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Dispersive optical bistability for large photon numbers and low cavity damping
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For a quantum-mechanical model of dispersive optical bistability we derive in the classical limit,
i.e., for large photon numbers, a two-variable Fokker-Planck equation. For low cavity damping this
Fokker-Planck equation can be approximated by a one-variable Fokker-Planck equation which is

solved numerically. If, in addition, the number of thermal photons is small compared with the num-

ber of photons inside the cavity, an analytical result for the transition rate is obtained.

I. INTRODUCTION

One of the main models in the theory of dispersive op-
tical bistability is the one of Drummond and Walls. ' In
this model a single quantized field mode inside a cavity is
driven by an external classical coherent driving field. The
nonlinear medium inside the cavity is described by a non-
linear polarization. Dissipation due to cavity losses is
taken into account by a coupling to a heat bath. In order
to calculate the transition rates between the two bistable
states, the equation of motion for the density operator of
the system has to be solved. In two publications ' we

have solved this equation by transforming it into a c-
number equation for the quasiprobabilities of Cahill and
Glauber. It turns out that this equation is a partial
differential equation for two variables, similar to a
Fokker-Planck equation. Generally it contains third-
order derivative terms and has a nonpositive definite
diffusion matrix. By using the matrix continued-fraction
method we have managed to determine the lowest
nonzero eigenvalue of this equation, which describes the
transition rate between the two stable states of the sys-
tern.

In the limit of large photon numbers, the equation of
motion for the quasiprobability distributions reduces to
an ordinary Fokker-Planck equation. Because this
Fokker-Planck equation has two variables and detailed
balance is not fulfilled, it cannot be solved analytically.
The same matrix continued-fraction procedure, that was
applied to the exact equation for the quasiprobability dis-

tributions, can be used for this Fokker-Planck equation.
For small cavity damping an energylike variable becomes
a slow variable. Therefore it is possible to eliminate the
fast variable and thus transform the two-variable
Fokker-Planck equation to an equation with only one
variable. Similarly as done for the Brownian motion

problem in a bistable potential the lowest nonzero eigen-
value can thus be obtained from this one-variable
Fokker-Planck equation for large photon numbers and
low cavity damping. The Fokker-Planck equation is,
however, quite complicated. The drift and diffusion
coefficients are expressed in terms of complete elliptic in-
tegrals. Nevertheless, the lowest nonzero eigenvalue can

be calculated numerically. If, in addition to the limits de-
scribed above, the number of thermal photons is small
compared with the number of photons inside the cavity,
the lowest nonzero eigenvalue can be calculated analyti-
callv.

If the cavity losses are small and the number of pho-
tons is not too large one can use an alternative method.
The nondiagonal elements of the density-matrix equation
can be neglected and the resulting equation can be solved
directly as is done in Refs. 6 and 7. The work of the
present paper (see also Chap. 13 of Ref. 8) is related to
the work of Dykman and Smelyanskii, who investigated
transitions between stable states of a driven nonlinear os-
cillator. The work of Haug, Koch, Neumann, and
Schmidt' should also be mentioned. They solved a
Fokker-Planck equation similar to our classical two-
variable Fokker-Planck equation by using a matrix
continued-fraction method. They have obtained a sta-
tionary distribution, but did not calculate transition
rates. Graham and Schenzle" investigated this equation
by some approximation methods. Drummond' used adi-
abatic elimination to obtain a one-dimensional
representation-free Fokker-Planck equation which can
describe tunneling in absorptive optical bistability near
the turning points of the state equation. Filipowicz, Gar-
rison, Meystre, and Wright' investigated noise-induced
switching in a purely dispersive Kerr medium by solving
a first-passage-time problem for a colored noise model.

The present paper is organized as follows. In Sec. II
we derive a classical Fokker-Planck equation from the
quantum-mechanical equations and discuss it. In Sec. III
we assume small cavity damping and approximate the
two-dimensional Fokker-Planck equation by a one-
dimensional Fokker-Planck equation. In Sec. IV the
quantities occurring in this one-dimensional equation are
calculated and expressed by complete elliptic integrals.
In Sec. V the algorithm for solving the one-dimensional
equation is described. In Sec. VI we derive an analytical
result for the transition rate, which is valid if the number
of thermal photons is small compared to the number of
photons inside the cavity. In Sec. VII the numerical and
analytical results are presented and compared with each
other. Section VIII, finally, gives a brief summary.
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p = i [—H/fi, p]+xL;„[p],
where H/R and L,„[p]are given by

H/fi= —Qa a+y(a ) a F(—a+a ), Q=coz —co,

(2.1)

(2.2)

L;„[p)=2apa —pa a a—ap+2n, h[[a,p], a ], (2.3)

(see Refs. 1—3). The parameters are defined as follows: y
is the anharmonicity parameter, F is the amplitude of the
driving field in proper units, 0 is the difFerence between
the frequency of the driving field and the resonance fre-

II. DERIVATION OF CLASSICAL EQUATIONS

For the model of Drummond and Walls' describing
dispersive optical bistability the equation of motion for
the density operator p in a reference frame rotating with
the frequency of the external driving field reads

y(g, g', s) =Tri p exp[(a —Pa +(s/2) ~g~z]},

i.e., we have

(2.4)

W(a, a', s) = Iy(g, g', s)e'& &d2( . (2.5)

In Ref. 3 we have shown that the equation of motion for
W(a, a', t, s) reads

quency of the cavity, ~ is the cavity damping constant,
and n,„ is the number of thermal photons inside the cavi-
ty.

