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Asymptotically synchronous chaotic orbits in systems of excitable elements
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Sufficient conditions are given for the emergence of asymptotically synchronous chaotic orbits
in ensembles of identical dynamical systems with all-to-all interaction.

Very recently Pecora and Carroll' reported on the
synchronization of the chaotic trajectories in dynamic sys-
tems of the type

v -g(u, w), (la)

w -h(v, w), (lb)

(lc)w' h(v, w'),

where the subsystems (la) and (lb) taken together repre-
sent a dynamic system in a chaotic regime. Two identical
subsystems (lb) and (lc) when considered as nonauto
nomous

w -h(s(t), w) (2)

with a chaotic driving function s(t) where assumed to
have all the Lyapunov exponents negative. It was conjec-
tured and has been confirmed by numerical and
"hardware" nonlinear circuit experiments that the subsys-
tems (lb) and (lc) starting with different initial condi-
tions may asymptotically synchronize in terms of the w, w'

variables. The observed synchronization was "structural-
ly" stable with respect to small parametric perturbations
of the subsystems. It was also pointed out that the condi-
tion of negativity of all the Lyapunov exponents of the
auxiliary system (2) is only a necessary one for a synch-

l

ronization.
We have been independently investigating the phe-

nomenon of the complete (approximate) synchronization
in networks of identical (or similar) "excitable elements, "
and have come to similar conclusions concerning the pos-
sibility of emerging network synchronized states ranging
from equilibrium through periodic and quasiperiodic to
chaotic for a. parameter modulated, all-to-all, unidirec-
tional interactions between units (this interaction may be,
nevertheless, arbitrarily small along each link in the limit
of an infinite system). Although the indisputable priority
of "synchronous chaos" belongs to Pecora and Carroll, we
still decided to present some of our results, which contain
the sufhcient condition for synchronization of networks
with all-to-all interaction, and stress that a separate "mas-
ter" driving system like (la) may emerge as a collective
network property. This mechanism seems to be of partic-
ular relevance for small, realistic neural networks exhibit-
ing spontaneous activity.

Possible neurophysiological implications of synchron-
ized chaos were also pointed out by Pecora and Carroll.

To illustrate the main idea and to show that a synchron-
ized chaos may occur naturally in populations of coupled
dynamical systems let us consider a somewhat artificial
example of coupled discrete-time maps

x "
p Y„(1—Y„)+P(x„"—Y„), p) 0, PC (O, l), k I, . . . , N,

JV

Y„—=—g x(k)Nk-I"

(3)

Here each separate map is coupled to the system mean,
and the interactions are arranged in such a way that all
the differences x„t")—Y„converge to a single stable fixed
point at zero. On the other hand, as is well known, the
average Y„could remain chaotic and even ergodic (for
tu 4). The whole system then has a "relative equilibri-
um" (a concept already introduced by Poincare) and con-
verges to a single chaotic orbit. This orbit still sensitively
depends on the system's initial condition, and hence the
whole system, though asymptotically synchronous, is still
unpredictable.

To deal with the more "serious" case of continuous-
time differentiable dynamical systems let us consider,
first, an idealized population of identical differentiable
dynamical systems (termed units) with a separate unit de-

l

scribed by a low-dimensional equation of motion

m(x ' ) x ' 6 R' i 1 2, . . . , N, (4)

where x ~' is an s-dimensional vector of the state variable
of the ith unit, and m: R' R' is a vector field governing
the dynamics. We assume that each unit has single glo-
bally asymptotically stable equilibrium, but may be excit-
ed to interesting dynamics by impulses, drives, and net-
working. Let all units interact with input-output type of
interaction, ~here a single unit receives separate signals
dependent on the state variables of an input unit, in-

tegrates them linearly, and influences, in turn, other units

by some output function of its state variables. This type
of interaction is most appropriate for systems interacting
via unidirectional "messages, " and differs from systems
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with coupling functions depending on both state variables
of interacting units, like typical microscopical physical
systems with their two-particle interactions. Of course
mutual interaction of two units in our system is still possi-
ble, but has to be realized by at least two independent in-
teraction links. This seemingly simple restriction has im-
portant consequences for the system dynamics. Neuronal
ensembles with their unidirectional propagation of signals
in axons and axonal branches can be used below as stan-
dard examples of such systems. The simplest ensemble of
this type is one with all-to-all identical interactions

x" m(x")+—g f(x "), i 1,2, . . . , N, (5)
N )(~])

where f:R' R' is the "influence function, "f(0) 0, in-

itially assumed identical for all interacting units, where e
measures the interaction strength. The N factor is in-
troduced to stress that the interaction can be considered
weak in the large system limit. (Note obvious analogies
with the "mean-field" type of kinetic models of statistical
physics. ) The system (5) has an evident symmetry with

resect to the permutations of units. In other words, if
p ' (t ),p (t ), . . . ,o (t ) is a solution satisfying the in-

itial conditions yt' (0) x ' y (0) xl . , p l(0)
x0t l then any permutation of the single units' orbits

will be a solution. A solution to (5) with identical initial
conditions for all units is then necessarily synchronous,

x"'(t) -v(t), for alii

as a simple consequence of the system's symmetry and the
uniqueness theorem. We will be mostly interested in the
asymptotically synchronous solutions, when

lim x ' (t) y(t), for alii . (7)

Let v "'(t) v "'(t) v "'(t). v "'(0)=x"' v "'(0)
xo, . . . , p (0) x0 be a solution of the original

system (5). Select a solution p(t) of the auxiliary system

x -rn(x)+ e(N —1)f(x), x e R' (8)

