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A Galerkin approximation scheme is proposed for voltage-driven, dissipative magnetohydro-
dynamics. The trial functions are exact eigenfunctions of the linearized continuum equations and
represent helical deformations of the axisymmetric, zero-flow, driven steady state. In this paper, the
lowest nontrivial truncation is explored: one axisymmetric trial function and one helical trial func-
tion each for the magnetic and velocity fields. The system resembles the Lorenz approximation to
Benard convection, but in the region of believed applicability its dynamical behavior is rather
different, including relaxation to a helically deformed state similar to those that have emerged in the
much higher resolution computations of Dahlburg et al. [Phys. Rev. Lett. 57, 428 (1986);J. Plasma
Phys. 37, 299 (1987);40, 39 (1988)]. In the region of applicability, the dynamical behavior is to seek
out the steady state of lowest energy dissipation rate.

I. INTRODUCTION

Only a limited amount of information about driven,
dissipative continuum systems is available from low-order
Galerkin approximations. Consider, for example, the
three-mode approximation of Lorentz for the Benard
convection problem. ' It can be said without too much
exaggeration to have spawned an entirely new branch of
dynamical systems theory, yet its predictions have to be
drastically revised as the number of modes increases to-
ward a well-resolved solution (see, e.g. , Curry and Curry
et at. ). Clarifying the relation between low-order Galer-
kin approximations and true continuum behavior is one
of the more urgent problems in nonlinear mechanics, if
we hope to learn much about the latter from the former.

One purpose here is to present an alternative Galerkin
approximation scheme for a plasma-magneto-
hydrodynamic system of some recent interest in connec-
tion with plasma confinement. We then explore the
consequences of the scheme for the lowest-order nontrivi-
al truncation. The system bears some strong formal
resemblance to the Benard problem, though the underly-
ing physics is di6'erent. We consider a resistive, viscous
magnetofluid contained in a rigid cylinder with periodi-
cally identified ends (to simulate a toroidal confinement
device). An externally imposed dc magnetic field points
in the axial (z) direction, and an electric current is driven
along it by an applied axial voltage (in the laboratory set-
ting, this is often an inductively driven toroidal electric
field). There is an analogy between the applied axial volt-
age drop and the applied temperature drop in the Benard
problem; the electric current is an analogue of the Benard
heat current. In both cases, when the enforced gradients
reach critical values, expressible in terms of characteristic
dimensionless ratios of the problem, the quiescent state
that had prevailed up to the threshold becomes linearly
unstable and gives way to one involving fluid motion.

The magnetohydrodynamic (hereafter, MHD) problem
has the pleasant feature that the linear eigenfunctions of
the quiescent state which become unstable are explicitly

calculable and can be used as an orthonormal basis of
"trial functions" for the Galerkin approximation. This
must be viewed as a lucky accident that is not shared by
many of the threshold-unstable continuum problems to
which one might think of applying Galerkin techniques, ,

though the expansion functions of the Lorenz problem
with free-slip boundary conditions are exact eigenfunc-
tions.

It will be seen how similar in structure a three-mode
truncation of the above MHD problem is to the Lorenz
model. Indeed, for a particular choice of parameters, the
three-mode MHD problem reduces to the Lorenz model
and in a surrounding range, exhibits strange attractors
and other "chaotic" phenomena. However, away from
this special set of parameters and in what is very prob-
ably a more physically relevant regime, there is a qualita-
tive change in the dynamical behavior of the three-mode
truncation and no Lorenzian behavior is exhibited. The
strange attractors and "chaos" are only attainable by
pushing the model beyond its likely realm of physical ap-
plicability.

Another purpose of this article is to propose a frame-
work for a future intended attack on the MHD problem
using Galerkin approximations of much higher order. A
truism of much of computational fluid mechanics is that
spectral or pseudospectral codes are more eScient for
large computations than pure, transform-space, Galerkin
methods because of the need to evaluate many lengthy
convolution sums in the latter. The disparity becomes
greater the higher the Reynolds-like numbers. However,
certain features of the MHD problem arise that make the
arguments less conclusive there, and we wish now to re-
view these.

