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Model for ion transport in bipolar membranes
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A simple theory for multi-ionic transport, nonequilibrium water dissociation, and space-charge
effects in bipolar membranes is developed on the basis of some of the concepts used in the solid-state
n-p junction. Ion transport is described in terms of the Nernst-Planck flux equation and nonequili-

brium water dissociation is accounted for by the Onsager theory of the second Wien effect. The
model is expected to be of interest for biological and synthetic membranes, and can explain a num-

ber of observed effects.

I. INTRODUCTION

Bipolar membranes consist of a layered ion-exchange
structure composed of a cation selective membrane (with
negative fixed charges} joined to an anion selective mem-
brane (with positive fixed charges). They are analogous
to semiconductor n-p junctions, though there exist some
important differences regarding the number and nature of
mobile species. In recent years, bipolar membranes have
attracted the interest of both physicists and engineers. It
has long been recognized that many physiological mem-
branes containing fixed charges can be approximately an-
alyzed on the basis of simplified bipolar membrane mod-
els. ' On the other hand, laboratory experiments with
synthetic bipolar membranes have shown a number of
technological applications in new membrane processes.
It has also been observed that monolayer anion selective
membranes can show a behavior close to that of bipolar
membranes due to fouling during electrodialysis.

Transport theories accounting for ion transport
through bipolar membranes in the absence of electric
current and nonequilibrium water dissociation have been
developed. The aim of this report is to present a simple
theory allowing for both ion transport and nonequilibri-
um water dissociation, thus extending the seminal work
by Bassignana and Reiss. Some of the distinctive
features of our study are (i) water dissociation is account-
ed for by Onsager's theory for the dissociation of weak
electrolytes (there is no need then of introducing addi-
tional parameters ' ); (ii} some of the conditions of sym-
metry previously introduced to simplify the problem will
not be assumed here; (iii} a quantitative analysis of the
efFect of the dielectric constant on the current-voltage (i
V) curve is included; and (iv) the final expressions ob-
tained are very simple and do not require a numerical
solution to be evaluated.
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anions, i=3 for hydrogen ions, and i=4 for hydroxyl
ions) and subscripts I., R, E, and P refer to the left and
right bulk aqueous solutions and to the cation and anion
selective layers of the bipolar membrane, respectively.
Xz and Xz are the negative and positive fixed charge con-
centrations. The first membrane layer extends from
x = —d~ to 0 and the second one from x =0 to da (an
abrupt junction is assumed). Some simplifying assump-
tions must be introduced: the membrane is permeated by
a homogeneous fluid carrying the mobile ions; ions are
treated as point charges; the system is isothermal and
remains at the steady state; and volume movements of the
fluid as a whole are negligible.

Bulk solution and inner (membrane phase) concentra-
tions are connected through the following local equilibri-
um conditions at the interface x = —

d&
..

II. FORMULATION OF THE PROBLEM

Figure 1 shows the bipolar membrane. c; stands for
ion concentrations (i=1 for salt cations, i=2 for salt

FIG. 1. Schematic representation of the bipolar membrane.
The region extending from x= —k& to A,p corresponds to the
space-charge layer between the negatively and positively
charged layers.
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concentrations meet the local electroneutrality condition

CiN( dL )+C3N( dL ) C2N( dL )+c4N( —dL )+XN

Equations (1) and (2) are the basis of many simplified
treatments for the solution-membrane interface, and
have a number of limitations. ' " From these equations,
it readily follows that

rate constants for dissociation and recombination, respec-
tively. It is a reasonable assumption to consider their
equilibrium values kd =2X10 s ' and k„=1.11X10"
s ' M ', because very high electric fields causing none-
quilibrium water dissociation are expected to occur only
in the space-charge region. Then,

kdc =kdc =k„c3N( —
dL )c4N( dz—

) .

Equations (8) and (9) yield, to a first-order approximation
in the product c3Nc4&, the differential equation

cN( dL)= ctL
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i =1,2, 3,4 . (3)
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k„c3—N( dL )c4N( dL ) . (10)

Equation (10) has also a boundary condition similar to
that of Eq. (6). We finally obtain

For describing the ion fluxes, the one-dimensional
Nernst-Planck equations will be considered:
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where the usual boundary condition ' has been con-
sidered:

c2N( —
AN ) =czN( —dL )exp( V), (6)

where J;N are the ion fluxes, D,N the ion diffusivities, and
P=(F/RT)P is the dimensionless local electric potential
(F is the Faraday constant, R the gas constant, and T the
absolute temperature). The microscopic bases and limits
for the Nernst-Planck equation applied to membrane sys-
tems can be found elsewhere. ' We will consider sepa-
rately the cases of the two minority carriers over
—dL (x & —kN.

