
PHYSICAL REVIEW A VOLUME 42, NUMBER 10 15 NOVEMBER 1990

Liquid-liquid phase separation and critical exponents in ionic fluid mixtures
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The critical exponents of model ionic fluid mixtures exhibiting liquid-liquid phase separation
are calculated analytically through the mean-spherical approximation. Classical exponents P and

y are found in agreement with the available experimental data for ionic fluids. The phase dia-
gram of molten tetra-n-butylammonium picrate-1-chloroheptane is also well reproduced through
the same theoretical approach, with excellent agreement of the calculated exponent P with the ex-
perimental value. Possible applications to other multicomponent fluids are briefly discussed.

Critical exponents in classical fluids have been hitherto
determined analytically in correspondence of the liquid-
vapor critical point of two simple model fluids. ' A num-
ber of calculations based on numerical solutions of in-

tegral equation theories have also been reported' ' for
various systems of the same type. However, there is still
some debate3s s on the accuracy of these numerical pro-
cedures in the critical region, especially as far as the na-
ture of the critical exponents is concerned.

The critical behavior of two-component model ionic
fluids has also been investigated by various authors. "
However, to the best of our knowledge, no theoretical
determination of critical exponents has been published for
liquid-liquid phase separation in either neutral or charged
fluid mixtures.

It appears from the cited work that the status of micro-
scopic derivation of critical exponents in liquids is some-
what unsatisfactory. There are, actually, extensive
theories on the critical behavior of systems with long-
range forces, 's or Ornstein-Zernike systems in the mean-
spherical approximation;' however, the related theoreti-
cal treatments have been fully developed only for some
particular cases.

The situation is even worse concerning the description
of phase equilibria in two- (or more-) component fluids.
In fact, in such a case, one needs to determine the Gibbs
free energy at both constant pressure and temperature, a
task probably prohibitive in the framework of the more
refined approximate theories of liquids that are solvable,
as is well known, only through iterative procedures.

Qn the other hand, one is presently faced with outgrow-
ing experimental evidence on phase stability and equili-
bria in a variety of systems such as, e.g., simple-fluid mix-
tures, molten-salt mixtures, electrolyte solutions, micellar
solutions, colloids, etc. , so that the availability of some
theoretical approach allowing one to investigate the corre-
lations between the interaction mechanisms and the ther-
modynamics of the coexisting phases in these multicorn-
ponent fluids, seems particularly urgent.

Such a situation prompts us to examine the perfor-
mances of a theory that although known to be defective
from the point of view of the thermodynamic consistency,
has the great advantage of being analytically solvable.
This is the mean-spherical approximation (MSA) which,

noticeably, turns out to be rather accurate when thermo-
dynamics is constructed from the structure via the "ener-

gy route. "
In this spirit one of us' ' has recently studied the

properties of charged hard-sphere fluid mixtures within
such an approximation, and in a previous paper's it is
shown that the MSA predicts liquid-liquid phase separa-
tion for such a system. The resulting phase diagram
presents three diferent consolution points, two of which
delimit a closed solubility loop.

In this Rapid Communication we report MSA calcula-
tions of the critical exponents corresponding to those con-
solution points, and similar calculations for another model
mixture described below. These calculations are per-
formed by starting from the MSA analytic expressions for
the pressure and for the Gibbs free energy. Classical
values are found for the exponents P and y in all the ex-
amined cases, in agreement with the indications of the
available experimental data.

We also show that the theory is able to reproduce the
phase diagram of a real system, that is, tetra-n-
butylammonium picrate-l-chloroheptane, recently stud-
ied by Pitzer et al. ,

' and modeled by us as a mixture of
charged and neutral hard spheres.

We finaily discuss the applicability of our approach to
other multicomponent systems of current interest.

We first study the case of a mixture of charged hard
spheres of equal diameter R. This system is obtained by
mixing two ionic fluids constituted of cations and anions
with charge numbers Zl +1, Z3 —1, and Z2 +2,
Zs —1, respectively. The relative proportion of the two
components is fixed by the (cationic) concentration
c—=pl/(pl+pz), where p; is the number density of parti-
cles in the ith ionic species. We are thus considering a
common anion mixture with three different ionic species.

Other parameters in use are the packing fraction
ri = (z/6) Z p R, and the coupling parameter I

e /ke TeR 1/T—, where T is a reduced temperature,
and e is the macroscopic dielectric constant of a medium
in which the particles are supposed to be merged.