First, the fluid problems solved, such as plane
Poiseuille flow, plane Couette flow, Benard convection,
etc. , have been such as to lend themselves to treatment
with rectangular boundary conditions defined by chan-
nels, slabs, and spatially periodic directions. All are
problems in which little of importance gets lost by the re-
striction to rectangular symmetries. However, the prob-
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lem of pipe flow has apparently proved less tractable, at
least in part because of complications from the on-axis
singularities (r =0 in cylindrical polar coordinates). For
the cylinder of voltage-driven magnetofluid, with its heli-
cal magnetic field lines and normal modes, the cylindrical
character of the problem is of the essence. The problem
can be in danger of being reduced to a caricature of itself
by rectangular simplifications. Other magnetofluid codes
have implicitly conceded this point by a somewhat
artificial avoidance of situations in which much of any-
thing is allowed to happen at r =0.

Finally, even if laboratory values of Lundquist and
Reynolds numbers may not be approachable in pure
Galerkin-approximation computations, there is so little
accurate information (experimental or computational)
about driven, dissipative MHD systems that there still
seems to be something to be learned about threshold be-
havior at even modest values of the Reynoldslike num-
bers. In summary, the advantages of a Galerkin compu-
tation might be as follow: (1) no problems associated
with singularities arise at or near r =0, however violent
the behavior, (2) the expansion functions will all automat-
ically obey the boundary conditions and maintain the
solenoidal property of the fields; and (3) even at relatively
low Reynolds-like numbers, a great many only recently
opened issues of transition behavior in driven, dissipative
(as contrasted with ideal) MHD remain to be resolved.
Unlike fluid mechanics, whose laminar flows, thresholds
for instability, and transition behaviors may be con-
sidered rather well understood, the preturbulent states of
MHD and their transition behavior are far from a settled
matter. Nor is it clear how much of a role fully developed
MHD turbulence actually plays in the magnetically sup-
ported driven steady state after the formation phase.

An outline of the paper follows. Section II sets out the
MHD equations and the expansion basis in which they
are to be solved: the Chandrasekhar-Kendall orthonor-
mal eigenfunctions of the curl. ' Both the magnetohydro-
dynamics (scalar, one-fiuid, incompressible, with scalar
transport coefficients) and the boundary conditions are
admittedly oversimplified, on the assumption that, even
with the oversimplifications, the system is complicated
enough. The boundary conditions at the confining
cylinder wall are B.n=0, j.n=O, v n=O co.n=O, where
n=e, is the unit normal at the wall r =a. B is the mag-
netic field, j is the electric current density, v is the veloci-
ty field, and co =V X v is the vorticity. The boundary con-
ditions on B, j, and v are those appropriate to a rigid,
impenetrable, perfectly conducting wall coated with a
thin layer of insulating dielectric. The fourth boundary
condition, co.n=0, is less than wholly satisfactory, but re-
placing it with either "no-slip" or "stress-free" mechani-
cal boundary conditions from fluid mechanics has
seemed, so far, to move the problem out of reach. The
observation that in the MHD computations, most of the
mechanical activity seems to occur away from the wall
allows us to hope that the approximation is not disas-
trous.

Section III sets out the analytical machinery for the
three-mode Galerkin approximation and describes some
numerical solutions of it. Its similarity to the Lorenz

problem is remarked upon, as is the matter of a lowered
dissipation rate in establishing the steady helical state
above the instability threshold. Section IV is a summary
and suggests possible future computations involving
many-mode Galerkin approximations.

II. EXPANSION IN CHANDRASEKHAR-KENDALL
FUNCTIONS

BB =VX(vXB)—i)VX j,at

V v=O,

(2)

(3)

V B=O. (4)

In Eqs. (1)—(4), v and B are the velocity field and mag-
netic field, respectively, while the electric current density
is j=V X B and the vorticity is ai =V X v. The mechani-
cal pressure is p, and p*=p+v /2. p* is obtained by
taking the divergence of Eq. (1) and solving the Poisson
equation which results when we note V (Bv/Bt) =0, by
Eq. (3). The dimensionless viscosity v and dimensionless
magnetic dift'usivity g are taken to be uniform constants
and may be thought of as the reciprocals of Reynolds-like
numbers. Equations (1)—(4) are written without reference
to the applied electric field; inclusion of the applied elec-
tric field or voltage will be discussed later.