The equation of motion for the density operator can be
transformed into a c-number equation by using the
quasiprobability distributions of Cahill and Glauber.
These quasiprobability distributions, denoted by
W(a, a', s), can be defined as Fourier transforms of the
characteristic functions

aW(a, a', s, t) a, 2[ ma+—i Qa 2iy—a'a +2ig(1 s)a+—iF]
at aa

[—va' i Qa—*+2i yaa' 2i g(1 ——s)a' iF]+ig—s a" — aa' aa" aa'

+~(2n,h+1 —s) +i (1——s ) a' — a W(a, a', s, t) .
a' .q, a' a . a

aa'aa 2 aa'aa aa' (2.6)

and

/a/'= &Q/qfz/'»1 (2.8)

The quasiprobability distribution W(a, a, s, t) is charac-
terized by the parameter s. For s =1, we have the
Glauber-Sudarshan P function, for s =0 the Wigner func-
tion, and for s = —1 the Q function.

From (2.6) we will derive a Fokker-Planck equation for
large photon numbers, i.e., for the classical limit. First
we introduce the normalized variables

z =v y/Qa, t =Qt, F=v'y/Q(F/Q), y=a. /Q (2.7)

and transform (2.6) to these variables. In the bistable re-
gion the normalized variables z and F are of the order 1;
see Ref. 2. In order to obtain a classical Fokker-Planck
equation the photon numbers must be large, i.e.,

Ace,
71 h= exp 1 »1. (2.9)

Therefore a classical Fokker-Planck equation can be ob-
tained for

—(&1, ((1 .
%co,

kT

In this limit we have

(2n,h+ 1 —s)—~ 2ykT
0 QAco,

(2.10}

(2.11)

and the quasiprobability distribution becomes a true
probability distribution independent of the parameter s.
Using (2.10) and (2.11} we obtain the classical Fokker-
Planck equation

aW(zz' t) a, , — .— a . ~ * ~ 2
( —yz+iz 2iz'z +i—F)W(z, z', t ) [—yz' iz*—+2i(z—') z iF) W(z, z', t)—

Bz az*

a'W(z, z*,t )+4yO
az az*

where the normalized temperature 0 is given by

&y kT8=——
2 0 Ace,

(2.12}

(2.13)

ecause in our further calculations only normalized quantities occur the tilde in t and F will be omitted. In real nota-



42 DISPERSIVE OPTICAL BISTABILITY FOR LARGE PHOTON. . . 629

tion, i.e., z =x +iy, (2.12) can then be written as

B W(x, y, r)
Bt

B' B'
+y8 + W(x,y, t) .

Bx By

B — — +[ yx —y+2(x +y )y]W( xy, t) — [ —yy+x —2(x + ) +F]W(x y r)
By

i t

(2.14)

(r„(r))=(r, (r)) =(r, (i)r, (r ))=0,
(r„(r)r„(r )) =(r, (r)r, (r )) =2@ex(r —r ) .

(2.16)

It is worthwhile noticing that (2.14) and (2. 15) are the

D ffi

Fokker-Planck and Langevin equations f d
'

u ng oscillator ' in the rotating-wave approximation
with the additive noise; see, for instance, Sec. II B of Ref.
2. It can easily be shown that the undamped system (i.e.,

y =0 and no Langevin forces) can be described by the fol-
lowing Hamiltonian equations:

Equations (2.12) and (2.14) are indeed Fokker-Planck
equations because the diffusion matrix is clearly positive
definite. As already pointed out in Ref. 3 (2.6) has the
orm of a Fokker-Planck equation for s =+1. The

diffusion matrix of this Fokker-Planck-like equation is,
however, not positive definite or positive semidefinite.

The Langevin equations corresponding to the Fokker-
Planck equation (2.14) read

x = —yx —
y +2(x +y )y + I „(r),

(2.15)
y= —yy+x —2(x +y )x+F+I (r),

where the Langevin forces I „(t) and I «(t) are Gaussian
white noise forces with the following expectation values:

(2I —1)F
y +(2I —1)

where I is defined by

I =X +y )

yF
y +(2I —1)

(2.20)

(2.21)

which in turn is determined by

F =I[y +(2I —1) ] . (2.22)

N ote that, in contrast to a damped motion of a particle in
a potential, these stationary solutions depend on the
damping constant.

Foror small damping the stationary solutions are in the
vicinity of the points determined by

BH BH
Bx By

(2.23)

only one trajectory H(x,y)=E for any energy value
above the minimum energy Eo', see Fig. 2(a). Figure 2(b)
shows some trajectories for ~F~ & 2/(3v'6). This case will
not be investigated further because we are interested in
bistability. If the system is damped, i.e., yWO, and if no
Langevin forces are present, we have the following sta-
tionary solutions:

BH . BH
By'' Bx

'

where the Hamilton function H is given by

H =
—,'(x +y )

—,'(x +y ) Fx—. —

(2.17)

(2.18)

Because the Hamilton function is time independent,
H x,y) is a constant of motion and the trajectories of
2.17 are given by H(x, y)=E. The x axis is a symmetr

axis for the trajectories. They cross the x axis at xo,
ry

where xo follows from H (xo,y =0)=E.
For a discussion of the undamped motion it is useful to

have a closer look at the function

Xc X

y

Xo

0

f (x)=H(x, y =0)=—,'x —
—,'x Fx . —(2.19)

(o) f~.-(-
For 0& ~F~ &2I(3&6), f (x) has two minima and one
maximum; see Fig. 1(a). The energies corresponding to
these extrema are Eo, E„and Ei as indicated in Fig. 1(a).
For Eo & E & E„ f (x ) =E has two real solutions and
there is only one trajectory H (x,y) =E. For E, & E & E
f (x)=E has four real solutions and we have two trajec-
tories H(x, y)=E. For E &E&, finally, f (x)=E has only
two real solutions and there is only one trajector

,y&= . Some trajectories for various energy values
are shown in Fig. 1(b).

