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Glass transition and self-consistent mode-coupling theory
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The implications of a self-consistent mode-coupling theory of dense fluids for the liquid-glass
transition are considered. First, we show that when higher-order corrections are ignored from our
model, there is a dynamic transition of the hard-sphere fluid at an intermediate density to an ideal
glassy phase. This is in agreement with earlier theoretical works. Next, we demonstrate that in the
present model there is a cutoff mechanism that rounds off the sharp transition. We compute the
transport coefficients for the hard-sphere fluid, which show good agreement with computer-
simulation results at supercooled densities. The viscosity follows a power-law increase for the inter-
mediate densities with an exponent close to 2. For very high densities the sharp transition is cut off
and the transport coefficient increases at a slower rate. We calculate how the density autocorrela-
tion function in a Lennard-Jones fluid decays in time. This is done for different densities along an
isotherm. Our results agree much better with the slow relaxation observed in molecular-dynamics
simulations than earlier theories.

I. INTRODUCTION

Mode-coupling theories have been applied to super-
cooled metastable states of a fluid in an attempt to devel-

op a theory for an ideal glass transition. The basic mech-
anism that increases the viscosity was first identified by
Leutheusser from kinetic theory of dense fluids. A simi-
lar model was proposed by Bengtzelius, Gotze, and
Sjolander. Nonlinear fluctuating hydrodynamics was
also applied to understand the model. In these theories
attention was focused on mode-coupling effects that arise
from density fluctuations only, in view of the fact that
they become dominant at such high densities. This in-
volves a nonlinear feedback to the transport coefficients
from the dynamic correlation of density fluctuations in
the fluid. It was shown that at sufficiently high density,
this feedback mechanism results in an ideal glass transi-
tion where the density autocorrelation function no longer
decays to zero in the long-time limit and the viscosity of
the fluid diverges. This is essentially a dynamic transition
and the static properties are not affected by it. However,
the exact location of the transition for a specific system
is dependent on the structure of the fluid.

In Ref. 5 a more complete treatment of the nonlinear
fluctuating hydrodynamics for compressible fluid was

done by Das and Mazenko. The analysis involved the de-

velopment of a Martin-Siggia-Rose (MSR)-type field

theory for the dynamics of the fluctuating variables, con-
strained by the nonlinear relation g =pv, where g is the
momentum density, p is the mass density, and v is the ve-

locity field. The main new result obtained was the pre-
diction of a rounded version of the transition due to a
mechanism that keeps the system ergodic for all values of
the density. Subsequently, a similar model was also re-

ported by Gotze and Sjoren from a more microscopic
approach.

Computer simulation of simple fluids is a useful tool
for understanding their static as well as their dynamic

properties. Ullo and Yip have done molecular-dynamics
simulations on a system of particles interacting through a
truncated and purely repulsive Lennard-Jones (LF) po-
tential. They reported a substantial slowing down of re-
laxation in the fluid at very high densities. But it was
also found that, in comparison to their results, the simple
feedback mechanism predicts a much stronger effect and
this results in an ideal glass transition at an intermediate
density. In the present work we apply the model pro-
posed in Ref. 5 to more specific systems by including a
proper equilibrium structure for the fluid and compare
the theoretical results with the computer simulation re-
sults at supercooled densities.

The effect of including a realistic structure factor on
the dynamic feedback mechanism was also considered in
an earlier work. ' The present model has several im-

provements. In Ref. 5 we approximated the static struc-
ture factor with a Lorentzian form and thus in computing
the mode-coupling effects we could only include contribu-
tions from length scales up to the first peak of the struc-
ture factor for the fluid. Here we are not restricted to
any such functional form and thus the mode-coupling in-

tegrals can be computed up to length scales that are more
typical for such calculations. ' Since we are interested in
the relaxation properties at finite wavelengths, here we
take into account wave-vector-dependent transport
coefficients for the linear theory as well. To compute the
dynamic nonlinearity in the present model, we consider
the proper free-energy functional that was also used in
density-functional" theories as well as in earlier works'
on mode-coupling theory for dense fluids. %e are now
able to make more direct contact with models obtained
from the microscopic approach. The present work thus
demonstrates the role of the cutoff mechanism in explain-
ing the results of computer simulations of fluids at meta-
stable densities.

