25 0.0 2.485126200[ —2] 2.040 1.5 0.25 1.0 4.899 098 600[ — 3] 0.045
2.485130244[ —2] 1.647 4.899 111928[ —3] 0.012
2.485132315[—2] 1.382 4.899 117194 —3] —0.006
0.25 0.25 0.25 2.856250722[ —2] —0.013 1.5 0.5 1.0 3.100052 838[ — 3] —0.008
2.856250051[ —2] —0.006 3.100049 825[ —3] 0.002
2.856249975[ —2] —0.005 3.100050881[ — 3] —0.004
0.5 0.25 0.25 1.866329611[ —2] —0.003 1.5 1.0 0.5 1.081 333 596[ —3] 0.011
1.866 329 145[ —2] 0.025 1.081335887[ —3] —0.002
1.866 329 813[ —2] —0.029 1.081 336 390[ — 3] —0.010
0.5 0.5 0.0 1.037909 881[ —2] 2.166 1.5 1.0 1.0 1.267 833 925[ —3] —0.011
1.037917238[ —2] 1.754 1.267833310[ — 3] —0.010
1.037 920 688[ —2] 1.474 1.267 832 374[ — 3] —0.002
0.5 0.5 0.25 1.199 624 536] —2] 0.057 1.5 1.0 1.5 1.422 608 388[ —3] —0.019
1.199 625 652[ —2] 0.016 1.422 603 885[ — 3] 0.002
1.199625617[ —2] 0.024 1.422 602 745[ — 3] 0.014
0.5 0.5 0.5 1.329 645285[ —2] —0.007 1.5 1.5 0.0 3.457218 125[ —4] 2.584
1.329 644 858[ —2] —0.001 3.457457922[ —4] 2.111
1.329 644 817[ —2] —0.002 3.457570701[ —4] 1.786
1.0 0.25 0.5 9.242 905 573[ — 3] 0.147 1.5 1.5 0.25 4.031247668[ —4] —0.111
9.242986 764[ — 3] —0.083 4.031 109 749[ —4] 0.131
9.242980 196[ — 3] —0.026 4.031115181[ —4] 0.127
1.0 0.5 0.5 5.840423361[ —3] —0.003 1.5 1.5 0.5 4.535748 851[ —4] —0.082
5.840422246[ —3] 0.015 4.535691 152[ —4] 0.008
5.840427312[ —3] —0.017 4.535678 750[ —4] 0.038
1.0 1.0 0.0 1.870552 685[ — 3] 2.367 1.5 1.5 1.0 5.395148 621[ —4] 0.046
1.870 608 273[ — 3] 1.922 5.395199929[ —4] —0.007
1.870 634 308[ — 3] 1.618 5.395 196 550[ — 4] —0.002
1.0 1.0 0.25 2.174 282 408[ — 3] 0.172 1.5 1.5 1.5 6.113661550[ —4] 0.009
2.174310638[ —3] —0.009 6.113 662 520[ —4] 0.011
2.174 314 085[ — 3] —0.038 6.113667 192[ —4] 0.006
1.0 1.0 0.5 2.432549 115[ —3] 0.043 2.0 0.5 1.0 1.485 704 606[ — 3] 0.040
2.432558258[ — 3] 0.001 1.485724921[ —3] —0.037
2.432556 829[ — 3] 0.016 1.485723 578[ —3] —0.003
2.0 0.5 1.5 1.613 896 863[ — 3] —0.070 2.0 2.0 2.0 1.302 852 680[ —4] 0.017
1.613872273[ — 3] 0.021 1.302 854 914[ —4] 0.019