For ~F~ & 2/(3v'6), f (x) has one minimum and there is

FIG. 1. The function (a) f (x) =H(x, O) and some trajectories

sho
(h) H(x, y)=F. for ~F~ &2/(3v'6). The trajectory H(x )=E i

s own by a dashed line, the trajectory H(x, y) =E, by a dotted
line.
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! H(x, o) scribe an arbitrary point (x,y) by the energy E, which
tells us which trajectory we are on, and by the traveling
time ~, which tells us where we are on this trajectory.

Because there are two trajectories H(x, y) =E for
E, & E & E, we divide the x -y plane into three regions as
indicated in Fig. 3. These three regions are characterized
as follows:

(b)

I

Xo

I: Ep & E & E„only one trajectory

II: E, &E &E, , the inner of the two trajectories

IIIa: E, &E &E„ the outer of the two trajectories

IIIb: E, &E, only one trajectory .

IV: E
&

& E only one trajectory

At E =E, nothing special happens in region III. Only
the inner trajectory H(x, y)=E (region II) ceases to exist
and the energy E uniquely determines the trajectory for

A transformation of the Fokker-Planck equation (2.14)
to the new variables v and E yields for regions I—III

FIG. 2. The function (a) f (x)=H(x, 0) and some trajectories
(b) H (x,y) =E for!F!& 2I( 3v'6).

BW
Bt

DF W — D, W+ qDE~W
B — B

BE w
' BE~

+2 D,F W+ D„W
a2 — B2

raE (3.1)

A linearization procedure shows that the stationary solu-
tions, which are close to the minimum or maximum of H,
are stable and that the stationary solution, which is near
the saddle point of H, is unstable. (In the Brownian
motion problem the Hamilton function can only have
minima and saddle points because the kinetic energy is al-
ways positive. The minima are stable and the saddle
points are unstable if the system is damped. ) In the zero-
friction limit, the system described by (2.15) is bistable for
F (2/(3&6) (for these F values H has one minimum, one
maximum, and one saddle point). For F &2/(3&6), H
has only one minimum, i.e., there is only one (stable) sta-
tionary solution. For finite damping the region of F
values, where bistability exists, is changed; see (2.20) and
Sec. II A of Ref. 2.

III. TRANSFORMATION OF THE FOKKER-PLANCK
EQUATION AND ELIMINATION

OF THE FAST VARIABLE

For the undamped system the energy is a constant of
motion. For small damping it is a slowly varying variable
because the energy loss due to the damping terms as well
as the correlation function of the Langevin forces scale
with y. Therefore we introduce the energy E as a new
variable. As a second variable we use the time ~ which
the solution x (t),y (t) of the Hamilton equation (2.17)
[i.e., the equation of motion (2.15) with no damping
forces and no Langevin forces] needs to go from a given
starting point (xo,yo) to the point (x,y) along the trajec-
tory H(x, y)=E. Obviously the trajectory crosses the x
axis at two points. As starting point we choose the one
with the larger x coordinate. This means that we de-

DEE =y8
'2 ' '2

BH + BH
Bx By

(3.2b)

Because the Jacobian of the transformation is equal to 1,
1.e.,

B(x,y)
B(r,E)

ax ay ay ax aH ay aH ax
a~ aE a~ aE ay aE+ ax aE

(3.3)

we have

I I I a
t

IIIb '-..

E=Eq

FIG. 3. The trajectory H(x, y)=E„which divides the x-y
plane into three different regions.

For our further calculations we do not need D„D,E, and

D„. Therefore we give only the result for DE and DEE.

D = aH +aH + 8 a'H+a'H
(3.2)E p x y p p 2 ' ' a

x y Bx By
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W(x, y)dx dy = W(r, E)dr dE = W(r, E)dx dy . (3.4)

(3.6}

Until now we have not used the fact that E is a slowly
varying variable for small damping. If y is small, the
solution of (2.15) will make many round trips along the
trajectory H(x,y)=E until it is removed appreciably
from the trajectory by the damping forces or by the
Langevin forces. The essential approximation for small
damping is that W(r, E) is almost independent of r T.he
probability distribution for the energy E, denoted by
k(E), is then given by

W(E)= f W(r, E)dr=T(E)W(E) . (3.5)
0

For our further calculations we do not use k(E} but
W(E); see also Refs. 5 and 16. Integration of (3.1}with
respect to ~, i.e., calculating integrals of the form

f T(Er

0

Wr (E, —0)= Wrr (E, +0)= Wrrr (E, +0) . (3.11)

Furthermore, from the conservation of probability we
conclude that

Sr(E. 0}=Srr(E +0)+Srrr(E +0) (3.12)

where the probability current density S(E) is given by

lated over the area enclosed by this trajectory and are ob-
tained by applying Stokes's theorem to the first form

f dr The upper signs are valid for trajectories with

counterclockwise direction of motion, while the lower
signs are vahd for trajectories with clockwise direction of
motion.