Since the basic model was described in considerable de-
tails in Ref. 5, we wi11 avoid any formal description of
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the model here. In comparing our results with the
specific models we take into account both hard-sphere
fluids and one-component Lennard-Jones fluid. We use
the Percus-Yevick (PY) solution' for the static structure
factor of the hard-sphere system. In case of the
Lennard-Jones fluid we use perturbative methods stan-
dard in literature' to compute the thermodynamic prop-
erties. Our main results are as follows.

(i) When we ignore all nonhydrodynamic corrections
(terms higher order in wave number) then we make direct
contact with other models obtained from a more micro-
scopic approach. We show that a hard-sphere fluid un-

dergoes a sharp transition to an ideal glassy phase at the
density noo. =0.99, where cr is the diameter of the hard
sphere. This is in agreement with the result of
Bengtzelius et al. In the glassy phase the density auto-
correlation function for the fluid freezes to a nonzero
value in the long-time limit.

(ii) Next we consider the complete model and compute
the longitudinal and shear viscosities for a hard-sphere
fluid, taking into account the mode-coupling contribu-
tions. This is done for different densities ranging from in-
termediate to very high values. It is found that for inter-
mediate densities the viscosity follows a power-law diver-
gence form with an exponent a=2.0. But for very high
densities, the sharp transition is cutoff and the viscosity
now increases at a slower rate. In Ref. 14 a similar be-
havior was also reported for a large number of laboratory
systems, where the exponent of the power law varies from
1.6 to 2.3 for different systems. We compute the diffusion
coefticient from the shear viscosity using the Stokes-
Einstein relation. Our result is close to that obtained by
Angell and Woodcock from simulation of a hard-sphere
system at metastable densities.

(iii) For a Lennard-Jones system we show how the den-
sity correlation function decays in time and this is com-
pared with the corresponding data from the molecular-
dynamics simulation of Ullo and Yip. This is done for
several densities along the isotherm T'=0.60. For the
sake of comparison, we also present here the solution
from the model without the cutoff mechanism. The latter
clearly indicates a too-enhanced mode-coupling effect
while the results from the complete model with the cutoff
mechanism shows a much better agreement.

In the present work we have compared our solutions
with results from computer simulation of simple systems
whose static properties can be computed easily and this is
a necessary input in our calculation of the dynamics. The
results we have reported in this paper suggest that our
model provides a good explanation for the increase of
viscosity in systems termed as fragile' glasses, indicating
a power-law behavior over the intermediate density re-
gime. However, the slowing down indicated here for
computer liquids is still quite far from what is observed in
more complex systems terms as "strong" glasses. The
characteristic time scales for such systems fall up to 14
orders of magnitude following a strong Arrhenius-type
behavior. Transport in these systems is an activated pro-
cess and any such mechanism is absent in the present
theory. We believe it is necessary to go beyond mode-
coupling theories to provide an explanation for such a

dramatic slowing down of the transport processes with
supercooling.

The paper is organized as follows: In Sec. II we de-
scribe briefly the model studied, and give the one-loop ex-
pressions for the mode-coupling integrals. In Sec. III we
demonstrate how our model makes contact with other
works that predict a sharp glass transition. In Sec. IV we
solve the complete model. Here we present the results
obtained for a hard-sphere system as well as a LJ system
and compare them with molecular-dynamics simulations.
We end the paper with a discussion of the results in Sec.
V.

II. DESCRIPTION OF THE MODEL

A. Generalized hydrodynamic equations

We start with the set of hydrodynamic variables con-
sisting of the mass density p, and momentum density g,
and the flow velocity v. For a compressible fluid they are
constrained by the nonlinear relation

and that for g is the generalized nonlinear Navier-Stokes
equation

Bg, 5F„= —pV; —g Vt(g;v~ )
dt

'
5p

-gad Z„,(.— ), F, +e, ,
5p x'

where L,, is the bare transport matrix and e; is the
thermal noise.

