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Classical and quantum-mechanical dynamics of a quasiclassical state of the hydrogen atom
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We explore the classical limit of the hydrogen atom by constructing a minimum-uncertainty wave

packet that travels along a Kepler orbit. The dynamics of the wave packet display both classical
and quantum-mechanical properties. Over a limited period of time, during which the dynamics of
the wave packet may be considered linear, the motion of the wave packet can be described by classi-

cal equations of motion. After this time, the quantum dynamics, whose most prominent features are

decays and revivals of the wave packet, becomes dominant. We discuss decays and revivals of the
wave packet in detail.

I. INTRODUCTION

Bohr formulated the correspondence principle' with
the intention of tying together the old quantum theory of
matter with classical electrodynamics. By virtue of the
correspondence principle, the properties of the motion of
the electron were related to the properties of the emitted
radiation, which made possible accurate calculations of
intensities of spectral lines. Although its original
significance was diminished by the development of quan-
tum mechanics, the main point of the correspondence
principle, that classical mechanics is the large-quantum-
number limit of quantum mechanics, is still one of the
fundamental concepts in quantum theory.

Recent advances in experimental techniques, in partic-
ular the development of tunable and short-pulse lasers,
have given physicists the opportunity to perform experi-
ments on single atoms and to study interactions between
highly excited atoms and radiation. As a result of this
development, the correspondence principle, together with
other fundamental concepts of quantum theory, has be-
come subject to experimental verification.

Results of research on chaos pose a challenge to the
correspondence principle. There is a general consensus
among theorists that chaos does not exist in quantum sys-
tems in the same sense that it does in classical ones.
Modeling of experimental results with classical calcula-
tions has been performed with mixed success; the rni-

crowave ionization of highly excited hydrogen is an ex-
ample of both excellent (the low-frequency limit ) and
poor (the high-frequency limit ) agreement. The ap-
parent discrepancy in the behavior of a chaotic classical
system and its large-quantum-number counterpart make
the study of the classical limit of quantum mechanics an
urgent task.

The first step in exploring the quantum-classical border
is to construct a wave packet that behaves like a classical
system, in the sense that the outcome of a single measure-
ment of the position or momentum of the wave packet
can be accurately predicted by the classical equations of
motion. In order to specify the state that describes this
wave packet more formally, we will demand that it satisfy
the following properties. First, it should be a well-

localized wave packet in the configuration space. Second,
it should be a minimum-uncertainty wave packet in the
phase space. This is the best possible approximation of a
point in the coarse-grained quantum phase space of cell
size A'/2. Third, the quasiclassical state should be
dynamically similar to the corresponding classical sys-
tem, namely, it should move along the corresponding
classical orbit. We will refer to a quantum state with the
above properties as a quasiclassical state.

A coherent state of the linear harmonic oscillator
possesses the specified properties. A coherent state of the
linear harmonic oscillator is a minimum-uncertainty
wave packet whose center of mass travels along the tra-
jectory of the corresponding classical oscillator. As the
expectation value of the number operator increases, the
uncertainties in the measurement of the position and
momentum remain constant and thus become relatively
smaller with respect to the expectation value of the am-
plitude of oscillation, and eventually become insignificant
for a truly macroscopic system. Coherent states of the
linear harmonic oscillator have another important classi-
cal property: the shape of the wave packet is invariant,
due to the fact that the separation between energy levels
is constant as a consequence of linearity of the Hamil-
tonian in action-angle variables.

A linear-harmonic-oscillator coherent state is an excel-
lent example of how well the correspondence principle
describes the macroscopic limit of a quantum-mechanical
system, on account of which we might expect to find

states with similar properties for other physical systems.
This proves to be a difficult task for nonlinear systems.

In order to be localized in the configuration space, the
wave-packet state must be a superposition of eigenstates,
such that quantum numbers in all degrees of freedom
must be large. For an arbitrary potential, the energies of
the states that constitute the wave packet will not be
equally separated, which implies that the shape of the
packet will not be invariant during the evolution
prescribed by the Schrodinger equation, and the uncer-
tainty product will become greater than its minimum
possible value. Thus, permanent localization is one prop-
erty of a classical particle that we must yield in the
search of a quasiclassical state of a quantum system.
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However, if the time during which the spreading occurs
increases with the quantum numbers of the states consti-
tuting the wave packet, then, in the limit of large quan-
tum numbers, the wave packet is well defined over a long
time.

II. QUASICLASSICAL STATE
OF THE HYDROGEN ATOM

In the present paper we discuss only quasiclassical
states for the three-dimensional Coulomb problem, al-
though there are interesting results among the treatments
of the radial Coulomb problem.

