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Neighboring atoms in average-atom calculations of hot dense ylasmas
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We present here a method for including the effects of neighboring atoms within the framework of
the self-consistent average-atom method. The multiple-scattering theory developed for the study of
liquid metals and amorphous materials is used to describe the effect of the adjacent scatterers in the
dense plasma problem. The case of copper with its prominent d resonance at the natural density
and at a temperature of 5 eV is treated. The resonance under the influence of the scatterers, which
simulate the plasma environment, is observed to broaden significantly while the area under the
broadened resonance is seen to decrease with respect to the single-scattering resonance, increasing
the number of free electrons and thus the calculated pressure.

I. INTRODUCTION

The properties of matter at high temperature and den-
sity are well described by the self-consistent field (SCF)
average-atom model. ' This model provides a general
framework for treating hot partially ionized plasma of in-
termediate and high atomic numbers. In particular it is
used for obtaining the electron thermal contribution in
equation-of-state calculations. The atomic nucleus is as-
sumed in this model to be embedded in a spherical cavity,
the radius of which is determined by the Wigner-Seitz
sphere. The cavity, which is electrically neutral, is sur-
rounded by a uniform smeared distribution of positive
ions extending to infinity and neutralized by the free elec-
trons. An important limitation of the average-atom mod-
el lies in its ability to accurately reproduce the electronic
density of states (DOS). One major reason for this is that
no account is made of the effect of the ions surrounding
the atomic cavity.

Dharma-wardana and Perrot in subsequent work in-
troduced a continuous positive-ion distribution by means
of the hypernetted-chain (HNC) equation; additional
work of a similar nature was also reported by Ofer et al.
By assuming the continuous ionic charge distribution,
however, one disregards the efFects of the relatively deep
and localized ionic potentials and their fluctuations.

The purpose of this paper is to investigate the effects of
nearest neighbors situated at discrete positions relative to
the spherical cavity representing the average atom. In
particular, our interest lies in the influence of the neigh-
boring ions on the pressure calculated on the basis of the
average-atom model and on the density of states. The
latter quantity is instrumental in calculating hot dense-
plasma transport coefficients.

Recently Younger et al. employed a finite-
temperature X-a Hartree-Fock-Slater molecular struc-
ture code in order to calculate the electronic structure of
a nine-atom He plasma over a wide range of density and
temperature. In the present paper we chose to use the
multiple-scattering formalism employed originally for

liquid metals and amorphous materials for calculating the
density of states of the average atom surrounded by iden-
tical spherical scatterers. The basic idea of using theoret-
ical techniques devised for the study of disordered sys-
tems in dense plasmas was first proposed by More.

Specifically we use the multiple-scattering formalism
developed by Lloyd ' and first used by Klima, McGill,
and Ziman" ' for the study of amorphous covalent semi-
conductors and later by Keller' for liquid transition met-
als. It is noteworthy that the DOS obtained using this
formalism for liquid Cu accurately reproduces the experi-
mental data. ' In adopting this theory to dense plasmas,
we make the one-to-one correspondence of free electrons
to valence electrons and bound electrons to core elec-
trons. Multiple-scattering theory has previously been
used by Perrot and Dharma-wardana' for calculating
the resistivity of hot dense H plasma.

A preliminary account of the basic idea of the present
paper was presented previously. ' In that publication
only the influence of a single neighbor was taken into ac-
count. In the present work a cluster of seven neighbors
which simulate the plasma environment is treated. These
calculations led here to the major result on the destruc-
tive interference due to multiple scattering and thus the
decrease in the number of electrons under the broadened
resonance curve.

II. THEORETICAL MODEL

The derivation of the density-of-states formula in the
Lloyd formalism is given by Lloyd ' as well as in a
somewhat different manner by other authors. The basic
requisites for using the formalism are identical spherical
nonoverlapping potentials. The potential need not be of
the muffin-tin form, ' although the potentials derived
here are essentially of the muffin-tin form. Denoting by
No(E) the total number of electron states up to energy E
for a uniform unperturbed electron gas, we obtain ac-
cording to the Lloyd formalism for N(E) the total in-
tegrated density of states:
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Here l and I' denote different ion sites, while L is an ab-
breviation for the angular momentum and magnetic
quantum numbers l and m. The second term on the right
is a generalization of the Friedel term for a single scatter-
er (see below), while rl&(E) is the phase shift of the 1th
partial wave. sc is the kinetic energy and 0 the volume.
GI+I is given by
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where C are the Gaunt numbers,

ht" (kR) =jt"(kR)+ini. (kR),
C~~ ~ =f Yt (Q)[Yt (0)]"[Y~-(Q)]'dQ .