1.613871507[ —3] 0.013 1.302 857 923[ —4] 0.011
2.0 1.0 1.0 5.891266 529 —4] —0.003 4.0 1.0 2.0 4.144591397[ —5] —0.046
5.891 269 508[ —4] 0.007 4.144613741[ — 5] —0.009
5.891279279[ —4] —0.007 4.144596221[ — 5] 0.016
2.0 1.0 1.5 6.554 470 342[ — 4] —0.010 4.0 1.5 2.0 1.623453732[ —5] —0.038
6.554 461 506[ —4] —0.005 1.623419942[ —5] 0.018
6.554 457 689[ —4] —0.001 1.623431773[ —5] 0.001
2.0 1.5 0.5 2.031936703[ —4] 0.021 4.0 2.0 1.5 5.927 249 390[ — 6] —0.060
2.031948 347[ — 4] 0.0005 5.926 994 260[ — 6] 0.034
2.031949 671[ —4] —0.0001 5.927 155 888[ — 6] —0.021
2.0 1.5 1.0 2.408 889961[ —4] —0.038 4.0 2.0 2.0 6.405748910[ — 6] —0.004
2.408 860041[ —4] 0.026 6.405 784 389[ — 6] 0.004
2.408 872 792[ —4] —0.006 6.405 820 175[ —6] —0.002
2.0 1.5 1.5 2.728023496[ —4] 0.026 4.0 4.0 0.0 8.871882723[ —8] 3.341
2.728038 825[ —4] 0.008 8.876 892 727[ — 8] 2.763
2.728042903[ —4] —0.001 8.879270256[ — 8] 2.364
2.0 1.5 2.0 3.005757 523[ —4] 0.010 4.0 4.0 0.25 1.042123924[—7] —0.727
3.005762023[ —4] 0.003 1.042 119083[ —7] —0.833
3.005 767 736[ —4] —0.014 1.042026225[ —7] —0.772
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TABLE I1. (Continued).
r13 723 e 14 A T3 723 T 14 A
2.0 2.0 0.0 6.493186410[ —5] 2.766 4.0 4.0 0.5 1.187755550[ —7] —0.910
6.494014 137[ — 5] 2.268 1.187041843[—7] —0.341
6.494404 641[ — 5] 1.925 1.186 759 862[ — 7] 0.014
2.0 2.0 0.25 7.588085214[ —5] —0.629 4.0 4.0 1.0 1.453903 728[ — 7] 0.312
7.587271769[ —5] —0.231 1.454467201[ —7] —0.046
7.586939 744[ — 5] 0.015 1.454 503 300[ — 7] —0.103
2.0 2.0 0.5 8.569591026[ —5] 0.200 4.0 4.0 1.5 1.696 674 107[ — 7] —0.161
8.570131609[ —5] —0.027 1.696 238 658[ — 7] 0.103
8.570180347[—5] —0.061 1.696 417 465[ — 7] —0.033
2.0 2.0 1.0 1.028 487 740[ —4] 0.042 4.0 4.0 2.0 1.916 603 804 — 7] 0.081
1.028 505 601[ —4] —0.014 1.916 838 496[ — 7] —0.040
1.028 500593[ —4] 0.014 1.916 760 334[ — 7] 0.024
2.0 2.0 1.5 1.174 899 074[ —4] —0.031 4.0 4.0 4.0 2.640290949[ — 7] 0.080
1.174 884 698[ —4] 0.014 2.640415403[ —7] 0.085
1.174 885 673[ —4] 0.015 2.640530317[—7] 0.051