F„[p(x)] is the potential-energy part of the effective
Hamiltonian I governing the equilibrium behavior of the
hydrodynamic variables. Thus we have

F =~re+I'u

where the kinetic-energy term F~ is given by'

FK= —,
' J d x g (x)/p(x) .

(4)

For the potential part F„ofthe free-energy functional we
choose the expansion of an inhomogeneous equilibrium
liquid. This is the usual form chosen in the density-
functional theories and is given by

F„[p(x)]=Fo[p]+F,„,[p],
with Fo being the ideal gas entropy term

g =pv

We neglect the temperature fluctuations to keep analysis
simple. The average density is denoted by po and it is re-
lated to the number density no as po=mno where m, is
the mass of the particles in the fluid. Next we write down
the equations of motion for the hydrodynamic variables.
They can be deduced using the well-known Zwangig-
Mory' formalism and are valid for small and finite wave-
lengths. The equation for p is given by

Bp = —Vg
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PmFo[p]= f dx p(x)Iln[p(x)/po] —1)

and F;„, is the interaction term. To lowest order this can
be written up to a constant as

PmF, „,[p]= — f d'x d'x'c'~'(x —x')5p(x)5p(x'),1

with

5p(x, t) =p(x, t ) po—
and p=llk eT. c(x) is the equilibrium two-particle
correlation function. This form of the free-energy func-
tional was also used earlier in computing the mode-

coupling contribution' for a dense fluid. It gives the ap-
propriate wave-vector-dependent vertex functions for the
nonlinear terms in Eq. (3). We are ignoring here direct
correlation functions beyond the two-point level. Howev-
er, due to the ideal gas term, the free-energy functional is
not strictly Gaussian. Since our main interest here is in
the dynamic properties of the fluid, to avoid technical
complications we assume that higher-order terms do not
affect the statics in any serious way. The equilibrium
structure factor for the Quid can be expressed in terms of
c (x). Thus in the Fourier space we have

S(k)= [1—noc (k)]

Using Eqs. (4) and (6), the hydrodynamic equation for g
can be written as

dg;(x, t)

dt
d x'U(x, x')5p(x', t) g —[g,.(x, t)U. (x, t)]3

Bx] B~J

—f d x, d x V"(x,x, ,x )5p(x, , t)5p(x, t) —g f dx'L; (x —x')U (x', t)+8;(x,t),
J

(9)

where

U(x, x')= . [5(x —x') —noc(x —x')]1

Pm ' (10)
q g (q)= [1 jo(qo) j—2(qo)] —.2 0 2Po

(15)

and the quadratic vertex V" is given by

1V"(x,x„x,)=, 5(x —x2) c(x —x, )m'
l

+5(x —x, ) c(x —xz) . (11)
a

l

For an isotropic fluid the bare transport matrix L; (x)
or its Fourier transform

L;~(q)= f dx e'~ "L,~(x)' (12)

can be expressed in terms of two independent transport
coeScients given by

L„(q)=q;q, I (q)+(q 5„—q;q~)rt (q) . (13)

In the small-wave-number limit, I (q) and vt (q) are
the bare longitudinal and shear viscosities, respectively.
Since we will be applying these equations for finite wave-
lengths here, more generalized expressions for these
quantities are necessary. These results are more depen-
dent on the specific models used and since most of our re-
sults are related to hard-sphere systems, we will use the
Enskog-type expressions' for this purpose which de-
scribe the short-time behavior for the fluid quite well.
These were obtained from more microscopic models and
have the following forms:

The noise 8, is Gaussian and satisfies

(e, (x, t)e, (x', t')) =2k TL; (x)5(x—x')5(t —t') . (16)