The expansion functions to be used in expressing the
solenoidal fields v and B are the normalized
Chandrasekhar-Kendall eigenfunctions' of the curl

VX Anmq =knmq Anmq

A„may be t~ken to be
—1/2

Anmq ~nmq Jnmq

where

(6)

J„=A,„VQ„Xe,+V X ( V1(„q X e, ),
with

g„q =J (y„~r)exp(im P ik„z )—
in cylindrical coordinates (r, P, z). Here, J is the Bessel
function of the first kind of integer order m. The indices
are integers, with n =0,+1,+2, . . . , m =0,+1,+2, . . . ,
and q = 1,2, 3, . . . . The wave number k„=2m n /L„
where L, is the periodicity length in the axial (z) direc-
tion; this is the only concession to the toroidal nature of
the problem. A.„ is (y„&+k„)',with both signs al-

lowed. I„ is a normalization integral chosen so that

A
q

A
q
d x 1 (9)

where the region of volume integration is the interior of
the right circular cylinder 0 ~ r ~ a, 0 z ~ L, .

All quantities have now been specified except the y„q.

The equations of incompressible MHD are, in a famil-
iar set of dimensionless variables ("Alfvenic" units):

Bv =v Xco+jXB—Vp* —vVXa),
at
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The y„are always greater than or equal to zero and are
defined differently from the axisymmetric eigenfunctions
Aoo than for the "helical" ones (the A„with
m +n )0). For the nonaxisymmetric ones, the bound-
ary condition e„.A„(r =a) =0 gives

dJ (y„ a)—J (y„a)=k„ (10)

which determines an infinite sequence of positive y„ for
each m and n, m +n &0, and the associated k„of
both signs.

For the Aoo, there is no radial component, and some
decisions are necessary. One convenient choice is to fix

yppl &0, and then determine all higher ypp from the re-
quirement that all the Aop be orthogonal to Apol and to
each other. A second possibility is to demand that the
App be "Auxless, " which is achieved by requiring that

e& Aooq(r =a)=0 be used to determine the yooq and

kpp . This second choice leads to some subtleties in that
it requires the introduction of an axisymmetric function
orthogonal to all the Aoo to carry the net axial current.
Discussion of how to construct this function in detail for
arbitrary numbers of retained Aop will be deferred to a
later publication, since it is rather involved and is not
needed for the simple three-mode truncation investigated
here. Thus the analog of Eq. (9) for m =O=n is just
Jo(yooqa) =0. The normalization integral I„ is

I„q=2nL,J (y„. a)
2 2

k„a

' =fa(k' O' Jo» (16)

dJp

d,
=fi(P 0'Jo» (17)

where the right-hand sides become known, if complicat-
ed, functions of the various amplitudes. By a Galerkin
approximation, we shall mean the results of discarding all
but N of Eqs. (15)—(17), and all but X of the correspond-
ing amplitudes. These ordinary differential equations
govern then the approximation to the dynamics.

To discuss the effect of applying an axial electric field
at the wall, we must pull a curl off'Eq. (2) and discuss the
evolution of the vector potential A, for which B=V X A.
We get

Here, ('„q and g„are scalar amplitudes and
contain the time dependences. The amplitude jp is also a
function of time, but So=const is not. The function
Ao(r) is axisyinmetric and orthogonal to all the other
An; for purposes of the three-mode truncation to be
considered here, it is simply —,'re&, if the App 's were go-
ing to be retained, A~(r) would have additional terms.
The sums over nmq, in general, run over all allowed
values, but here these sums will be drastically truncated.

Upon substitution of Eqs. (13) and (14) into Eq. (2) and
the curl of Eq. (1), we take inner products with individual

A„q ( r ) and with Ao( r ). The results are of the general
form

=v XB—q)j+Eo+V4, (18)

With these choices, it may be readily shown that

f 3
nmq n'm'q' X ~nn'~m ~qqm' (12)

The A„constitute a triply infinite orthonormal set
for expanding solenoidal fields, analogous to the Fourier
series used in discussing homogeneous Navier-Stokes tur-
bulence with periodic boundary conditions. Supplement-
ed by an orthogonal axisymmetric function to carry the
net axial current, they may be supposed to be a complete
set for expanding solenoidal fields obeying the boundary
conditions we are assuming, though it appears that no
completeness theorems have been proved. They will be
computationally useful only in problems in which the
convergence can be assumed to be rather rapid. It will
not be true, of course, that superpositions of them are
also eigenfunctions of the curl.