The Lloyd determinant simply reduces to the Friedel
term by equating all off-diagonal terms to zero, thereby
eliminating the interaction between the scatterers and by
assuming that riI =0 for 1'Al:

The difference between our calculational procedure
and that of Liberman is in the method of normalization
of the free-electron wave functions. Liberman uses nor-
malized continuum wave functions and matches these to
the solution of the wave equation within the sphere. In
our procedure we normalize the free-electron wave func-
tions using the relation

f +fd V dE =g, (E)dE . (6)
0

Here Rws is the Wigner-Seitz radius, and g&(E) the DOS
for angular momentum l. Let gI (E) denote the free-
electron-gas DOS for angular momentum l. For the case
of no interaction between scatterers, corresponding to the
INFERNO calculation we write

d rh(E)
gi(E) =gi (E)+—(21 + 1) (7)

The second term on the right-hand side is the Friedel
term, which gives the effect of the potential on the DOS.
Lloyd and Smith' have shown that matching the wave
functions within the sphere, as in INFERNO, is equivalent
to adding the Friedel term to the free-electron DOS.

The free-electron-gas term g& (E) is given here by

tron density given by the summation over bound and free
electrons. 4 is the normalized wave function of either
bound or free electrons, thus

p(r) = g f (e, ) ~+, (r) I' .
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The second is the assumption of the Fermi-Dirac thermal
equilibrium level population for the free- and bound-
electron eigenstates c, . The chemical potential p is deter-
mined from the requirement of the neutrality of the
spherical cavity

f (s, ) = 1/[1+exp(e, —p)/kT] . (4)

The third relation involves the determination of the elec-

Basic to this paper is the introduction of the Lloyd
multiple-scattering formalism into our average-atom cal-
culational procedure. Following the INFERNO model'
this procedure consists of the self-consistent solution of
the three following relations. The first involves the one-
electron effective potential V(r), where p(r) denotes the
electron density within the spherical cavity of radius R:

(8)
The integration is over the Wigner-Seitz sphere and
g (E) is given by

' 3/2

g (E)= V&E .
2~2 $2

The normalization method of the free-electron wave
functions as given in Eqs. (6) and (7), can be immediately
adapted for the insertion of the DOS obtained by the
Lloyd multiple-scattering method into the average-atom
computational procedure. This is accomplished by sim-
ply replacing the Friedel term (2/vr)(21+1)dq/dE by
d[ —(2/m)Imln DetA]/dE, the Lloyd term in Eq. (7).
This could, however, add a considerable amount of com-
putational time if inserted within the self-consistent pro-
cedure. Thus, at this stage of our calculation, the Lloyd
determinant was introduced after convergence was
achieved by means of the conventional average-atom
method.

The pressure P was calculated according to Pettifor
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4mRwsP = g f dEn&(E)P&(Rws, E)[E—V(Rws)Rws+(DI+t+1)+ . ],
Rws dglD)=

(9)

where P& denotes the normalized radial solution of the
Schrodinger equation for angular momentum I, nI(E)
denotes the density of states of angular momentum I, and
DI is the logarithmic derivative. The derivation of the
pressure formula is based on the virial theorem recast as
a surface integral over the Wigner-Seitz sphere. '

V(R ws ) denotes the potential at the edge of the cavity
in relation to the continuum. The pressure calculations
which we shall give below deal with the thermal com-
ponent of the electronic pressure and should not be very
sensitive to the accurate choice of V(Rws ).

III. CALCULATIONS AND RESULTS

Copper with its prominent d resonance was studied us-

ing the calculational procedure outlined above. The clus-
ter used here consisted of eight atoms, the central atom
and seven scatterers. The SCF average-atom (AA) calcu-
lation with no scatterers was first carried out at a temper-
ature of 5 eV and at the natural density. The phase shifts
of the d resonance thus obtained were used in order to
calculate the DOS in the cluster using the method of
Lloyd [Eqs. (1) and (2)]. In the present calculation only
the d-d interaction terms were included; it was observed
in calculations with a smaller number of scatterers that
the addition of the hybridization terms was negligible.

Before giving results of pressure calculations, we
present and discuss the DOS for different configurations
of scatterers in the eight-particle copper cluster treated
here. In Fig. 1(a) the DOS is plotted for the scatterers
placed along the diagonals of a cube, at the center of
which is the central atom, where each scatterer is at a
distance of 2 Wigner-Seitz radii from the central ion.
This configuration best simulates the cold fcc copper
structure within the framework of the eight-particle clus-
ter. The d resonance is observed to broaden significantly,
while the total number of particles under the resonance
decreases by 20%. In Fig. 1(b) we plot a typical scatterer
configuration used to describe the plasma environment
(see below). Here the value of the number of resonance
particles decreases by 27%. Due to the lower plasma
coupling parameter, the scatterers are positioned closer
to the central ion than in the cold Cu. The coordinates of
the particle positions are given in the figure. Figure 1(c)
demonstrates the effect of moving the scatterers a dis-
tance 3 times larger than in Fig. 1(a), along the diagonals
of the cube. At this configuration the cluster calculation
practically coincides with the single potential resonance.
Finally, Fig. 1(d) shows that by decreasing the distance
again along the diagonals to 0.8 times twice the Wigner-
Seitz radius, the number of particles under the resonance
drastically decreases to 60% of the number in the pure
resonance.