Continuity conditions at E=E,. As one can see in Fig.
3 the trajectory E =E, divides the x-y plane into three
different regions. Because the probability should be con-
tinuous at E =E, we have

then yields S(E)= I (E)W—(E) SJ(E—) W'(E) . (3.13)

T(E) BW(E t)'
Bt f D~(r, E}dr W(E, t)BE. o

+, f Ds~(r, E)dr W(E, t) .
BE

(3.7)

Ir(E, —0)=Irr(E, +0)+Irr, (E, +0),
Jr(E, —0)=Jrr(E, +0)+Jrrr(E, +0) .

(3.14a)

(3.14b)

Because B Hoax +B H/By has no singularity, the fol-
lowing relations for I(E) and J(E) can easily be derived
from (3.10}:

The other terms cancel because D, (w, E), D,F(r, E), and

D„(~,E) are periodic in r. (It follows from the definition
of ~ that all unique functions in the x -y plane are period-
ic in r. )

By using Stokes's theorem one can show the following
identity:

Combining (3.11)—(3.14) leads to

Jr(E, —0) Wr(E, —0)=Jrr(E, +0)Wrr (E, +0)

+Jrrr(E +0}Wrn(E +0)

(3.15}

f T(E)

aE Jo

'2
aH aH
Bx By

'2

d7. as the final form of the continuity conditions for W'(E).

IV. CALCULATION OF T(E), I(E), AND J(E)
Z tE)

Bx By

Substituting this result into (3.7) leads to

T(E) ' =2y I(E)+8J(E) W(E, t)
BW(E, t) B

In order to handle (3.9), we must first calculate the
quantities T(E), I(E), and J(E). Because we do not
need the explicit time dependence of x (t ) and y ( t) we can

,(x,E)

(3.9)

as the final form of our one-dimensional Fokker-Planck
equation. For each of the regions I—III the functions
I(E) and J(E) occurring in (3.9) are given by

I(E)= ,'f-r(E) BH BHx+ y dr=+ dx dy, 3 10a
0 Bx By

(a)

(x,E)

J(E)=—,
' f

2
BH BH

By

T

a'H a'H „
Bx By

'2

(3.10b)

(b)

b x

The integrals j . d r are calculated along the trajectory
H(x, y) =E, whereas the integrals j . dx dy are calcu-

FIG. 4. Possible forms of the trajectories H(x,y}=Efor en-
ergies where we have only one trajectory H(x, y) =E.
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make use of energy conservation and obtain from (2.18)

(x E) [ & x 2+( I +2E +2Fx )
1/2]1/2 (4.1)

T(E)=2f d»(lxI)

I (E)=2f dx f dy,

(4.2a)

(4.2b)

J(E)=f dx f dy +
Bx By

(4.2c)

where y+ stands for y+(x, E). By using (2.17), (2.18),
and (4.2) and by making the substitution

1+8E
x =u

8F

we arrive at

(4.3)

T (E)=&2/F f '
" QP+(u)

(4.4a)

I(E)=4f QP+(u)u du,

J(E)= ', f [3+12&—2Fu —8P+(u)]+P+(u)u du .

(4.4b)

(4.4c)

The polynomials P+(u) are given by
'2

P+(u) = — u
1+8E +&2Fu+-' .

8F 2
(4.5)

as an equation for the upper part of the trajectory
H (x,y) =E. Depending on E, we have only one trajecto-
ry or two trajectories H(x, y)=E. We first discuss the
case that there is only one trajectory H (x,y ) =E and then
we summarize the changes if there are two trajectories
H(x, y) =E.

Only one trajectory H(x,y) =E exists Th. e two possible
forms for the trajectory are given in Fig. 4. They are ei-
ther in region I or in region IIIb. For the trajectory of
the form given in Fig. 4(a) the whole upper part of the
trajectory (i.e., y 0) is given by y+(x, E) and the direc-
tion of motion is clockwise. Therefore we have

y+ (a, E)=y+ (b, E)=0 for trajectories of the form given
in Fig. 4(a) and byy (a, E)=y+(b, E)=0 for trajectories
of the form given in Fig. 4(b). For trajectories of the
form of Fig. 4(a) we have

P+(A)=y+(a, E)=0, P+(8)=y+(b, E)=0, (4.8)

and for trajectories of the form given in Fig. 4(b) we have

P+( —A)=P (A)=y (a, E)=0,
P+ (8)=y + (b, E)=0 .

(4.9)

y, (

It can be shown that P+(u) cannot have further real
zeros if there is only one trajectory H(x, y)=E. The
determination of the boundaries in the integrals occur-
ring in (4.4) can be simplified by determining the zeros of
P+(u) instead of solving H(x, 0)=E. Because of (4.8)
and (4.9) the results for T(E), I(E), and J(E) given in
(4.4) are valid for both forms of trajectories if in (4.4) the
smaller of the two real zeros of P+(u) is used as the
lower bound of integration and the larger one is used as
the upper bound of integration.