+—[f(p(t)+y") —f(P(t))] .
N

(9)

One may easily check that the systems (5), and (8) and
(9) have equivalent linearization operators about p(t ) (re-
lated by a simple time independ-ent similarity transforma-
tion leading to the "mean plus deviations" coordinates).
It follows that the stability results based upon invariant

satisfying the initial condition P(0) (I/N)g;-~x0'. It
is assumed that this system may have a chaotic attractor
for sufficiently large N. We will investigate the condition
under which the solution p(t) is a relative equilibrium of
the system (5): lim, x t'l (t ) p(t ) for all
i i 1, . . . , N. Consider yet another N —1 identical
nonautortomous auxiliary equations

y"'- m(y(t)+y"') —m(y(t))

20
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FIG. l. Synchronization of four identical Lorenz units with different initial conditions. (Synchronization occurred in all three vari-

ables, but only the yf'~ variables are shown. )
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200

parameters b = 8/3, p{1) = 9 & p{ ) = 10 5 p(3) -
1 p 0

and p(4} = 9 8

with $(1,2) = 80/3, $(1,3) = 112/3, $(1,4) = 112/3,
$(2, 1) = 112/3, S(2,3) = 112/3, S(2,4) = 80/3,
$(3, 1) = 112/3, Z(3,2) = 80/3, c(3,4) = 1 12/3,
~~{4,1) = 112/3, S(4,2) = 112/3, and $(4,3) = 80/3

(i) loo-
in& tial conditions for g 1

(i)
g

(') =so.o
g l

(2) = 200 0
gl(3) = 183 o

g, (4) = s5.0

50-
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FIG. 2. Synchronization of yl" for four Lorenz units with different parameter values and different coupling strengths.
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150-

parameters: b(') = 8/3, p(1) = 20.0, p(2) = 50.p, p( ) = 1Q.Q
and p(4) = 5.0

with 8(1,2) = 80/3, 8(1,3) = 112/3, $(1,4) = 112/3,
8(2, 1) = 112/3, 8(2,3) = 112/3, S(2,4) = 80/3,
8(3, 1) = 112/3, Z(3,2) = 80/3, 8(3,4) = 112/3,
c(4, 1) = 112/3, S(4,2) = 112/3, and $(4,3) = 80/3

100-

initial conditions for g 1

(i) ) (1) 5pp
g 1(2) = 200.0
g 1(3) = 183.0
g, (4) 65 0

50 a

1

o-
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0 96 97 98 99 100

FlG. 3. Synchronization of yf' for four Lorenz units with difTerent parameter values and diff'erent couphng strengths (note the
long-term synchronization of these units).
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properties of the linearization operator (determinant,
trace, and Lyapunov exponents) will be the same for both
systems. Possible positive Lyapunov exponents occur then
in the subsystem (8) subspace and systems like (9) are
easier to analyze, as simply related to a single unit dynam-
ics (4). Standard stability results indicate that y

t') 0
correspond to a stable equilibrium if the linearization
operator L (r ) of (8) and (9) is a constant stability matrix.
This is the case when attractors of (8) reduces to a fixed
point, and the single-unit "corrected" dynamics [with the
(e/1V)f term) has a unique stable equilibrium. For
periodic stable orbits of (8) this also remains true, if the
characteristic exponents of L(r) are all negative (Floquet
theory). Difficulty occurs when p(i) is a nonperiodic orbit
possibly approaching (or staying on) a chaotic attractor.
In general, it is not true that the negativity of the

L~apunov exponents for (9) implies the stability of
y

'1 0 solution. However, this will be the case if (9) is
(forward) regular on p(t). For definition, see also Ref.
3; here we only quote a passage from this review: "Al-
though regularity may be hard to verify for a particular
system, we know that it happens in many cases involving a
flow with an invariant probability measure. This is a key
statement of Oseledec's famous multiplicative ergodicity
theorem. "

The above sketched proof of the synchronization to a
periodic orbit in the system (5) is similar to the one given

by Schnol for a system of many generalized "oscillators"
interacting with an oscillatory "medium. " Schnol also
deals with the case of "slightly different" oscillators. For
equilibria, and for periodic orbits these results are readily
transferable to our case if one considers "slightly

(J') (J) (l) (I) + l ~ ~(ij ) (j)
N j~«~

~ (I) (i) (i) b (i) (i)
$ I 4

(10)

with the results presented in Figs. 1-3 and commented
upon in the figure captions.

The type of synchronization discussed above becomes
even more striking if one considers evolving networks with
interconnections growing in time, when for some critical
density of links the whole network suddenly changes to a
new dynamic state. We are currently investigating per-
colative transitions in networks with random interactions.
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different" (in C' norm) units or interactions. We were
unable to obtain the same results in the "chaotic" case, al-
though our computer simulations strongly indicate that
this is the case. Lack of space does not allow us to present
all of these simulations we carried out for networks of
realistic neuromimes (Fitzhugh-Nagumo, Hodgkin-
Huxley, and Chay type neurons —all with a novel "non-
linear filtertype" axosynaptic coupling —these results will
be presented elsewhere). We present however, an exam-
ple of a synchronization that is strikingly strong (even
transients synchronize) and insensitive to structural
changes in units and in the coupling parameters. This is a
system of four Lorenz-type units described by

(i) p (i) ( (i) (i) )yi - y2 -yi
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