TABLE III. Same as in Table II, but for the excited 2 'S normalized helium wave function for the cusp parametrization. The

values of r3, ry;, and r), are given in units of the corresponding expectation values (Ref. 5):

(ry;)=5.2697209 a.u. The numbers in brackets represent powers of 10.

(r;3)=(r,3)=2.9730707,

T3 73 2 Y A T3 T3 ' Y A

0.0 0.0 0.0 0.660 181420 —0.1808 1.0 1.0 1.0 —3.942093 86[ —4] 0.3050
0.658 858 052 —0.1503 —3.93525341[ —4] —0.1762
0.658422916 —0.0109 —3.93234117[ —4] 0.0329
0.25 0.25 0.0 3.18747427[ —2] 4.179 1.5 0.5 1.0 —2.748 55909[ — 3] —0.0960
3.18133296[ —2] 3.401 —2.744 526 13[ — 3] —0.0098
3.179320 15[ —2] 2.864 —2.743 169 81[ —3] 0.0283

0.25 0.25 0.25 4.701 868 50[ —2] —0.0164 1.5 1.0 0.5 —1.25965705[ —4] —0.0281
4.692 709 63[ —2] —0.0380 —1.25778129[ —4] 0.0032
4.68967264[ —2] —0.0120 —1.25717186[ —4] —0.0059
0.5 0.25 0.25 3.32723533[—3] —0.0253 1.5 1.0 1.0 —1.517816 19[ —4] —0.0185
3.32281836[ —3] 0.0440 —1.51552904[ —4] 0.0009
3.32133756[ —3] —0.0015 —1.514762 84[ —4] 0.0059
0.5 0.5 0.0 —7.25878339[ —4] —11.98 1.5 1.5 0.0 —5.467392 15[ —6] 0.3867
—7.23663295[ —4] —9.738 —5.459 849 62[ — 6] 0.3666
—7.22916596[ —4] —8.205 —5.457409 18[ —6] 0.3366
0.5 0.5 0.25 —1.07928375[ — 3] —0.1518 1.5 1.5 0.25 —8.56124714[ —6] 0.6704
—1.076 201 00[ —3] 0.0753 —8.55043564[ —6] 0.7545
—1.07521927[—3] —0.0031 —8.55052769[ —6] 0.1450
0.5 0.5 0.5 —1.26817296[ — 3] 0.0703 1.5 1.5 0.5 —1.093 195 55[ —5] —0.3471
—1.26451601[ — 3] —0.1123 —1.090911 89[ —5] 0.3169
—1.26330538[ —3] —0.0111 —1.090776 63[ —5] —0.1696
1.0 0.25 0.5 —1.35512866[ —2] 0.0634 1.5 1.5 1.0 —1.435521 12[ —5] —0.5830
—1.35252263[—2] 0.0204 —1.43247394[ —5] —0.1033
—1.35166100[ —2] —0.0010 —1.43148063[ —5] 0.1314