Two trajectories H(x,y)=E exist The .two possible
forms of trajectories are shown in Fig. 5. They are either
in region II (inner trajectory) or in region IIIa (outer tra-
jectory). The outer trajectory is described by y+(x, E)
[see Fig. 5(a)] or by y+(x, E) and y (x,E) [see Fig. 5(b)].
This is the same as for the case of only one trajectory
H (x,y ) =E. Therefore the results for the outer trajectory
are again given by (4.4) if the integration boundaries are
chosen properly. The inner trajectory is described by
y (x,E). In contrast to the outer trajectory, however,
the direction of motion is counterclockwise. By similar
calculations as done above for the case of a single trajec-
tory H(x, y)=E and by using P ( —u)=P+(u) after
substituting u by —u, we again obtain (4.4). As for the
outer trajectory the boundaries for the integrals change
and must be specified.

Integration boundaries. As already shown the region of

1/2

The polynomial P (u) has not yet occurred but will ap-
pear in our further discussion. The upper and the lower
bound of integration are transformed to

' 1/2
1+8Ea+

8F
b+ 1+8E

8F
(4.6) a a' b

X

If the trajectory looks like the one in Fig. 4(b) the in-
tegrals in (4.2) split into two parts and have the form

a b
~ ~ ~ + ~ ~ ~ (4.7)

C C

where in the first integral y (x,E) occurs instead of
y+(x, E) [P (u) instead of P+(u) after the substitution
(4.3)]. After some calculations and by using
P (

—u ) =P+ ( u ) we obtain (4.4) with —A instead of A

as lower bound of integration. The integration boun-
daries a and b are the points where the trajectory H (x,y )

crosses the x axis. Therefore a and b may be defined by

x,E)

c a a'
I

b
X

b

FIG. 5. Possible forms of the trajectories H(x, y) =E for en-
ergies where we have two trajectories H(x, y) =E.
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integration in (4.4) is between the two real zeros of P+ (u)
if there is only one trajectory H(x, y)=E. If there are
two trajectories H(x, y)=E one can easily show that the
polynomial P+(u) has four real zeros. Furthermore, it
turns out that one has to integrate (4.4) between the two
greatest zeros of P+(u) if one wants to calculate T(E),
I(E), and J(E) for the outer trajectory, whereas (4.4) has
to be integrated between the smallest two zeros of P+ (u)
if T(E), I(E), and J(E) have to be determined for the
inner trajectory.

The polynomial P+(u) is a polynomial of degree four
and the integrands in (4.4) are rational functions of u and
QP+(u). Furthermore, the integration boundaries are
zeros of the polynomial P+(u). Therefore all the in-

tegrals occurring in (4.4) can be expressed in terms of the
three complete elliptic integrals defined as follows:

T

The integrals (4.4) are reduced to (4.10a)—(4.10c) by using
Refs. 17 and 18. The calculations are lengthy but
straightforward. For the results given below we use the
abbreviations a0, a „and a2 defined by

'2

P (u)= — u
1+8E

+ 8F
+&2Fu +—'

2

= —u +a2u +a&u +a0 .4 2 (4.11)

P+(u)= —(u —u, )(u —u2)[(u r) +s ]—, u, &u2

If P+(u) has two real zeros, i.e., if T(E), I(E), and J(E)
are calculated for the region I or IIIb, we define u &, u2, r,
s, and k by

n/2

(1—k sin g)'

E —,k =J (1—k sin P)'/ dtt/,
2 0

m /t'2 d 1|'j
II —,p, k

(1+p sin f)(1—k sin f)'

Q 2 7TIo= —F
u

l P+ u pq

(4.10a)

(4.10b)

(4.10c)
I

p =[(u r)2+$2]1/2

pq

Furthermore, we have

q =[(u2 r) +s —]'

(u, —u2) —(p —q)k=—
2

(4.12a)

(4.12b)

(4.12c)

(4.12d)

(4.13a)

I,=J'
Ql

udu 1 (p —q)
2(pu2 —qu, )F —,k —(u2 —u, )(p +q)II —, , k

V'P, (u) &pq (p —q) 2
'

4pq

u du p 2 q 1 F 1r
k + ~ 1T

k
2( u2 —u2)

V'P, (u) &pq (p —q)

(4.13b)

(4.13c)

If P+ (u) has four real zeros, i.e., if T(E), I (E), and J(E)
are calculated for the regions II and IIIa, we define Q&,

Q2 Q3 Q4 4, and k by

P+(u) = —(u —u, )(u —u2)(u —u3)(u —u4),

I

4 u dQI2=
"(/'P+ (u)

Q iu2+Q3Q4=aE —,k— F —,k2' 2' (4.15c)

u, &u2&u3&u~ (4.14a) If we furthermore define for both cases
6=[(u4 —u2)(u2 —u, )]'/ (4.14b) J1

=—a
1 I2 + ( —ap +—a 2 )I1 + —a 1 a 2Ip (4.16a)

(u4 —u3)(u2 —u, )

(u4 —u2)(u2 —u, )

Instead of (4.13) we use the integrals
T

4 du

QP+(u)
4 udu

"3 QP+(u)

=2=—F —,k2'

2 Q4 Q3
u, F —,k +(u —u, )il

2 2 Q3 u)

(4.14c)

(4.15a)

(4.15b)

J2=(—', ao+ —,', a2)I2+ —,'a, a2I, +( ~a, + —,', aoa2)Ip,

(4.16b)

J,=(—'"a,a', + —,
" apa, )I2

+( —,', aoa2+ —,', a1a2+ —,'„a2+ —', ao )I1

+(,z'~aoa, a2+ ~a1++6a1a2)Ip, (4.16c)

I(E)=4J, ,

J(E)=4J, + 16&2FJ2 ——"J
(4.17b)

(4.17c)

the results for the regions I and III can be written as

T(E)=&2/FIp, (4.17a)
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If in (4.15) the region of integration is between u, and uz,
the results for Io and I2 do not change, whereas I& be-
comes the original I, (obtained with the boundaries u3
and u~) minus m. Therefore (4.17) is valid for region II if
in (4.16) I, is replaced by I, —m.