Equations (2) and (9) together with the nonlinear con-
straint (1) defines our model. In order to investigate what
effects the nonlinearities in these equations will have on
the transport properties of the fluid, we need to develop a
formalism convenient for renormalizing the linear theory.
For this purpose we construct a field theory of the
Martin-Siggia-Rose (MSR) type, which is standard in
the literature for studying the statistical properties of a
classical nonlinear system. This formulation of a self-
consistent renormalized theory was described in consider-
able detail in Ref. 5. Since the present work is intended
for describing the quantitative effects produced in a real
system, we will state here the final results with the proper
mode-coupling integrals necessary for numerical calcula-
tion. The advantage of using MSR field theory here is
that we can obtain the renorrnalized expressions for the
various quantities in a self-consistent manner in terms of
the full Green's functions. This is very useful in demon-
strating the feedback mechanism that results in slow re-
laxation at high densities.

B. Renormalization

The main quantity of interest here is the density auto-
correlation function whose Fourier transform is defined
as

q I (q)= [1 jo(qo )+2j2(qcr)]-a o (14) G (q, t) =fd (x x')e' '" "—'(5p(x, t)5p(x', 0)), (17)

and where the angular brackets refer to the average over the
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stationary states. We will use the following normalized
form for the Fourier transform of G given by

q ri"(q, z)=q rt (q)+ f dt e'"rt (q, t) .
0

(24)

G (q, t)
g(q, t) =

x„(q)

happ
stands for the equal-time value of the density correla-

tion function. For an isotropic fluid the correlation func-
tion among the g fields can be expressed in terms of the
longitudinal and transverse components. Thus,

G (q)=Q;q, G (q)+(5;, —
q;g, )Gzg(q) . and

X G„(q—k, t)6„(k,t) (25)

As explained above, the one-loop expressions for these
mode-coupling functions are

q I™(q,t) =Ao f dk [(q k)c (k}1

(2m)'

+[q (q —k)lc(lq —kl)j'

Note that the longitudinal part Ggg can be obtained in

terms of the time derivatives of Gpp using the continuity
equation. We also define the following normalized
transverse-current correlation function,

P(q, t)= 6 (q, t)

x,', (q)
(20}

where y stands for the equal-time transverse-current
correlation functions.

It was shown in Ref. 5 that the renormalized theory for
the nonlinear fiuctuating hydrodynamics of compressible
fluids obtains the following form for the Laplace trans-
form of the density correlation function:

7 ='VL+'VT

where

(2&)

q ri (q, t)=Aodk [c(k) c(~—q —k~)]2
1

(2n. )'

Xk (1—u )6 (q —k t)6 (k t), (26)

where Ao=(2Pm po)
' and u =q k while q is the unit

vector along the direction of q. The quantity y(q, z) in
the rhs of Eq. (21) is given by

y(q, z)= f "dt e'"y(q, t)
0

and y(q, t) can be written as the sum of two parts,

y( )
~ +tq' '(q ) (2, )

z qc (q—)+iq I (q, z)[z+iq y(q, z)]

Here

c (q)=[PmS(q}]

yL(q, t)=, fdk, G (q —k, t)G (k, t)
3 (2 )3 PP ' PP

T

u u
X ——+ (29)

P(q, z) = 1

z+iq rt (q, z)
(22)

where ri (q, z} is the renormalized shear viscosity. In the
formulation of the MSR-type field theory the renormal-
ized quantities on the right-hand side (rhs) of Eqs. (21)
and (22) are expressed in terms of the correlation func-
tions on the other side and thus constitute a self-
consistent theory. We will use one-loop expressions for
renormalizations of the various quantities. Since at very
high densities the mode-coupling contribution is dom-
inated by density fluctuations, we ignore the effects corn-
ing from the convective nonlinearities. We include only
the terms involving density correlation and its coupling
to current fluctuation, the latter being important for a
compressible fluid. The renormalized transport
coefficients can be expressed in terms of the effective
mode-coupling functions, denoted by the superscript MC,
as

and

q I "(q,z)=q I (q)+ f dt e"'I™(q,t)
0

(23)

and I "(q,z) is the renormalized longitudinal viscosity.
The quantity y(q, z) arises from the nonlinear constraint
(1) and hence reflects the effect of coupling between the
density fluctuations and current fiuctuations in a
compressible fluid. Similarly, the Laplace transform for
the transverse-current fluctuation is given by

and

c2yr=, f dk 6 (q —k, t)G (k, t)(1—u ) .
3 (2 )3 PP

(30)