The phase separation conditions are obtained by impos-
ing (i| Gsr/8c )T,p 0, where Gsr is the Gibbs free ener-

gy of mixing. This condition de6nes the spinodal line for
the mixture.
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TABLE I. Critical parameters and critical exponents relative to the upper and lo~er consolution
points of a charged hard-sphere mixture, and to the upper consolution point of a charged and neutral
hard-sphere mixture. Results have been obtained by using a grid of 106 points (see text), except for the
values in parentheses, which correspond to a grid of 10 points.

Tcr ger

Z[ +1, Z2 +2, Z3 —1, Pp 0003
&cr

UCP

LCP
UCP

0.033 621 57

0.136518 11
0.174067 79

0.725 515

0.787467
0.654085

0.24695

0.031 523
0.020799

0.5 + 0.001
(Q.S+0.05)
0.5 ~ 0.005
0.5 + 0.005

1.00 ~ 0.001
(1.00 ~ 0.05)
1.00+' 0.009
1.00+ 0.001

Z] +1, Z2 0, Z3 —1, P() 0.025

UCP 0.149628 14 0.041 654 0.067 840 0.5 ~ 0.005
(0.5 w 0.07)

1.00+' 0.005
(1.00 ~ Q.QS)

As discussed in detail in Ref. 18, GM is obtained by
adding to the ideal mixing term, which has the standard
oral

Gg c inc+ (1 —c)ln(1 —c),
the excess Gibbs free energy of mixing GIV. This, in turn,
is obtained by first writing the excess Gibbs free energy
per particle of the mixture 6'" as the sum of an excess
hard sphere term, obtained from the Carnahan-Starling'o
equation of state, and an excess Coulombic term, obtained
from the analytic solution of the MSA (Ref. 21) through
the "energy route" (see Ref. 18 for details).

We have (in ktiT units)

Gcx~ I q I + [3x2+3x 3x(1+2x) I/2]8 -9 +3 1

(1-rl)' 72rl

with x 24rlI g; c;Z .
GM" is then calculated by subtracting from 6'" the

concentration-weighted sum of the pure component Gibbs
free energies, which correspond to the c 0 and c I lim-
its of Eq. (1). GM so obtained is then transformed into
the corresponding quantity per molecule, and finally add-
ed to GMd to obtain the Gibbs free energy of mixing GM.

The condition of constant pressure, required in the cal-
culation of (826M/8c )T p, is imposed, for each prefixed
I (T ), through the calculation of the function tl(c;I )
which makes the total pressure (expressed in e /R units)

f + + 2 3

+ [3x+3x(1+2x) ' '
xr

—2(1+2x)' +2]

(2)
equal to a pre6xed value Po over the whole concentration
range. The solution of Eq. (2) is obtained by an extended
precision numerical routine to a very high accuracy
(better than 10 ). Once rl(c;I ) is known, (|1 GM/
Bc )T,p is calculated numerically by using grids of
different spacings (10 -10 points) for the 0-1 interval of
concentrations.

As discussed in detail in Ref. 18, two upper consolution
points (UCP) and one lower consolution point (LCP) are

S, ,(0) -1
BC, T,p

S, ,(0) plays in the present context the role of an osmotic
compressibility.

The critical exponents, calculated through the log-log
plot of Eqs. (3) (displayed in Fig. I for the case of y), are
reported in Table I.

We see that classical values are quite accurately ob-
tained for the two critical exponents, at the three consolu-
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FIG. l. Log-log plot of $, , (Q) vs (T —T,*,) for a charged
hard-sphere mixture corresponding to the UCP at low reduced
temperatures.

obtained. The related critical parameters are listed in

Table I.
The critical exponents P and y are then defined as fol-

lows

~c
—c„~~ [(T,', —T')/T.', ]~,

S, , (O) ~ [(T' —T,', )I/T,', ] r. -

Here c„and T„indicate the critical concentration and
temperature, respectively, while S, ,(0) is the q =0 limit
of the concentration-concentration structure factor
S, ,(q), which is obtained from GM through the well-
known relationship
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tion points. However, the less fine grid leads to poorer es-

timates of P and y. With reference to the recent numeri-

cal work on critical coefficients quoted above, ' this
eff'ect of the grid further illustrates the difficulties inherent
to any numerical determination of critical exponents,
difficulties greatly simplified here by the knowledge of Gsr
in analytic form. For this proposal it is worth noting that,
while unnecessary for the present purposes, calculations
more accurate than shown here could be performed
through the use of finer c grids.