We seek a representation of the v and B fields of the
following form:

where 4& is a periodic scalar potential for which (using
the Coulomb gauge)

V' 4= —V (vXB) . (19)

~'
q . Jo

0
knJO B 2 u

knmq V nmqknmq
nmq

(20)

4 obeys the boundary condition 4=0 at r =a. Ep is the
electric field applied at the wall: EO=EO(t)e„where
Eo(t) is given. Substituting the expansions into Eq. (18)
and spatial averaging then leads to the detailed form of
the right-hand side of Eq. (17).

We now truncate Eqs. (15)—(17) drastically. Namely,
we keep only one g'n, one g„and jo. Hereafter, this
nmq will be regarded as fixed and known. The result is,
after some algebra,

and

X 4nmq nmq
n, m, q

B=&Oe +Jo AO+ g 4nmq Anmq
n, m, q

(13)

(14)

d knmq . ~&O= —i k„80—
dt 2 knmq 9~nmq knmq

and

(21)

(22)
The sums are over a11 n, m, q, including both signs of
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The three complex-conjugate relations, involving

P „and g „~,are also implied but are not in-

dependent, since P„' =P'„,for reality of v and B.
As previously remarked, Eqs. (20)—(22) involve exactly
the dynamics of one linear eigenmode of the uniform-
current-density problem, plus its interaction with the
spatially-averaged current density jp. It is natural to
select the n, m, and q as the indices of the first linear nor-
mal mode to go unstable as Eo as raised, at fixed q, v, L„
Bp, and a. This is in fact the physically motivated choice,
to allow the first mode that wants to participate in the
dynamics the opportunity to do so. However, mathemat-
ically there is no necessity for this choice and n, m, q can
be the indices of any mode.

A further simplification, that can be achieved without
further loss of generality, is to phase the participating
helical modes so that

,'g„—~exp(imP ik„—z)+c c.
' 1/2

~a L,
[X cos(mP —k„z)]

and

exp(irnP ik„z)+—cc.
' 1/2

ma L,
[Y,sin(mg —k„z)]

2
—k Bo Y —qA+ (23)

dY

2
(24)

a dJo

8 dt
Eo rtJo+ X Y (25)

A cleaner-looking version of Eqs. (23)—(25) results
from an additional rescaling of the variables:
r =—(v'2m /a)t, Po =k„Boa /v'2m, go=—2k„

/mal.

„
vo=—vA, „~a/&2m, rto rid,„a /&2m, ——go

——8rt/&2am,
Z—:ajo/2&2, and Zo —=aEo/2&2ri. DroPPing the a sub-

script, we have simply

(where c.c. stands for the complex conjugate), in terms of
real amplitudes X,Y . (The subscript a stands symboli-
cally for the nmq of the retained mode. ) Equations
(20)—(22) now reduce to the purely real system

dX

any other set of parameters there is an extra nonlinear
term in Eq. (27) that breaks the correspondence.

It should be remarked that linearizing Eqs. (20)—(22),
(23)—(25), or (26)—(28) about the uniform axisymmetric
state jp=Eolg, L= Y=O leads to exactly the same
eigenfunctions and dispersion relation as one gets from
the full MHD problem.

III. DYNAMICS OF THE THREE-MODE
TRUNCATION

Equations (26)—(28), though grossly oversimplifying
the full MHD dynamics represented by Eqs. (1)—(4) are
still an interesting dynamical system. They have the
somewhat unusual feature of having resulted from a
Galerkin approximation based on trial functions that are
themselves exact eigenfunctions for the axisymmetric
equilibrium profile, not just approximations thereto.
Perhaps for that reason, numerical integration of Eqs.
(26)—(28) reveals that they share some properties of the
full MHD equations in some circumstances. In particu-
lar, this is the case when parameter regimes are confined
to those immediately above (or below) the critical value
of jp at which the axisymmetric, zero-flow steady state of
the full MHD equations first becomes linearly unstable,
and when the L and Y amplitudes are taken to corre-
spond to the first n, m, and q that goes linearly unstable.