6 refers to the time derivative of the function G (q, t)
and u, =q d~t„where d~k is the unit vector in the direc-
tion of (q —k). We will demonstrate here that this quan-
tity y provides a mechanism that cuts off the sharp tran-
sition of the fiuid to an ideal glassy phase. This is a
consequence of the nonlinear constraint (1} for a
compressible fluid. Formal expression was obtained in
Ref. 5 for the quantity y using nonperturbative analysis.
However, for explicit calculations we use the one-loop re-
sults stated above. These were obtained from a small q, co

analysis. A more complete theory should involve a better
approximation for y obtained from a finite q and co

analysis. In the absence of a more general expression for
this quantity we will use here the above form for finite
wavelength also. The final results are thus not indepen-
dent of the upper cutoff A in the wave-vector integration.
It is not clear at this point what proper expression for the
quantity y may result in removing this dependence.
However, in order to maintain consistency, we have kept
the upper cutoff fixed throughout at a constant value
which is typically used in computing mode-coupling in-
tegrals.

Before solving the complete model, we will first ignore
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the quantity y and obtain the model which has an insta-

bility at high density. In Sec. III we demonstrate how the
nonlinear feedback mechanism, involving only the densi-

ty Auctuations, gives rise to a freezing in the nonergodic
phase which was identified as an ideal glassy state.

0. 8
I

III. SHARP TRANSITION TO NONERGODIC PHASE:
DYNAMIC INSTABILITY IN THE SIMPLE MODEL

If we ignore the quantity y in Eq. (21), we obtain

0. 4
I

I

0. 2 ~

z+iq I (q, z)
y q, z =

z —
q c (q)+iq zI (q, z)

(31)
0, 0

qa

25

This model has an instability that was first shown by
Bengtzelius et al, In order to see this, let us assume that
in the ideal glassy phase the density correlation function
P(q, t) develops a nondecaying part f (q) in the long-time
limit, i.e.,

FIG. 1. The 1ong-time limit of the density correlation func-

tion f(q), computed from the simple model at the density

n
*=0.99.

g(q, t) =f (q)+ P„(q, t), (32)

where g„(q, t) goes to zero as t becomes large. Now using
Eq. (32) in Eqs. (23) and (31) and then taking the long-
time limit, we obtain the following nonlinear integral
equation for f (q):

f(q) 1
I (qt ), (33)

1 f (q) q'c'—(q)

where I™is given by Eq. (25). Equation (33) can be
solved numerically by iteration obtaining a final set of
f (q). In order to compute the vertex functions in the
mode-coupling integrals, we use the Percus-Yevick struc-
ture factor for a hard-sphere Quid. The fiuid is con-
sidered to have undergone a transition when all the
f(q)'s simultaneously converge on a nonzero set of
values. We obtained such a transition at the critical den-
sity p, o. =0.99. This is in agreement with the result
quoted in Ref. 2. Figure 1 shows how final f(q) varies
with the wave number at this density. The exact location
of the transition point thus depends on the static struc-
ture for the Quid. We choose the upper cutofF for the
wave vector ko. in the mode-coupling integrals such that
Ao. =25. It is found that contributions coming from
wave vector above this value do not affect the transition
point much.

Next we write down the equation (31) in the time space
as a nonlinear integro-differential equation for the density
correlation function,

P(q, t)+q 1 (q)P(q, t)+q c (q)g(q, t)

+ f dr I™(q,t ~)g(q, r)=0 . —(34)

This equation can be solved numerically to obtain P(q, t)
as a function of q and t. In Sec. IV we will use this result
to compare the model described above with computer-
simulation results and also with a more consistent treat-
ment of the mode-coupling theory which is described in

the next section.