For numerical calculations the derivatives of I(E) and
J(E), denoted by I'(E) and J'(E), respectively, are also
useful. By using the second part of (3.10a), transforming
it to the variables E and ~, and taking the derivative with
respect to E, it can be shown that I'(E} is identical to
T(E). The derivative of J, i.e, J'(E), cannot be expressed
by T(E), I(E},or J(E). It is given by

v(E)

~
'
~ s ~ ~ a s a s

1
a 'a a s s a ~ a a i a a a ~0

-0.1 0-0.2

00 a a a a a a a a a 1 a a a a a a a a a I a s a a

J'(E)=v 2/FI0+SI, =T(E)+SI, . (4.18)

Again the result is valid for the regions I and III and ap-
plies also to the region II if I, is replaced by I& —~.

The functions T(E), I(E), J(E), and J'(E}are shown
in Fig. 6. At E =E„both T(E) and J'(E) have a loga-
rithmic singularity, which does not appear as a singulari-
ty but as a peak.

In the vicinity of the minimum of H (x,y ) (E =E0, re-
gion I) or in the vicinity of the maximum of H (x,y )
(E =E, , region II) the trajectories remain in the vicinity
of the minimum or the maximum of H(x, y). Therefore
H(x, y) can be expanded around its minimum and its
maximum up to second order in x and y. The corre-
sponding equation for the undamped motion is linear and
can easily be solved yielding

I(E)
2-

0—

I a s a ~ a a a a
1

~ s a a a s s a
1

a a 'I ~

-0.2 -0.1 0

~ ~ a a a a a a I a I a a a a I ~ I I a a ~ s

~ ~ a s a a a ~ a I a ~ a a a a ~ a s I a ~ a a

2~

[H„„(x,0)H~~(x, 0)]'

I (E)= T(X')(E 2)—
(4.19a)

&(E)-

2m(E E)—
[H„„(x,O)Hyy(x, O) ]'

J(E)=—,'[H„„(x,O)+H y(x, 0)]I(E)
m.[H„„(x,O)+H (x,O)](E E)—

[H„„(x,O)H (x,O)]'

J'(E)= —,'[H„„(x,O)+Hyy(x, O)]T(E)

(4.19b)

(4.19c)
o
-0.2 -0.1

E 0

a a a a s a a a a I ~ a a ~ a ~ a ~ s I a a ~ ~

~[H„„(x,0)+Hyy (x,0)]

[H„„(x,0)H~~ (x,0)] ' (4.19d) 60 —
(d)

j'(E)

as an approximation valid for E =k In (4.19), E stands
for either Eo or E, . Because of the symmetry of H(x, y)
the point (x,y), where H has its minimum or its max-
imum lies on the x axis, i.e., at y =0. The corresponding
x value is denoted by x and stands for both xo and x, .
[H(x,y) has its minimum Eo at x =xo, y =0 and its
maximum E, at x =x, , y =0. ] Furthermore, H„„and
Hyy are given by

40—

20—

0—

-0.2 —0.1
E 0

~ a ~ ~ I a a a ~
l

a ~ ~ a a ~ a a a
l

a I s a

() H AH
q» H.y (4.20)

FIG. 6. The functions (a) T(E), (b) I(E), {c)J(E), and {d)
J'(E) for F=0.08. The peaks in (a) and (d) are logarithmic
singularities. The dotted lines are the approximations (4.19).
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V. NUMERICAL DETERMINATION
OF THE EIGENVALUES

Because we are only interested in the long-time behav-
ior of (3.9) we do not need the full time-dependent solu-
tion and insert the ansatz

W(E, t)=e r"'P(E) (5.1)

into (3.9). If the eigenvalue A, is well separated from the
higher ones, it describes the long-time behavior of the
system. After some algebra and by using I'(E)=T(E)
we arrive at the eigenvalue equation

0J(E)$"(E)+ [I(E)+0J'(E)]P'(E)
+(I,+1)T(E)P(E)=0 . (5.2)

The boundary condition for (5.2) is

(5.3)P(E)~0 for E~oo .

Because there is no singularity at E=EO or at E=E,
and because I(E) and J(E) vanish at E =ED and at
E =E, [see the second form of (3.10); the area enclosed
by the trajectory becomes zero for E~EO, E, ] we con-
clude from (5.2)

P(E)=P(E, )e

g (E') IQ"

e
—g (E)/8

0~ E, J(E')
X T E" E" E", 6.3

2(A, +1)$(P )

8[H„„(x,O)+H (x,O)]

for P=Eo E& x=xo xi (5 4} where the function g (E) is defined by

For suitable parameters such a condition can still be
fulfilled. In order to obtain an approximate result for the
lowest nonzero eigenvalue we substitute the ansatz (5.1)
into (3.9). By integrating the resulting equation we ob-
tain for regions I and II the integral-differential equation

I(E)P(E)+8J(E)P'(E)= —Af. T(E')P(E')dE' . (6.2)
g

Here P stands for Eo if region I is investigated, whereas
for region II we have X'=E, Th. e contribution from the
lower bound f to the left-hand side of (6.2) vanishes be-
cause of I(P)=J(E}=0. (For a transformation of the
Fokker-Planck equation in the overdamped case to the
Fredholm integral equation and for a discussion for ob-
taining the lowest nonzero eigenvalue from the equation
see Sec. 5.10.2 of Ref. 20. The same procedure can also
be applied to the underdamped case. ) If the term on the
right-hand side of (6.2) is interpreted as an inhomogeneity
of a linear first-order differential equation the solution of
the "differential equation" (6.2) is given by

where we have used (4.19a)—(4.19d). The procedure for
solving (5.2} numerically is a modified shooting method. '

The various steps are as follows.
(1) Choose an approximate value for I,.
(2) Integrate (5.2) in the regions I and II starting at

E =Eo and E =E, , respectively, and end at E =E, . The
initial conditions for P(E}are arbitrary, the initial condi-
tions for P'(E) follow from (5.4).