Case i =2. Taking into account that the concentration
gradient term is much greater than the potential gradient
term, and considering that the bipolar membrane con-
tains neither a sink nor a source for anion 2, it is readily
obtained that

PN = [ki c3N( dL )/D4N ]

Concentrations c1& and c3N can be found from the 1ocal
electroneutrality and the equilibrium water dissociation
conditions over —

dL & x & —
A, N. The final results are

x +dL
C, N(x) =C, N(

—dL )+ciN( —dL )
d ~

[exp( V) —11

(12)
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C3N(x)=C3N( dL )+C4N( dL )

X [exp( V) —1] . (13)

A similar treatment to that developed for Eqs. (1)—(13)
can also be applied to the interface at x =dR and the re-
gion A p & x (dz.

The next step is to solve for the electric field E in the
space-charge region. We will consider here two well-
known hypotheses: the space charge at this region is to a
first approximation the density of fixed charges in the
membranes, and the externally applied voltage will ap-
pear as a potential drop across the region —kN &x & A,~.
Under these assumptions, the Poisson equation leads

2, 13

V being the applied voltage.
Case i =4. As in the preceding situation, we have that

1/2
2RT
t'„eO XN +XP

(14)

dc4y
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but now the steady state continuity equation is

{7) and
1/2

2e„eoR T XN +Xp
(b,g~ —V), (15)

Q2 N P
dJ4N

dx g —r =kdc~ —k„c3Nc4N (8)

where g and r are the generation and recombination rates
of the ions coming from the water dissociation, c the
water concentration within the membrane, and kd, k„ the

where Eo is the permittivity of the free space and e„=e/eo
the dielectric constant in the membrane. A/M denotes
the dimensionless membrane potential arising from the
concentration difference between the two bulk solu-
tions. ' This magnitude is analogous to the internal
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contact potential of solid-state junctions. '

On the other hand, nonequilibrium water dissociation
in the space-charge region is assumed to be described by
the Onsager theory of the second Wien effect. According
to this theory, the electric field strongly affects the rate
of dissociation of water molecules. Although Onsager's
treatment is a little bit involved, the final result is in our
case very simple. For

=c4„=—c„ for the solution, which yields P~=Pp—:P and
b,/~ =0. Furthermore, we will focus on artificial mem-

branes having thicknesses d »A, (typically d —10 m
and A. -10 m for these membranes).

Taking into account these values, the i- V curve
simplifies to

i =2F(D,c, /d +PDI, ch coth(Pd ) )

X[exp(V}—1]—Fkdc A, , (21)0.096 E )
E„T

(16)

the nonequilibrium rate constant for dissociation kd in-

creases over its equilibrium value kd according to

k&/ko (2/n )' 2(8b) exp[(8b)&n] (17)

Taking e„=20 and T=297 K as input values, Eq. (16)
yields E & 5 X 10 V/m. This condition can be fulfilled by
one order of magnitude at the membrane interface. '

To appreciate the importance of the high electric fields

at the interface on the nonequilibrium water dissociation,
consider XN =Xp =1M, e, =20, T=297 K, hgM =0, and
V=(RT/F)V=1 V. Then, Eq. (17) gives kd/kd =10.
The actual fluxes of the ions coming from water dissocia-
tion seem to confirm ratios kd /kd of this order of magni-

tude (or even greater) in bipolar membranes. ' '
III. RESULTS

The current density carried by the salt ions i, is

i, =F(Jip Jzv)

=F
&

c&p(dz )+
&

cz~( dL)—
R P L N

X [exp( V) —1] . (18)

The current density carried by the ions coming from wa-
ter dissociation, i has two contributions

=F([J3p(0)—J4~(0)]+[J3~(0)—J3p(0)]) . (19)