In the paper in which he introduced coherent states of
the linear harmonic oscillator, Schrodinger suggested
that a state with similar properties could be constructed
for the hydrogen atom, and that this wave packet would
travel along a Kepler elliptic orbit. In the same year, he
mentioned in a letter to Lorentz that in attempting to
create such a wave packet he had encountered "great
computational difficulties. "

One of the first modern-day attempts to construct a
quasiclassical state of the hydrogen atom was made by
Brown. This state consists entirely of circular-orbit
eigenstates, i.e., standard hydrogenic eigenstates such
that l =m =n —1, superimposed with a Gaussian
weighting function. Brown's states are initially
minimum-uncertainty wave packets that move along a
circular Kepler orbit. The size of the orbit and the
period of rotation correspond to the motion of a "classi-
cal" electron located at the center of mass of the wave
packet.

General theories of coherent states were developed by
Barut, Perelomov, ' and Nieto. " Barut's coherent
states are constructed as eigenstates of the lowering
operator. Coherent states of Perelomov are formed by
acting on the ground state with the displacement opera-
tor. Nieto's procedure for constructing coherent states
consists of finding minimum-uncertainty wave packets.

Mostowski' and McAnally and Bracken' construct
their coherent states in the so(4,2) algebra, following the
Perelomov and Barut general procedures, respectively.
Neither of these states are minimum-uncertainty wave
packets because the uncertainty product becomes
infinitely large as (X ), the expectation value of the prin-
cipal action operator I 0, tends to infinity, although in
Ref. 13 the ratio of the uncertainty and the correspond-
ing expectation value tends to zero.

Gerry' and Bhaumik et al. ' utilize the
Kustaanheimo-Stiefel transformation' to map the three-
dimensional Coulomb system into a four-dimensional
linear harmonic oscillator with a constraint condition,
and form a coherent state in the basis of this oscillator.
The coherent state constructed this way is well localized.
When the coherent state in Ref. 15 is constrained to lie in
the xy plane, the expectation values of x and y have har-
monic time dependence and satisfy the equation of a
Kepler ellipse. Nandi and Shastry' show that this
coherent state has minimum uncertainty in radius only if
it is constrained to lie in the xy plane, and in this case
only is the ellipse of motion the corresponding Kepler el-

lipse. The harmonic dependence of (x ) and (y) per-
tains to the case of classical motion in a circle, whereas
the condition that the orbit be in the xy plane is
equivalent to the requirement that the angular momen-
turn be parallel to the z axis. Thus, from a very general
theoretical argument a result emerges that is in essence
equivalent to the simple intuitive idea of Brown, that the
quasiclassical state of the hydrogen atom is a superposi-
tion of circular-orbit states.

Nauenberg' constructs coherent states in the o(3) alge-
bra with M„M,and L, as generators, where M and

My are the x and y components of the Runge-Lenz vec-
tor. A coherent state of this type is a linear superposition
of aligned hydrogenic eigenstates with large angular
momentum in an n manifold. The probability distribu-
tion of this coherent state is well localized in radius and
azimuthal angles, but suffers from poor localization in
polar angle. Since the o(3) coherent states consists of
eigenstates from the same n manifold, its shape is invari-
ant in time. Nauenberg's coherent states are similar to
the angularly localized wave packet of Yeazell and
Stroud, ' which was the first experimentally observed
atomic wave packet. A wave packet localized in all three
degrees of freedom is formed as a superposition of o(3)
coherent states using a Gaussian weighting function. The
motion of this wave packet is confined to a Kepler ellipse
and the velocity of the center of mass varies along the or-
bit in the same way that the velocity of the corresponding
classical particle does.

We indicated earlier that the shape of the quasiclassical
hydrogen wave packet evolves in time as a result of the
fact that the separation between energy levels is not con-
stant. The wave function of the quasiclassical state is a
quasiperiodic function of time. As a consequence of
quasiperiodicity, the wave packet spreads and reassem-
bles, thus displaying both classical and quantum features.
All the wave packets we mentioned exhibit decays and re-
vivals of coherence, which we study in detail in Sec. IV.

From the survey of the recent literature on the quasi-
classical states of the hydrogen atom, we conclude that
the "great computational difficulties" of Schrodinger can
be overcome in the sense that a minimum-uncertainty
wave packet can be formed that acts like a classical parti-
cle for a limited period of time. However, the generic
nonlinearity of a physical system restricts the extent to
which a quantum-mechanical system exhibits classical
features, even in the limit of large quantum numbers.