IV. CUTOFF MECHANISM
FOR THE COMPRESSIBLE FLUID

Now we return to the full expression (21) for the densi-

ty correlation functon retaining the nonhydrodynamic
quantity y. We show that when y is solved self-
consistently with g, the instability described in Sec. III is
absent even at very high densities. Thus the density auto-
correlation function does not freeze in the long-time limit
and always decays to zero, maintaining ergodicity. How-
ever, due to mode-coupling effects the system still slows
down with the increase of density. This was demonstrat-
ed in Ref. 1 for a simple but unphysical model where all
structural effects were ignored by considering a static
structure factor for the liquid that is independent of wave
number. In the present work we evaluate the mode-
coupling effects taking into account the proper wave-
vector dependence in the theory and investigate how this
affects the relaxation of the density correlation for
difFerent values of the wave number.

First, we write down Eqs. (21) and (22) in the time
space as a coupled set of nonlinear integro-differential
equations:

P(q, t)+q I (q)g(q, t)+q c (q)P(q, t)+ f dr I (q, t —r)P(q, r)

+q f dry(q, t —r) q 1 (q)g(q, r)+ f dr, I™(q,~—r, )P(q, r, ) =0 (35)
0
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and

P(q, t)+q q (q)P(q, t)+ J rI (q, t —r)P(q, r)de=0 .
0

We solve these equations numerically to obtain g(q, t)
and P(q, t) as functions of q and t A. s the renormalized
shear viscosity in Eq. (22) gets large due to mode-
coupling contributions, the transverse-current correlation
function decays very fast and hence in the actual calcula-
tion we ignore yT compared to the longitudinal part yL
to ease the computation. We have used in these calcula-
tions the same value for the upper cutoff of the wave-
vector integration, i.e., ko. =25, as in Sec. III. The whole
wave-vector range is divided by a grid of size 200. As the
density gets very high, we need to go to smaller time
steps in order to solve the above integro-differential equa-
tions numerically and thus the process gets more time
consuming. We describe our main results for a hard
sphere and Lennard-Jones system, respectively, as fol-
lows.

A. Hard-sphere Auid

0, 42

0, 28

0. 14

(I

9

0

~p

p
p

p

0. 00 I

0. IIO 0. |I5 1. 00 1 ~ 05 1. 10 1 ~ 15 1. 20 1. 25

FIG. 3. Square root of the inverse of the normalized longitu-
dinal viscosity I vs density. The dashed line shows the power-
law fit for intermediate densities.

We use the PY solution for the static structure factor
of the hard-sphere fluid. In Fig. 2 we show how the den-
sity autocorrelation function at the first diffraction peak
decays in time for several different densities. The behav-
ior is qualitatively very similar to what is observed by
Ullo and Yip in their computer simulations with a one-
component Lennard-Jones fluid. It was shown in Sec.
III that in the simple mode-coupling model where y is ig-
nored, P(q, t) does not decay to zero above n" =0.99.
Thus the quantity y results in avoiding the complete
freezing of the fluid into a nonergodic phase. However,
with the increase of density the mode-coupling effects
gets bigger and the quantity y also gets smaller and as a
result there is some remnant of the sharp transition. To
indicate the slowing down of relaxation due to mode-
coupling effects, we show in Fig. 3 how the quantity

y(0, 0) decreases as the density of the fluid is increased.
Although this quantity falls with the increase of density,
it does not go to zero rapidly enough, which could make
the case for a strong glassy behavior. Next we compute
the shear and longitudinal viscosities including the
mode-coupling contributions. In Fig. 4 the behavior of

15

12-

1 ~ 0

0. 8

Q. 6

cy Q. 4

0. 2

0. 0

p0
n n p

I I

100 200 300 400 500 1. 2 1, 3

v/v,

1. 4 1.5

FIG. 2. The normalized density correlation function g(qo, t),
where qo is at the first peak in the structure factor, for different
densities of a hard-sphere fluid.