1.0 0.5 0.5 —3.161 166 30[ — 3] —0.0006 1.5 1.5 1.5 —1.67203109[ —5] 1.453
—3.15499907[ — 3] 0.0108 —1.673 584 80[ — 5] 0.7001
—3.152949 35[ — 3] —0.0072 —1.67146757[ —5] 0.1658
1.0 1.0 0.0 —1.582422 15[ —4] 0.3238 2.0 0.25 1.0 —7.542 141 61[ —3] 0.0249
—1.57938204[ —4] 0.2967 —7.54012559[ — 3] 0.0445
—1.57838763[ —4] 0.2670 —7.53939558[ —3] 0.0287
1.0 1.0 0.25 —2.450 659 55[ —4] 0.0324 2.0 0.5 1.0 —1.69729747[ —3] 0.0906
—2.44617908[ —4] 0.2662 —1.69684191[ — 3] 0.0508
—2.44432475[ —4] 0.0575 —1.696 701 03[ —3] 0.0040
1.0 1.0 0.5 —3.07795356[ —4] —0.2232 2.0 1.0 1.0 —8.59926898[ —5] 0.0012
—3.07141859[ —4] —0.0844 —8.59624396] —5] —0.0273
—3.06953294[ —4] —0.0135 —8.59471943[—5] —0.0072
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TABLE I11. (Continued).
ri3 73 2 4 A ri3 r23 r12 14 A
2.0 1.0 1.5 —9.31416792[ — 5] 0.1469 4.0 1.5 1.5 —3.52934912[—7] 0.1452
—9.31295965[ — 5] —0.0334 —3.57687527[—7] —0.0919
—9.31138158[—5] —0.0323 —3.59381120[ —7] 0.0356
2.0 1.5 0.5 —3.75078047[ — 6] 0.0441 4.0 1.5 2.0 —3.65424782[—17] 0.2770
—3.74913571[ —6] —0.0080 —3.70629361[ —7] —0.0053
—3.74839009[ — 6] —0.0064 —3.72616742[—17] —0.0831
2.0 1.5 1.0 —4.607 592 39[ — 6] 0.2427 4.0 2.0 1.5 —1.76758191[ —8] 0.1507
—4.60761526] —6] —0.1529 —1.79123294[ —8] —0.1157
—4.60593116[ —6] 0.0042 —1.79832272[ —8] 0.0709
2.0 1.5 1.5 —5.22621772[—6] 0.1877 4.0 2.0 2.0 —1.855148 57[ — 8] 0.0444
—5.22122434[ —6] 0.1123 —1.88069261[ —8] —0.1576
—5.22018348[ —6] 0.1669 —1.88875955[ —8] —0.0246
2.0 2.0 0.0 —1.53817142[—7] 0.0833 4.0 4.0 0.0 —5.98997533[ —14] 1.950
—1.53735914[—7] 0.1398 —6.03787951[ —14] —1.595
—1.537103 38[ — 7] 0.1584 —6.055218 34[ —14] —1.347
2.0 2.0 0.25 —2.432184 65[—7] —1.771 4.0 4.0 0.25 —9.912061 37[ — 14] —9.920
—2.42355249[ 7] 0.2049 —9.83863942[ —14] —17.373
—2.42206183[—7] 0.8110 —9.77082991[ — 14] —5.375
2.0 2.0 0.5 —3.12258034[ —7] 0.0732 4.0 4.0 0.5 —1.255418 17[ — 13] —2.898
—3.12327403[ —7] —0.7080 —1.24500198[ —13] —1.366
—3.11910244[ —7] 0.1351 —1.24941120[ —13] 2.541
2.0 2.0 1.0 —4.16947721[—7] —1.147 4.0 4.0 1.0 —1.740462 56[ —13] —0.8581
—4.15512590[ — 7] 0.4331 —1.75430897[ —13] —4.117
—4.156 650 56[ — 7] —0.0897 —1.72120204[ —13] 0.8531
2.0 2.0 1.5 —4.88870252[ —7] 2.106 4.0 4.0 1.5 —1.900276 72[ — 13] 11.28
—4.898 806 69[ — 7] 1.020 —2.122564 89[ —13] —2.275
—4.902 681 39[ —7] 0.4479 —2.08508259[ —13] —0.4664
2.0 2.0 2.0 —5.409 686 84[ — 7] 6.730 4.0 4.0 2.0 —2.72128351[—13] —25.24
—5.507054 35[ —7] 2.969 —2.28773860[ — 13] 11.11
—5.47520628[ —7] 0.7181 —2.37969144[ —13] —2.416
4.0 0.5 2.0 —1.41130196] —4] 0.1298 4.0 4.0 4.0 4.35076185[ —12] —183.1
—1.43214316[ —4] 0.1266 —1.84048105[ —12] —166.3
—1.44038295[ —4] 0.0551 2.27532608[ —15] —26724.0
4.0 1.0 2.0 —7.18906717[ —6] 0.2073
—7.29041979[ — 6] 0.1130
—7.33142911[—6] 0.0034
TABLE IV. Same as in Table III, but for the uncorrelated cusp parametrization.
r13 723 T2 4 A ri3 73 712 ¥ A
0.0 0.0 0.0 0.658 143901 —3.596[+ 5] 1.0 1.0 1.0 —3.931301975[ —4] —0.169
0.658 153576 3.044[+5] —3.930670278[ —4] 0.122
0.658 155906 —1.427[+5] —3.930913 118[ —4] —0.066
025 025 0.0 3.263 367 526[ —2] —8.842[+ 6] 1.5 05 1.0 —2.742432 147[ — 3] —0.027
3.247 609 822[ —2] —8.842[+6] —2.742373679[ —3] —0.001
3.236758773[ —2] —8.842[+ 6] —2.742 341526 —3] 0.027
0.25 0.25 0.25 4.687933475[ —2] —1.015 1.5 1.0 0.5 —1.257089 543[ —4] —0.275
4.687716367[ —2] 0.815 —1.256 624 651[ —4] 0.202
4.687 859 674[ —2] —0.404 —1.256 860 540[ —4] —0.143
0.5 0.25 0.25 3.320015713[ —3] 0.551 1.5 1.0 1.0 —1.514296 456 — 4] 0.013
3.320513753[ —3] —1.160 —1.514 302 284[ — 4] 0.003
3.320362495[ — 3] —0.488 —1.514301 635[ —4] —0.005
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TABLE 1V. (Continued).