The results presented in Fig. 1 indicate that multiple

scattering broadens the resonance peak significantly, but,
more importantly, indicate that the total number of parti-
cles under the broadened resonance decreases signi-
ficantly compared to the single potential resonance. This
effect increases as the distance between the scatterers be-
comes smaller. The decrease in the number of resonance
particles is attributed to destructive interference. An
effect of very similar nature has been known to exist for
some time, as first pointed out by Brueckner, ' in connec-
tion with scattering of ~ mesons by deuterons. Also, a
recent calculation, using the method of partial waves, '

shows how the scattering cross section from two scatter-
ers for an 1=2 resonance is decreased and broadened as a
result of multiple scattering.

The computation of thermodynamic quantities and of
transport properties necessitates the incorporation of the
plasma environment into the framework of the multiple-
scattering model discussed above. This is accomplished
here by introducing the radial distribution function g(r)
of the scatterers in relation to the central atom, as well as
their fluctuations about their assumed equilibrium
configuration. Thus the probability of finding a scatterer
between r and r +dr is 4mr g(r)dr.

In the present report the pressure calculation of a 5-eV
Cu plasma at the natural density is described. As a first
step, the plasma coupling parameter I, equal to
(Z'e) /(kTRws), where Z* is the effective ionic charge,
is computed. The SCF AA calculations described above
give 18 bound electrons and close to seven resonance
electrons. The number of free electrons Z* equal to the
ionic charge is thus assumed to be equal to the total num-
ber of electrons less the bound and resonance electrons,
yielding Z'=4, and thus I =32.

A basic simplifying assumption made here is that g (r)
is given by the corresponding one-component-plasma
(OCP) radial distribution function as computed, for ex-
ample, by Brush et al. The probability of finding a
scatterer between r and r+dr is 4mr g(r)dr. On this
basis we construct the "basic" scatterer configuration,
positioning the scatterers relative to the central atom in
accordance with the above-mentioned g(r) The neigh-.
boring scatterers themselves are distanced from each oth-
er by the order of 2R~s or larger. The Cartesian coordi-
nates of this configuration in units of 2Rws are (0,0,0),
(0.75,0,0), (0,0.85,0), (0,0,0.95), (0,0,—1.02), (

—1.1,0,0),
(0,—1.1 5,0), and (0.7,0.7,0.7).

Another prominent plasma property is the fiuctuations
of the ions about their mean assumed equilibrium
configuration, derived above. The mean-square displace-
ment ra is estimated following Laughlin by
—,'kr O=3k&T, with Hook's laws constant k given by
k =3Z* /Rws. The scatterers were thus displaced rela-
tive to the "basic" configuration defined above.

The pressure and 5 eV at 8.9 g/cm3 was calculated
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averaging overover ten different configurations of scatterers.
In each of these configurations the positions of the
scatterers were randomly shifted about the " asic"
configuration. The mean-square displacement averaged
over the configurations was equal to ro as determine
from Hook's law. In order to obtain the thermal com-
ponent of the electron pressure, the zero-temperature
electron pressure at the same density must be subtracte
from the result obtained at 5 eV. The cold configuration
was simulated by placing the scatterers along the diago-
nals of a cubic, each of them at a distance of two
Wigner-Seitz radii from the central ion. The temperature
was taken at 0.1 eV. The thermal component of the elec-
tron pressure thus obtained was 2.1 Mbar.

The standard average-atom calculation with no scatter-
ers gave ereh 1.37 Mbar (the corresponding INFERNO re-
sult is, however, 1.60 Mbar). The inclusion of mu tip e
scattering thus cause an increase of the order of 50% in
the calculated thermal component of the electron pres-
sure. In the multiple-scattering case, resonance electrons

whose contribution to the pressure is relatively small are
shifted to higher-energy free-electron states.

IV. CONCLUSIONS

To conclude, we have incorporated the effect of neigh-
b

'
scatterers within the framework of the average-oring sca

atom model using the Lloyd multiple-scattering t eory.
The positioning of the scatterers about the centra atom
was based on the plasma radial distribution function and
on the ionic fluctuations. An increase of 50/o in the cal-
culated thermal electronic pressure was obtaine wi

e to the con-inclusion of multiple scattering, as compare o e
venntional average-atom calculation or u at 5 eV and at
the natural density. Larger clusters will be used and
effects of hybridization will be included in subsequent
work. This procedure can in the future also be incor-
porated into the INFERNQ calculation.

The procedure described in the present paper could be
used to calculate dense-plasma resistivity. Here the
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ensemble-averaged T matrix of the cluster must be calcu-
lated. A recent multiple-scattering calculation of resis-
tivity in liquid metals has been performed using the "path
operator" technique for calculating the T matrix. Such

a calculation can be averaged over the plasma
configurations as determined here for the DOS calcula-
tion. The result can then be compared to that obtained
from a single-site calculation.
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