For the special case 1+go=0, the Z-proportional term
drops out of the right-hand side of Eq. (27). Further re-
scaling will then convert Eqs. (26)—(28) into the exact
Lorenz system. For I+yoAO, the system's behavior is
different from that of the Lorenz model, and for physical-
ly motivated parameter choices, exhibits less chaotic be-
havior.

The externally-fixed driving term in Eqs. (26)—(28) is

Zo, directly proportional to the applied electric field Eo.
In a region immediately above Zo=0, the only steady-
state solution is X = Y =0 and Z =Zo. This corresponds
to the exact, axisymmetric, uniform-current-density,
steady-state solution of Eqs. (1)—(4). In this range of Zo,
the dynamical behavior of Eqs. (26)—(28), as revealed by
numerical solution, is a straightforward relaxation to this
"fixed point" (steady state).

At a first critical value of Zo (or critical current

jo =Eo /rt), the axisymmetric, uniform-current-density
state becomes linearly unstable. This critical current cor-
responds exactly to the value of jp obtained as the linear
stability threshold from the full set of MHD equations
(1)—(4). It is the lesser root in the solution for jo in

dL =(Z —Po) Y —i)oX,

dY = [Po—(1+yo)Z]X —vo Y,

(26)

(27)

mjo"-k.8. mJp kn Jp—k„Bp+ +r)vk„=O,
nmq

(29)
dz =yoXY —go(Z —Zo ) .

The quantities with zero subscripts are constants, deter-
mined by the physical constants of the problem. For the
particular set of parameters that makes 1+go=0, Eqs.
(26) —(28) can be reduced to the Lorenz model, but for

for any n, m, and q. Equation (29) is the zero-frequency
dispersion relation obtained by linearizing about the ax-
isymmetric state. Its stability boundary has been tabulat-
ed elsewhere. The critical current depends only upon
the Hartmann number.

A second, stable, fixed point appears at the value of Zo



6162 HUDONG CHEN, XIAOWEN SHAN, AND DAVID MONTGOMERY

at which the axisymmetric solution becomes unstable.
This stable fixed point is characterized by a helical contri-
bution which increases as Zo increases above its critical
value. For this solution, jo remains locked at the value
given by Eq. (29), and the helical components act as an
"anomalous resistance, " or back emf, which opposes Eo.
From Eq. (25), jo stays at a constant value

k
qjo =Eo+ X Y

while Eo and the (negative) second term on the right-

hand side grow in absolute value together. In this state,
increasing Eo increases the helical distortion but does not
increase the net plasma current.

If the first linearly unstable eigenmode is used to deter-
mine the n, m, q that identify X and Y, the helical state is
a stable attractor in a finite range of Zo above its appear-
ance, while the axisymmetric state becomes unstable and
ceases to function as an attractor. The helical state is de-
generate under L~ —X, Y~ —Y, and its stability in a
finite range above the critical Fo can be proved algebrai-
cally.

Behavior of the kind just described is illustrated by
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FIG. 1. (a) Total-energy dissipation rate per unit volume vs applied electric field for the steady states of Eqs. (26)—(28). Solid
curves correspond to stable fixed points and dashed curves to unstable ones. (b) Relaxation to a helical fixed point for the situation in
(a), for an E& l0% greater than its critical value, in the XFplane. (c) Relaxation to a helical fixed point in the XZ plane for the same
case as (b). (d) Computer-drawn surface of constant j,(x,y, z) =2.7 for the helical state to which the relaxation in (b) and (c) occurs.
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(1)—(4) with any accuracy.
Figure 1(b) shows a typical relaxation (in the XY plane)

to the helical fixed point for EO=0. 11,just above the ap-
pearance of the helical state. Figure 1(c) shows a similar
relaxation in the XZ plane. Figure 1(d) is a computer-
drawn surface j,=const=2. 7 for the associated helical
state. The values of the quantities (indicated by the over-
bars) for the helical fixed point for Eo =0. 11 are
X= —0. 11, Y= —0.37, Z = 1.388, jo =2. 5, the dissipa-
tion per volume R /V=j oEo =0.275 (Eo/g=0. 303.