ri3 723 r12 14 A r13 ra3 ' 14 A

0.5 0.5 0.0 —7.606 344 964[ — 4] —8.842[+6] 1.5 1.5 0.0 —6.298 999 850[ — 6] —8.843[+6]
—7.536696294[ —4] —8.842[+ 6] —6.148591366[ —6] —8.843[+6]
—7.488432870[ —4] —8.842[+ 6] —6.043570969[ —6] —8.843[+ 6]

0.5 0.5 0.25 —1.074 502 894[ — 3] 1.135 1.5 1.5 0.25 —8.548785920[ —6] —1.025
—1.074 749 950[ —3] —0.586 —8.563976481[ —6] —2.469
—1.074 655 393[ —3] 0.161 —8.553935418[ —6] —0.785

0.5 0.5 0.5 —1.262793 669 —3] —0.487 1.5 1.5 0.5 —1.089 683 796[ —5] 0.375
—1.262624956[ —3] 0.333 —1.090787 883[ — 5] —0.480
—1.262 667 306[ —3] —0.190 —1.090074311[ —5] 0.391

1.0 0.25 0.5 —1.351047238[ —2] 0.121 1.5 1.5 1.0 —1.430889 595[ —5] 0.152
—1.351094 068 —2] 0.093 —1.431100 141[ —5] 0.054
—1.351124941[ —2] 0.022 —1.431214 170[ —5] —0.064

1.0 0.5 0.5 —3.151586911[ —3] 0.067 1.5 1.5 1.5 —1.671438075[ —5] —0.102
—3.151821826[ —3] —0.148 —1.671070883[ —5] 0.062
—3.151742303[ —3] —0.066 —1.671192228[ —5] —0.039

1.0 1.0 0.0 —1.742995912[ —4] —8.843[ +6] 20 0.25 1.0 —7.538395563[ —3] —0.033
—1.713059202[ —4] —8.843[+ 6] —7.538703 769[ —3] —0.012
—1.692296 710[ —4] —8.843[+6] —7.538744316[ —3] 0.008

1.0 1.0 0.25 —2.444 129479 —4] —0.251 20 05 1.0 —1.696476074[ —3] 0.021
—2.441764 608[ —4] 1.664 —1.696510923[ —3] 0.011
—2.443503331[ —4] —0.424 —1.696 536 222[ —3] 0.002

1.0 1.0 0.5 —3.067480932[ —4] 0.444 2.0 1.0 1.0 —8.593578691[ — 5] 0.010
—3.068 630298 —4] —0.228 —8.593933710[ —5] —0.026
—3.068247442[ —4] 0.062 —8.593767941[ —5] —0.013

2.0 1.0 1.5 —9.310161232[ —5] 0.021 4.0 1.5 1.5 —3.606879961[ —7] —0.001
—9.310274758[ — 5] —0.012 —3.606562997[ — 7] —0.0002
—9.310170639[ —5] —0.010 —3.606520782[ —7] —0.0008

2.0 1.5 0.5 —3.746071315[ —6] 0.302 4.0 1.5 2.0 —3.739565979[ — 7] —0.0003
—3.747430444[ —6] 0.075 —3.739125144[—7] 0.0002
—3.748 673 455[ —6] —0.246 —3.739019564[ —7] —0.001

2.0 1.5 1.0 —4.606 034 205[ — 6] —0.084 40 20 1.5 —1.804710816] — 8] —0.0003
—4.604 904 387[ —6] 0.069 —1.804 594 397[ — 8] —0.0003
—4.605266 673[ —6] 0.005 —1.804 532 122[ — 8] —0.0001

2.0 1.5 1.5 —5.220415866[ —6] 0.003 40 2.0 2.0 —1.895064214[ — 8] —0.001
—5.220426 649[ — 6] —0.019 —1.894 866 110[ — 8] —0.0007
—5.220379 825[ —6] —0.028 —1.894794477[ — 8] —0.002

2.0 2.0 0.0 —1.847759 868[ —7] —8.843[+6] 40 4.0 0.0 —8.258062436[ —14] —8.843[+ 6]
—1.793408 379[ — 7] —8.843[+6] —7.935449799[ — 14] —8.843[+ 6]
—1.755099511[ —7] —8.843[+ 6] —7.685301512[ —14] —8.843[+6]