Classical values for the critical exponent P have been
obtained recently in experimental work on ionic fluids; '

the predictions of the theory therefore look consistent with

such previous results. We now consider, in particular, the
case of tetra-n-butylammonium picrate-l-chloroheptane,
cited above. Liquid-liquid phase separation and a critical
point have been observed by Pitzer et al. ' in this system,
in which tetra-n-butylammonium picrate is present as a
fused salt. The mixture contains three particle species,
namely, positive tetra-n-butylammonium and negative pi-
crate ions, and neutral chloroheptane molecules. The crit-
ical parameters reported in Ref. 19 are T„=414.4 K,x„0.085 mole fraction of picrate, and V„2300
cm mol ' picrate. The interionic distance is estimated to
be approximately 7 k

We have modeled this system as a mixture of charged
and neutral hard spheres. Specifically, we have con-
sidered a three component mixture with Z~ =+1, Zq 0,
Z3 1 and the concentration c—=p~/(p~+pq). c =0
thus corresponds to pure chloroheptane (species 2), and
c 1 to pure tetra-n-butylammonium picrate (species 1

and 3).
The calculations of the phase stability conditions for

this system is performed in the same manner as illustrated
above; that is, for each applied pressure Po we obtain a
phase diagram exhibiting, in this case, only one upper con-
solution point. By varying Po we then make the MSA
critical concentration equal to x,',"~' =0.085 pycrate (using
Ref. 19 notation), that is c„=0.041, using our notation.
This fit is obtained at Pa=0.025 (e /R ). The resulting
critical consolution temperature T„=0.14962814 (see
Table I). Note that c„turns out to be only slightly depen-
dent on Po e.g., at P0=. 0.004 one has c„=0.08, and at
Po =0.1, c„=0.03.

The phase diagram, obtained from G~ through the
common tangent procedure, is displayed in Fig. 2 together
with the experimental result. %e see that the overall pat-
tern of the real system phase diagram, characterized by a
marked asymmetry, is well reproduced by our approach.

The mapping of the experimental temperatures onto T*
values depends on the values of r- and R, which are fixed

by the request that T,'," ' (in reduced units) =T„.Now,
no experimental estimate of t. seems available for our par-
ticular system; Pitzer etal. , estimate eT„-1500on the
basis of a corresponding state argument while in, e.g.,
tetra-n-butylammonium picrate in buthanol, one has
a=9 4

If we assume a=8.6, then in order that the reduced
T,'," ' =0.149 628 14 we need to have R =7 A (which is the
experimental interionic distance); in this case Pa=0.025
(e /R ) will correspond to 240 atm (e /R"=9600 atm),
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0.1 35-
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tN

FIG. 2. Phase-coexistence diagram and spinodal line for a
mixture of charged and neutral hard spheres. Solid line and
dashed line: MSA phase coexistence and spinodal line, respec-
tively. Open circles: experimental data from Ref. 19 for tetra-
n-butylammonium picrate- 1 -chloroheptane, with experimental
temperatures rescaled as explained in the text.

while from rl„-0.068, we deduce V„-3250cm mol
picrate, which compares fairly well with the experimental
result. A smaller e would lead to a greater R, with an im-
provement of the pressure (Po-37 atm, if we take, e.g.,
eT„1500);however, the critical volume turns out to be
sensibly overestimated in this case.

Finally, we have calculated the critical exponent P, re-
ported in Table I. The classical value obtained is to be
compared with the experimental result P-0.5 reported by
Pitzer eral. ' The theory appears to correctly reproduce
the experimental classical result.

We see that a very simplified model, as the one used
here, is capable of satisfactorily describing the critical be-
havior of a fluid of highly structured molecules, as tetra-
n-butylammonium picrate-1-chloroheptane is. This con-
stitutes a clear indication that "elementary" interactions,
such as harsh repulsion at short-range and long-range
Coulombic forces, play a dominating role in this system,
at least as far as its critical behavior is concerned.

One can then reasonably expect this type of calculation
to be successfully applicable to the determination of phase
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diagrams of, e.g., charged micellar solutions. In fact, a
model such as the one we have proposed here is generally
considered realistic for such systems, and we have already
reported some preliminary results of this type in Ref. 18,
where the case of a charged hard sphere mixture with
both asymmetric charges and sizes was considered. It is,
however, evident that more experimental evidence would

be necessary at this stage in order to get a more complete
test of the predictions of the theory.

It is also worth mentioning that the MSA solution is
known in an essentially analytic form for an arbitrary
number of components. It would then be possible to study
multiple phase equilibria in mixed charged and neutral
fluids through the present approach.
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