(3) Scale P,(E) and P»(E) such that P&(E, ) =P»(E, ).
(4) Integrate (5.2) in the region III starting at E =E,.

The initial conditions for P(E) and P'(E) follow from the
continuity conditions for P(E) and P'(E) at E =E, ; see
(3.11) and (3.15). The upper limit for the integration is
some large value E,„on which the result must not de-
pend.

(5) Determine A, such that P(E,„)=0 by a root-finding
technique such as regula falsi, for instance.

(6) Normalize the result for P(E) if necessary (not
necessary for determining the eigenvalue only).

(6.4)

The probability current density in regions I and II reads

S(E)= —I (E)P(E)—0J(E)$'(E)

fT(E, ')ttp(E')dE' . (6.5)

y(E) Ae
—g(E)/8 (6.7)

If A. is small, P(E) approximately obeys the equation for
the stationary solution, i.e.,

T

I(E)+8J(E) $(E)=const=0 .
d

dE
(6.6)

Because I(P)=J(E)=0 and because P(E) and P'(E) do
not have any singularity at E =P, the constant in the
above equation must be equal to zero. Therefore we have
in regions I and II as well as in region III

VI. APPROXIMATION FOR SMALL 0"

In this section we show how the one-dimensiona1
Fokker-Planck equation (3.9) can be solved approximate-
ly if the normalized temperature 8 as defined in (2.13) is
small compared to 1. As explained in Sec. II we still have
to require that the thermal energy kT must be large com-
pared to the photon energy %co, . The combination of
these two conditions leads to

Substituting this expression into the integrals leads to

f T(E')P(E' }dE'
g'

= A f 'T(E')e g""dE'
E

T(E'), '(E')e "'"dE .I(E') (6.8)

kT Q
%co

(6.1) Because exp[ —g(E)/8] vanishes rapidly if EXP (8
small) we obtain



636 K. VOGEL AND H. RISKEN 42

I T(E')P(E')dE'
E

Jl= AT(E) „ I '(E')e ' ' dE'

= A8J'(E), (6.9)

if the region of integration is between E, and infinity. In
(6.17}we have used S( ~ ) =0 and the fact that P'(E) van-
ishes rapidly if E is not close to E, . [P(E) may again be
approximated by (6.7) if 8 is small. ] A partial integration
was necessary because of T(E)~ co for E~E,. The
continuity conditions at E =E, are

(6.10}

where we have used 1'Hospital's rule for the expression

J(E) J'(E ) J'(E )

E I(E) I'(g ) T(g )

P,(E, —0)=(r}„(E,+0)=pm(E, +0)=P(E, ),
St(E, —0)=Su(E, +0) .

(6.18a)

(6.18b)

S(E)=ASAJ'(E), (6.11)

which is valid in re ions I and II if E is not too close to
the extremal value (the term exp[ —g(E)/8] has been
neglected in (6.9)}. From (6.3) and (6.9) we obtain

P(E)=P(E, )e

E eg(E')/8
A, AJ'(E—)e ' ', dE' . (6.12)J(E')

The main contribution to the above integral stems from
the region E=E, because exp[g(E)/8] becomes very
large at E =E,. Therefore the integral can be approxi-
mated by

E g i(E i )eg (E') /8

I(E')

g'(E')eg' )i"dE'
I(E, ) E,

Substituting (6.9) into (6.5) the probability current density
becomes

Form (6.16) and the continuity conditions (6.18) one can
easily conclude that the eigenvalue X is given by

It(E, —0)I(t(E, +0)
8 In(E, +0) It(E,——0)

—g (E —0)/8 —gii(E +0)/8
X

JI(Eo ) JII(E1 }
(6.19)

For simplicity J,'(Eo) and J'„(E,) can be expressed by
the second derivatives of H as given in (4.19d). In order
to obtain transitions from E0 to E, and vice versa the
solution of the Langevin equations (2.15) has to cross the
critical trajectory H(x, y)=E, . Obviously, (6.19} is the
sum of two terms [J',(E, ) is negative; see Fig. 6(c)]. The
first term may be interpreted as the transition from the
minimum Eo of H(x, y) over the trajectory H(x, y)=E, .
The second term describes the transition from the max-

Q" g(E )/8

I(E, )
(6.13)

10' .