2.0 2.0 0.25 —2.403 340852[ —7] 3.703 40 4.0 0.25 —9.556 158 974[ — 14] 4,772
—2.419019839[ —7] 0.290 —9.507 141 379[ — 14] 5.991
—2.426753649[ —17] —2.042 —9.505956 606[ —14] 6.267

2.0 2.0 0.5 —3.120625907[ — 7] —0.059 40 40 0.5 —1.243738 585[ —13] 2.304
—3.115877507[ —7] 0.717 —1.259895938[ — 13] 0.247
—3.119500433[ —7] —0.170 —1.266554932[ —13] —0.841

2.0 2.0 1.0 —4.154 168 589[ — 7] 0.194 40 4.0 1.0 —1.730795 553[ —13] 0.424
—4.156 516 602[ — 7] —0.082 —1.729428 647[ —13] 0.552
—4.155727738[—7] 0.029 —1.733703 558[ —13] 0.045

2.0 2.0 1.5 —4.905773793[— 7] —0.079 40 40 1.5 —2.093237419[ —13] 0.138
—4.905178 619[ — 7] —0.063 —2.092760334[ —13] 0.207
—4.904 861 757[— 7] —0.042 —2.093838732[—13] 0.099

2.0 2.0 2.0 —5.480879177[ — 7] —0.077 40 40 2.0 —2.379052225[ —13] 0.283
—5.479296973[ —7] 0.041 —2.382800061[ —13] 0.059
—5.479719293[—7] —0.029 —2.382581931[—13] 0.073

4.0 0.5 2.0 —1.446576 726[ —4] —0.013 40 40 4.0 —3.148 682 722[ —13] —0.169
—1.446 541 526[ —4] —0.007 —3.145210851[ —13] —0.049
—1.446 520 806[ —4] 0.0001 —3.144 943 551[ —13] —0.055

4.0 1.0 2.0 —7.361354234[ —6] 0.002
—7.360698977[ — 6] —0.001
—7.360490 534[ — 6] —0.0002
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TABLE V. Values of the normalized wave functions (a.u.) for ground (He) and excited (He*) states of the helium atom at zero dis-
tance between one of the electrons and the nucleus (r,;=0) for different interparticle distances r,;=r;, (a.u.). The ¥ and A (%)
displayed in the first and second columns for the excited helium are calculated in uncorrelated cusp and cusp parametrizations, re-
spectively. The numbers in brackets represent powers of 10.

He He* He*
s 14 A 14 A Y A
0.25 1.476 907 667 0.672 0.448 514143 5.079 0.449905410 0.699
1.476 907 606 0.544 0.448 522 684 4.136 0.449 004 555 0.570
1.476 907 806 0.457 0.448 525163 3.486 0.448 708 324 0.479
0.5 1.017707 174 0.464 0.298 516 692 2.360 0.299 442 059 0.233
1.017 707 750 0.355 0.298 523 694 1.886 0.298 844 795 0.164
1.017708 171 0.281 0.298 525 883 1.562 0.298 648 302 0.115
1.0 0.486 157075 0.049 0.113520592 0.357 0.113866 559 —0.735
0.486 158016 —0.029 0.113524239 0.188 0.113644931 —0.686
0.486 158 499 —0.083 0.113525393 0.075 0.113571403 —0.654
1.5 0.234018 303 —0.317 1.807 898 331[ —2] —1.851 1.81243180[ —2] —3.176
0.234019012 —0.374 1.807 972 363[ —2] —1.716 1.80961546[ —2] —2.721
0.234019 326 —0.412 1.808 075 049[ —2] —3.022 1.808 648 57[ —2] —2.416
2.0 0.113418 896 0.822 —3.002386246[ —2] 1.886 —3.01277199[ —2] 1.838
0.113419373 0.778 —3.002513825[ —2] 1.675 —3.006073 60[ —2] 1.638
0.113419535 0.751 —3.002 559 589[ —2] 1.543 —3.00388519[ —2] 1.506
4.0 6.588016 599[ — 3] —6.151 —5.731974258[ —2] —8.343 —5.746294 39[ —2] —8.364
6.588 391 102[ — 3] —6.184 —5.732212502[ —2] —8.361 —5.737369 79[ —2] —8.394
6.588471703[ —3] —6.200 —5.732303780[ —2] —8.374 —5.73432819[ —2] —8.409
8.0 2.531439281[ —5] —5.833 —1.549909 779[ —2] —8.430 —1.541839 86[ —2] —8.265
2.538 174 720[ —5] —6.039 —1.549 858 427[ —2] —8.431 —1.54711116[ —2] —8.351
2.540 188434 —6.128 —1.549 846 704 —2] —8.431 —1.548 829 35[ —2] —8.391