We also see that three different approaches in Refs. 8,
15, and 18 all lead to wave packets that consist of aligned
eigenstates with large angular momentum. The simplest
of quasiclassical hydrogen states is Brown s circular-orbit
wave packet. This state seems close to our earlier
description of a classical limit of a quantum system. In
the next two sections we study the localization and dy-
namics of Brown s quasiclassica1 states in detail, with spe-
cial emphasis on fractional revivals of coherence.

III. LOCALIZATION OF BROWN'S
QUASICLASSICAL STATE

Brown s quasiclassical state consists of circular-orbit
eigenfunctions superimposed with a Gaussian weighting
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is an aligned standard hydrogenic eigenfunction
( I =m =n —1) where c„is a normalization constant.

A circular-orbit wave packet has uncertainty products
that are almost minimal in all three degrees of freedom.
We will show that the uncertainty product is a function
of n and tends toward —, (in atomic units) as n tends to
infinity.

First, we calculate the uncertainty in r and 8 in a single
circular-orbit state. Circular-orbit states are well local-
ized in these two variables. When the well-known re-
sults for the expectation values of r and r for a stan-
dard hydrogenic eigenstate are used, one calculates the
uncertainty in radius as ( b r )„=n /2&2n + 1. The expec-
tation value of momentum (p) is equal to zero in any
standard hydrogenic eigenstate. The second-order mo-
ment of the radial momentum may be calculated as fol-
lows. The square of the radial momentum is equal to
(atomic units are used throughout the paper)

2 L2p„=——20—
2

and its expectation value is equal to

&p„'&„=2— —2&H &„—&I.'&„—,1 1

n I' n

since [L,r]=0. The uncertainty product in the radial
degree of freedom is then equal to

(hrhp„)„=—1+ +01 1 1

2 211 n

where we have used the well-known results for ( r ' )
and (r ').

As circular-orbit states are superimposed in a wave
packet with a Gaussian weighting function, this product
will increase, although not significantly. The uncertainty
in r can be calculated approximately by replacing the sum
over n with an integral, and noting that off-diagonal ma-
trix elements of r and 0 are equal to zero in the
[H,L,L, J basis. The uncertainty in radius, accurate to
the first order in 1/n, is

br=[(Ar) +4n o„]'
where o.

„

is the standard deviation of the Gaussian distri-
bution in Eq. (1). The uncertainty in radial momentum
can be calculated to the same degree of accuracy as the

function, which is centered at a large principal quantum
number n. The wave function that describes the wave
packet is

~
4( t) )=,z4 g exp —

2

1
" (n n—)
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„
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where n and o.„arethe mean and the standard deviation
of the Gaussian distribution, respectively, and

&rl+„„,„,&=+„„,„,(r, e, y)

The uncertainty product in the radial degree of freedom
is equal to

1 1hrhp„=—1+ +
271

4~2
n 1

n n
—2

(4)

The radial uncertainty products calculated for three wave
packets with the same o„=2.5, for n =80, 320, and
1000, are equal to 0.642, 0.539, and 0.513, respectively.

The expectation value of the azimuthal angle in a
circular-orbit state is (8)=n/2 The .expectation value
of the square of the azimuthal angle is equal to

oo

&e') = +2+
4 k „(2k+1)

and the uncertainty in this angle is equal to the square
root of the sum in Eq. (5). This sum is estimated to be
within the limits

4(n +1) 2(n +2) k „(2k+1)

1+1 3

4n 2(n +1)

The expectation value of the azimuthal momentum in
any eigenstate is equal to zero, whereas the expectation
value of its square can be calculated as

&L', )„=(L'&„+&L,')
„

Sln n

since [L„e]=0. The uncertainty product 8 is then found
to be

(bebLs)„=—1+ +01 1 1

4n n
(6)

The uncertainty product of the circular-orbit wave pack-
et in the azimuthal degree of freedom is calculated using
the same procedure as in the case of radial quantities, and
is found to have the same value as the uncertainty prod-
uct for a single circular-orbit state in Eq. (6) with n re-
placed by n. For the same three initial wave packets as in
the radial case, EOAL is equal to 0.5016, 0.5004, and
0.5001, respectively.

In an aligned eigenstate, the probability of finding the
electron at a point whose polar angle lies between P and
P+dg is uniformly distributed around the circle of ra-
dius n, with an expectation value equal to n. and a stan-
dard deviation equal to m. /&3. A wave packet that is lo-
calized in the polar angle is formed by superimposing
aligned wave functions. Localization in the polar angle is
more complicated to calculate than in the other two de-
grees of freedom, because the operator P is a conjugate

uncertainty in radius by expanding (p„)„in a Taylor
series in the neighborhood of n and replacing the sum by
an integral. The uncertainty in radial momentum is
found to be

1/2

Ap =
Pl n n
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tegral and only the dependence on the polar angle is tak-
en into account. The resulting integral is a Fourier trans-
form over n of a Gaussian function with a complex vari-

ance, which, in turn, is also a Gaussian function with the
variance given by Eq. (9).