Substituting (6.13) into (6.12) leads to the approximation

g

P(E)= P(E, )+A,8A e ' (6.14)I(E, )

for P(E) valid in regions I and II if E is not too close to E
or E, . Because (6.14) and (6.7) must agree (at least ap-
proximately} we conclude that the constant A must be
given by

10

0.1 0.2 0.3

P(E, )

e ' —
A,8J'(E )/I (E, )

Therefore the probability current density reads

A,8J'(E )P(E, )

—g(z )ze
e ' —A,8J'(E ) /I (E, )

(6.15)

(6.16)

2

100

In region III we obtain instead of (6.5)

S(E, ) = AJT(—E',)P(E')dE'
C

= XI (E, )$(E, )+ AJI (E')P', (E')dE'
C

=BI(E,)P(E, )+XI(E, ) J P'(E')dE'=0,
C

(6.17)

I

0.1 0.2
I

0.3

FIG. 7. The first two nonvanishing eigenvalues of the classi-
cal Fokker-Planck equation (2.12} as a function of the driving
field F for y =0.1. The values for 0 are (a}0.02 and (b}0.05.
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(b)

2x10
0.1 0.2 0.3

I

0.1 0.2 0.3

FIG. 8. The first two nonvanishing eigenvalues of the classi-
cal Fokker-Planck equation (2.12) as a function of the driving
field F for y =0.01. The values for 0 are (a) 0.02 and (b) 0.05.
The dotted lines are the eigenvalues of (3.9) (approximation for
small cavity damping).

10

imum E, of H (x,y ) over the trajectory H (x,y ) =E, . The
functions g, (E, —0) and g&&(E, +0) correspond to the
barrier heights of the potential in the Kramers problem.
Similar but simpler calculations have been applied to the
Brownian motion of a particle in a bistable potential; see,
for instance, Ref. 5. For low 8 and small damping one
obtains instead of (6.19) the well-known result of Kra-
mers; ' see also Ref. 5. Thus (6.19) is the Kramers's es-
cape rate applied to the more complicated Hamilton
function (2.18).

VII. NUMERICAL RESULTS

10 '—

I

0.1

I

0.2 0.3

FIG. 9. The first nonvanishing eigenvalue of (3.9) (approxi-
mation for small cavity damping) for (a) 8=0.005, (b) 0.01, and
(c) 0.02. The dotted lines follow from (6.19) (approximation for
small cavity damping and small 8).

In Ref. 3 the exact equation of motion for the
quasiprobability distribution as a Fokker-Planck approxi-
mation were solved numerically by using the matrix
continued-fraction method. %'ith

o. =z, u'=z*, 0, = —1, g=1, ~=y,
2n, h+ 1 =40

(7.1)

the Fokker-Planck operator (4.8) of Ref. 3 exactly agrees
with the Fokker-Planck operator of our classical equa-
tion (2.12). Therefore we can obtain exact eigenvalues of
the classical equation (2.12) by using the matrix
continued-fraction method as described in Refs. 2 and 3.
The results are shown in Fig. 7. As one expects the first
nonvanishing eigenvalue is small for such F values where

the system is bistable. If the temperature is increased the
transition rate as well as the first nonvanishing eigenvalue
must become larger. This behavior is clearly visible in

Figs. 7 and 8. Because of convergence problems it be-
comes more and more time-consuming to determine the
exact eigenvalues for small cavity damping by using ma-
trix continued fractions. For y=0. 01 and 8=0.02 [Fig.
8(a)] we were able to calculate eigenvalues with double
precision arithmetic. For smaller y or 0 the matrix
continued-fraction method needs a higher precision arith-
metic.

In Fig. 8 the approximation for small cavity damping
described in Secs. II—IV is compared to the exact solu-
tion. As one can see the shapes are almost the same.
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However, the approximate curve is shifted a bit to the
left compared with the exact solution. The deviations for
the same F are of the order of 30% for the lowest non-
vanishing eigenvalue. It seems that y=0.01 is not low
enough for a precise agreement with the zero-friction-
limit result. In analogy to the Brownian motion problem
in a bistable potential, one expects that in the limit y~0
the ratio A, /(2y) is a linear function of &y for small
damping; see Refs. 5 and 22—24. Therefore the deviations
are of the order &y =0. 1 in agreement with Fig. 8(a).

In Fig. 9 the approximation for small cavity damping
and small 8 (6.19) is compared with the first nonvanish-

ing eigenvalue determined numerically from the one-
variable Fokker-Planck equation (3.9) (approximation for
small cavity damping). It can be seen that the agreement
is good in the bistable region, especially for low normal-
ized temperatures e. It should be mentioned, however,
that even in the limit 8~0 the approximation fails at
F=0.27. This can be explained as follows: For
F &2/(3&6)=0.27216. . . there is only one trajectory
H(x, y) for any value of E, i.e., the topology given in Fig.
1 is no longer valid. Because this topology was essential

for the derivation of (6.19) the result (6.19) cannot be val-

id for F & 2/(3V6).
VIII. SUMMARY

We have shown that in the limit of large photon num-
bers the equation of motion for the quasiprobability dis-
tribution describing dispersive optical bistability reduces
to an ordinary two-variable Fokker-Planck equation.
This equation, which does not fulfill the condition of de-
tailed balance, can be solved by the matrix continued-
fraction method. For small cavity damping the energy
becomes a slow variable. In the limit y~0 one obtains a
one-variable Fokker-Planck equation, which was solved
numerically by a shooting method. It agrees quite well
with the result of the matrix continued-fraction method.
If, in addition, the number of thermal photons is small
compared to the number of photons inside the cavity, an
analytic expression for the lowest nonzero eigenvalue was
obtained in analogy to the Brownian motion problem for
small damping. In particular, the lowest nonzero eigen-
value was determined, which describes the transition rate
between the bistable states.
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