dramatic effect occurs in the case of the positronium ion,
where the values of A at the triple and different double
coalescence points reduce from values 9.52X 10% and
3.82X 10® of Table VI to values around 0.3 and 10-20,
respectively, that is, by more than 7 orders of magnitude.)

The expectation values of the absolute value of |A|
presented in Table VII show the influence of the proper
inclusion of cusp conditions on the overall goodness of
the calculated wave function. One can see that though
the inclusion of all cusp conditions produces wave func-
tions which are much better near the coalescence points
and at small and medium interparticle distances, the dis-
tortion of the asymptotic behavior of the wave function
due to inclusion of the electron-electron cusp make
values of (|A|) for cusp and uncorrelated cusp parame-
trizations comparable in the case of the excited Helium
atom. For the positronium ion the average value of |A] is
even much larger for the cusp parametrization, due to the
fact that the correlation function with cusp parameters
gives a completely inadequate description of this rather
extended system at the large distances.

The Kato cusp conditions, in the case of two particles
of equal masses, specify that ¥ and 6 defined as the loga-
rithmic derivatives y=(1/¢9)dy/dr;) and
6=(1/y)dy/dr,,) for the exact wave function should
be MZ /(M +1) and —0.5 when the derivatives are taken
strictly at r,3=0 and r, =0, respectively. (In that case
they are also strictly independent of other interparticle
distances.) Since in our case the exact wave function is
given by Eq. (3) where the function ¢ is smooth, its
derivatives strictly at the corresponding coalescence
points will be equal, however, to the correlation parame-
ters ¥ and & of the correlation function y, given by Eq.

(5). Near the coalescence points, however, the hyper-
spherical harmonic expansion is expected to be able to
reproduce the cusp behavior even if the chosen correla-
tion parameters are different from those given above and
the better the more hyperspherical harmonic functions
are taken into account. In order to understand how
closely this behavior is mimicked very near the coales-
cence points and how it changes with K, in the case of
the excited helium atom and the positron negative ion,
we calculated the logarithmic derivative
8=(1/¢)Ndy/dr,) at zero interparticle distance r, (ac-
tual numerical differentiation was performed at
ri,=107% a.u). The results for uncorrelated cusp pa-
rametrization, where the correlation parameters & of the
correlation function y was chosen to be 0, are —0.5011,
—0.5002, and —0.4999 for K,, =32, 40, and 48 in the
case of the excited helium atom and —0.4994 for
K,, =32 in the case of the positronium ion, which shows
that indeed the hyperspherical-harmonic expansion is
able to reproduce cusp structure reasonably well if only a
large enough number of hyperspherical-harmonic func-
tions is taken into account.

Summing up, we have shown that proper inclusion of
all cusps dramatically increases the quality of the wave
function at small and medium interparticle distances.
For the ground state of the helium atom it yields local
wave-function accuracy of about 10~ 7 at all interparticle
distances. The omission of even the least important of
the cusps in the case of the excited helium atom reduces
the wave-function precision to 10~ 2 near the correspond-
ing coalescence point and to 10™#~10"3 away from it.

The results displayed in Tables I-VII clearly illustrate
the utility of the CFHH method for direct calculation of
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TABLE VI. Absolute values |A| of the local relative deviation (%) for K,, =32 for the positronium
negative ion Ps™ in the uncorrelated cusp parametrization. Interparticle distances r;, 7,3, and r,, are

in the units of the corresponding expectation values

(Ref. 7): (ry;)=(r,)=5.488352,

(ry,)=8.546 111 a.u. The numbers in brackets represent powers of 10.