The first term can be obtained from Eqs. (7), (11), and

those corresponding to species i =3. The second term in

Eq. (19) represents the discontinuity in J3 at x=0 due to
the generation source, i.e., the nonequilibrium water dis-

sociation via Wien effect,

where c, —:czN(
—

dL ) =c,p(d„) and ch =c4~( —dL )

=c3p(dz). kd is given by Eq. (17) with

E= (FX~ V~ /E„co)', and A, takes the form
=(4,E„Eo~ V~/FX)'~ . Figure 2 shows an i Vcu-rve com-

puted from Eq. (21) with the typical values D, =10
m /s, D&=10 m /s, X=1M, c, =10 M, c&=10 M
(pH=7) and d=10 m. Note also that p=10 m ', and
then coth(pd)=1. Since the membranes can contain
some 18% water by weight, c =10M and e„=20 are
reasonable values. '

The shape of the curve in Fig. 2 nicely follows the ex-
perimentally observed trends ' ' over the full voltage
range. The forward bias voltage produces a well-known
effect ' (the salt ions carry the current) and we will not
insist on it. For the reverse bias, the membrane exhibits
first the high impedance characteristics of the n-p junc-
tion. However, for greater voltages water dissociation
begins to occur. Then, the resistance drops and hydrogen
and hydroxyl ions carry most of the total current. Such
effects have extensively been reported in the litera-
ture 3,4, 8, 14, 15

Figure 2 also shows the effect of the relative dielectric
constant e, on the i-V curve. This constant seems to be a
key parameter in the theory here developed. In some ap-
plications (e.g., the production of HC1 and NaOH from
NaC1 aqueous solutions ) a high rate of water dissocia-
tion is desirable. Conversely, other separation processes
such as electrodialysis require a water dissociation rate as
low as possible. Thus the physicochemical characteris-
tics affecting the dielectric constant should be carefully
examined when developing a membrane to be used in

processes involving water dissociation.

J3~(0) J3p(0) = kdc A, (20)
10-

Now, the i-V curve is simply i =i, +i . We have then
derived an analytical solution rather general and simple
to a problem of multi-ionic transport that involves non-
equilibrium dissociation and space-charge effects. It is
well known that these sorts of problems commonly re-
quire difficul numerical work. ' '

Here we will concentrate on the analysis of the i-V
curve and the current density i for the symmetrical case.
This corresponds to dL =dR =—d and XL =X„=Xfor the
membrane, D2~=D]I —=D, and D4~=D3&=D& for the
ions, and c,L=c2L=C1R =c2„=—c, and c3L c4I c3R
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FIG. 2. Computed current-voltage curves. Numbers in the
figure correspond to the values of the dielectric constant e, .
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IV. DISCUSSION

A very simple theory for multi-ionic transport, non-
equilibrium water dissociation, and space-charge effects
has been developed. The approach is based on some pre-
vious work by Bassignana and Reiss, and might be re-
garded as a natural extension of the concepts appearing
in the solid-state n-p junctions. ' However, some limita-
tions of the theory should be pointed out. The use of
Onsager's theory for the second Wien effect may be a
matter of controversy. Although local electric fields of
10 —10 V/m are likely to occur at the membrane inter-
face, Onsager's theory has been successfully applied only

up to 10 —10 V/m. At higher electric fields it has been
argued' that some effects not considered in this theory
should be introduced. There are two more questions
showing that our results should not be literally applied to
real biological and synthetic bipolar membranes. Indeed,
in the case of biological membranes the small thicknesses
usually encountered (d-A, l can lead to conduction phe-
nomena due to a "punch-through" effect ' in the case of
reverse bias. Thus water dissociation may play only a
minor role here. On the other hand, there is some experi-

mental evidence supporting the theory that the water dis-
sociation in synthetic membranes is produced by pro-
tonation and deprotonation reactions involving ionizable
groups and water in the membrane surface. ' However,
the existence of high electric fields is a crucial point in
both cases. In biological membranes space-charge and
electric field effects are the source of the observed capaci-
tance' and punch-through. In the case of synthetic
membranes, the rate constants might be increased be-
cause of the high electric fields at the surface. ' It is
clear that the simple approach worked out here can give
some information regarding the magnitude, localization,
and dependence on experimental parameters of these
electric fields from a reduced set of commonly employed
assumptions, and may constitute a guide for more ela-
borated theories to come.
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