While the behavior in Fig. 1 is typical of the behavior
exhibited above the onset of linear instability, we may
also obtain chaotic behavior by the following choice of
parameters: Bo =2.4, L, =4m, a =~/2, v= —„'„
g=7.8125time10, m =n =1, q =1, and Ra =4.522.
This set of mode numbers does not correspond to the first
linearly unstable normal mode to appear for these param-
eters. Figure 2(a) is a dissipation versus Eo curve similar
to that shown in Fig. 1(a). However, notice that there is
a "window" between approximately Eo =0.0175 and
0.0185 in which neither the axisymmetric state nor the
helical state are stable. Figures 2(b) and 2(c) are XY and
XZ plots indicating Lorenzian "strange attractor" behav-
ior and no relaxation to any steady state. Figure 2(d) in-
dicates the total dissipation versus time for this chaotic
state. Interesting as it is, this behavior may perhaps be
regarded as spurious, depending as it does on a physically
unmotivated choice of the helical eigenmode for the
Galerkin approximation.

IV. DISCUSSION

Our purposes here have included (i) setting out a com-
putational scheme for future use in a many-mode numeri-
cal study of voltage-driven, dissipative MHD; and (ii) ex-
ploring the consequences of this scheme at the lowest
nontrivial level of three-mode truncation. Of particular
interest is the extent to which minimum-energy-
dissipation rate principles ' may function as predictors
of MHD states above thresholds for the onset of instabili-
ty of the axisymmetric current profile.

The only numerical investigations reported here are
the solutions of Eqs. (26)—(28) for the three-mode Galer-
kin approximation. The system bears a strong formal
resemblance to the Lorenz equations and even becomes
the Lorenz system for a particular choice of parameters.
But its behavior is only chaotic if unphysical choices of
modes are used in the truncation and/or if their limits as
physically acceptable approximations to Eqs. (1)—(4) are
exceeded. In physically motivated regimes, their behav-

ior is a relatively pedestrian relaxation to a steady state,
either helical or axisymmetric. The helical states, having
lower average total dissipation rate, are favored where
the low-mode-number Galerkin approximation can be
thought to be physical, in the region immediately above
the axisymmetric stability boundary.

If, in fact, the solutions to Eqs. (26)—(28) do represent
the physical behavior of the full set of Eqs. (1)—(4) better
than they have a right to in the light of experience ' with
the Benard problem, we may ask why. We are uncertain
as to the answer. For some problems we might summa-
rize that there is perhaps some benefit to be obtained
from using, as trial functions for the Galerkin approxi-
mation, true, physical, ordered eigenmodes from the as-
sociated continuum problem, rather than essentially arbi-
trarily chosen members of an orthonormal set not closely
connected with the physics of the continuum problem.
Few driven, dissipative physical problems of interest have
the luxury of an explicitly calculable, analytically tract-
able set of eigenfunctions to describe the stability bound-
ary, though as mentioned in the Introduction, the
Lorentz problem is such a problem if free-slip (rather
than no-slip) boundary conditions are assumed. In many
cases, we simply do not know what would result if such a
set of basis functions were used in a Galerkin approxima-
tion.

We should note that in the recent Quid turbulence
work of Aubry et al." and Sirovich, ' for example, low-
mode-number Galerkin approximations based upon the
first few statistically-arrived-at eigenfunctions have met
with some success in describing boundary layer measure-
ments and turbulent computations of Ginzburg-Landau
equation behavior. If the threshold behavior of our
MHD system turns out to involve, as we believe it may,
only a few Chandrasekhar-Kendall eigenmodes, presum-
ably this would be reflected in the outcome of a similar
systematical emergence of them from a Karhunen-Loeve
procedure. Such possibilities await the results of a
many-mode computation, which we are now pursuing.
We should also note precursors of this present work in
Maschke and Saramito, ' and in a Strauss approximation
computation of Dahlburg et a/. ' without, however, the
present emphasis on the use of exact eigenfunctions as a
Galerkin trial basis.
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