T3 r T2 A T3 T3 T2 A
0.0 0.0 0.0 9.52[+6] 1.5 2.0 1.0 0.53
1.5 2.0 1.5 1.01
0.25 0.25 0.0 3.82[+8] 1.5 2.0 2.0 3.51
0.25 0.25 0.25 2.17 1.5 4.0 1.5 0.21
0.25 0.5 0.25 1.22
0.25 1.0 0.5 1.60 2.0 2.0 0.0 3.82[+8]
0.25 1.5 1.0 0.86 2.0 2.0 0.25 8.75
2.0 2.0 0.5 0.88
0.5 0.5 0.0 3.82[+8] 2.0 2.0 1.0 0.67
0.5 0.5 0.25 3.86 2.0 2.0 1.5 0.79
0.5 0.5 0.5 0.95 2.0 2.0 2.0 0.63
0.5 1.0 0.5 0.43 2.0 4.0 1.5 0.07
0.5 1.5 1.0 0.03 2.0 4.0 2.0 0.04
0.5 2.0 1.0 0.58 2.0 8.0 4.0 0.03
0.5 2.0 1.5 1.25
4.0 4.0 0.0 3.82[+8]
1.0 1.0 0.0 3.82[+38] 4.0 4.0 0.25 20.17
1.0 1.0 0.25 2.64 4.0 4.0 0.5 3.01
1.0 1.0 0.5 1.53 4.0 4.0 1.0 0.26
1.0 1.0 1.0 0.55 4.0 4.0 1.5 0.20
1.0 1.5 0.5 0.52 4.0 4.0 2.0 0.44
1.0 1.5 1.0 0.53 4.0 4.0 4.0 2.53
1.0 1.5 1.5 2.17 4.0 8.0 4.0 0.003
1.0 2.0 1.0 0.15
1.0 2.0 1.5 1.15 8.0 8.0 0.0 3.82[+8]
1.0 4.0 2.0 0.20 8.0 8.0 0.25 7.17
8.0 8.0 0.5 8.71
1.5 1.5 0.0 3.82[+8] 8.0 8.0 1.0 1.10
1.5 1.5 0.25 1.53 8.0 8.0 1.5 0.32
1.5 1.5 0.5 1.47 8.0 8.0 2.0 0.09
1.5 1.5 1.0 0.82 8.0 8.0 4.0 091
1.5 1.5 1.5 0.53 8.0 8.0 8.0 68.5
1.5 2.0 0.5 1.51

three-body wave functions since even without proper in-
clusion of the cusps local and overall quality of the wave
functions is reasonably good for most points. The results
displayed in Table VII show, however, the necessity of
calculations with the more sophisticated correlation fac-
tors x than the one given in Eq. (3) and used in the
present calculations, since this correlation factor does not
allow simultaneous incorporation of the singular and
cluster structure.
For example, the correlation factor
— 2 2
x=exp | —X(a;+Be Yu'y i —m(ri;—R e 712
i

(6)

suggested in Ref. 8, allows incorporation of both an
asymptotic and cusp behavior of all three particles and
simultaneously takes care of the tendency of two heavy
particles to stay at a fixed distance R. It will ensure,
therefore, very precise estimates of wave functions for all
interparticle distances. The incorporation of such a

correlation factor, however, demands essential changes in
the present computer program and will be a subject of fu-
ture calculations.

The authors thank Professor J. H. Bartlett for useful
suggestions concerning this work.

TABLE VIL. The expectation value (|A|) (%) of absolute
values of the relative deviation A for the ground and excited
states of the helium atom and for the ground state of the posi-
tronium negative ion Ps~. The numbers in the first and second
lines of each entry for He* and Ps™ are calculated in the un-
correlated cusp and cusp parametrizations, respectively.

K, He He* Ps™
32 0.0411 0.112 1.086
0.211 364.0
40 0.0266 0.079
0.112
48 0.0146 0.067
0.070
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