The time in which the initial packet spreads completely
is calculated by equating the right-hand side of Eq. (9)
with m. /3, the value of the variance for a random vari-
able uniformly distributed around the circle. We found
that T,~„,d

= T„„/8.713=12.2TK, i„for the wave pack-
et with 0„=2.5 and n =320. Figures 2(a)—2(e) show

spreading of this wave packet after 2.5, 5, 7.5, 10, and
12.5 classical periods. The spreading is smooth along the
orbit until the tail of the wave packet meets with its head
as shown in Figs. 2(a)—2(c); at this point a new interfer-
ence pattern begins to form and small wave packets
emerge, as in Figs. 2(d) and 2(e), in anticipation of the
first fractional revival.

Revivals occur because the nonlinear phases of the in-

dividual constituent wave functions experience fractional
periodicity at moments that are embedded in time like
rational numbers in real numbers. In other words, frac-
tional revivals occur, theoretically, at any time
t =(k, Ikz )T„,„,where ki and kz are two mutually prime
numbers. Very high fractional revivals are obscured be-
cause of the finiteness of the width of the initial wave

packet.
During a fractional revival the wave packet is separat-

ed into K almost identical wave packets, and its state vec-
tor is

(10)

where ak is a phase factor and ~%„„,(t) ) is defined in Eq.
(8). The first distinct fractional revival will occur after
time T„„/K,„,where K,

„

is the maximum number of

t=(2

t = 2.5 (a)

(b}

(c}

t=12 (e'}

FIG. 2. (a)—(e) Spreading of the circular-orbit wave packet
(n =320, cr„=2.5). The wave packet is depicted at times 2.5, 5,
7.5, 10, and 12.5 (in units of Tz,~l,„).

FIG. 3. (a)—(j) Fractional revivals of the circular-orbit wave

1 (in units of T„„).
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distinct wave packets that can be observed in a fractional
revival. This number is a function of the initial width of
the wave packet and can be easily calculated from the
equation

T Trev spread
spread

max+max

For the same initial configuration of the wave packet as
above, K,

„

is found to be between 7 and 8. All distinct
fractional revivals of this wave packet until time T„,„/2

Figs. 3(a)—3(i), as well as the first "complete" revival after
time T„„in Fig. 3(j).

The second-order nonlinearity also causes a shift in the
position of the revived wave packet, with respect to the
prediction of the classical equations of motion. In all odd
revivals the phase of the wave packet differs by m from
the linear phase. As an example, compare the position of
the wave packet in its first revival in Fig 3(j) with the po-
sition predicted by the classical equations of motion,
which is 4n /3 from the initial position.

After a time of the order of TK, „,n /2(hn, „),the
contribution of the third-order term becomes significant.
The phase shift associated with this contribution has a
destructive effect on the regularity of the interference
pattern. For example, the small wave packet that pre-
cedes the main wave packet in the first revival in Fig. 3(j)
is a manifestation of the third-order contribution. Simi-
larly, fourth- and higher-order contributions to the phase
become increasingly important at later times. The way to
extend the time during which nonlinear effects are not
important is to superimpose the constituent eigenfunc-
tions with a Gaussian weighting function narrower than
the one used in our examples.

V. CONCLUSIONS

We studied the dynamics of a circular-orbit wave pack-
et and found that, despite its many classical features, its
quantum nature is always present. The classical aspect of
the dynamics is most pronounced at the time of revivals,
when a single well-localized wave packet travels along a
Kepler orbit. Spreading and fractional revivals of the
wave packet are manifestations of the quantum nature of
the system, in particular the discreteness of the energy
levels. In order to illustrate this fact, one can form a clas-
sical ensemble whose probability distribution is equal to
the square of the modulus of the packet wave function.
The initially well-localized ensemble spreads along the or-
bit until the particles become uniformly distributed.
Needless to say, the classical "wave packet" does not
reassemble because its Poincare recurrence time is ex-
tremely long.

From the simple example that we studied in this paper,
we learned that the large-quantum-number limit of the
hydrogen atom has all the properties of a good quasiclas-
sical state over the period of time during which the non-
linearity of the Hamiltonian may be ignored. After this
time, the quantum nature of the system plays a major role
in its evolution.

The classical limit of quantum mechanics is a topic of
increasing importance in physics. At the time when
atoms can be made larger than living cells and single ions
kept in isolation for many hours, the border line between
the microscopic and macroscopic worlds is no longer
defined in a simple fashion.
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