FIG. 4. The diffusion coeScient as a function of the reduced
volume of the hard-sphere fluid, Vo being the close-packed
volume.
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10
(37)

the longitudinal viscosity with density is shown. %e have
expressed the result in terms of the bare longitudinal
viscosity defined as I = I (0,0)/I (0). In the low-density
regime the viscosity follows a power-law divergence with
an exponent of +=2.0. But for higher densities it in-
creases at a slower rate, cutting off the sharp transition.
This qualitatively agrees with the behavior observed in a
large number of systems, as was reported by Taborek
et al. This involves a power-law increase of the viscosity
over an intermediate temperature regime, higher than is
normally associated with glass transition. The exponent
lies in the range of 1.5 to 2.3. From the data for shear
viscosity, we compute the self-diffusion coefficient (D) for
a hard-sphere fluid using the Stokes-Einstein relation. In
accordance with Woodcock and Angell, we define the di-
mensionless quantity D ' as

' 1/2

D .

1. 0

0. 6-

-0. 2-

-0. 6

10

I

20

I

30 40

In Fig. 5 this is plotted as a function of the reduced
volume V/Vo where Vo is the close-packed volume. It
shows power-law behavior similar to the longitudinal
viscosity with the same exponent a. The actual values
for the diffusion coefficient obtained in the present theory
are close to that reported by Angell and Woodcock from
their molecular-dynamics simulation with hard-sphere
fluids at metastable densities. It was already pointed out
elsewhere that this computer-simulation data can also be
fitted very well to a power-law form with an exponent
1.86. For relatively lower densities, the present form of
the self-consistent mode-coupling approximation seems
to give a somewhat smaller value for the diffusion
coefficient than the simulation results. Next, in Fig. 6, we
show how the transverse-current correlation function
P(q, t) behaves with time for qo =1.0 at p*=1.02. Note
that, in the absence of mode coupling P(q, t) decays as a
diffusive mode with the rate being determined by the bare

FIG. 6. The normalized transverse-current correlation func-
tion p{qo, t) for the hard-sphere fluid at qoo =1.0 and n = 1.02.

shear viscosity. The result here shows the existence of
shear waves ' at finite wave numbers in a dense fluid as a
consequence of mode-coupling effects.

So far, we have reported only the results for a hard-
sphere system. These results are typical of what is ob-
served in dense fluids. However, in order to apply the
theory to more specific systems, we need to compute the
proper static structure factor. In Sec. IV 8 we will com-
pare the predictions of the theory with computer simula-
tions done with a one-component Lennard-Jones fluid.

B. Lennard-Jones fluid

10

10

10
4--

Ullo and Yip have done the computer simulations on a
truncated Lennard-Jones potential given by

4s[(o Ir)1' —(cr Ir) ]+a for r ro
Vr ='

0 for r &ro

where ro=2' o. o. has the dimension of length and c.

has that of energy. Thus the potential is purely repulsive.
In order to compute the equilibrium structure factor for
such a system, we replace it by a trial hard-sphere system
of diameter 1 (~2' rr) The structur. e factor for the ac-
tual system can be expressed approximately in terms of
that for this trial system, as follows:

(q)=y (q)+po Jd rf(r)e (38)

where

10

p V~ ( I'!
p V ( ) /3 V~ ( f )f (r) =gr(r)e (e '"' —e ) (39)
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FIG. 5. y(0, 0) vs density of the hard-sphere fluid.

and gT(r) is the pair distribution function for the trial
hard-sphere system described by the potential Vz(r) The.
hard-sphere diameter d in the trial system is an open pa-
rameter and it is adjusted so that the compressibility for
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the original and the trial systems are equal. ' Once d is
known, the static structure for this system can easily be
computed. Also, for this purely repulsive system we take
the bare transport coefficients to be equal to that for this
trail hard-sphere system. We have used the Carnahan-
Starling equation for the compressibility factor of the
reference hard-sphere system. The unit of time ~ for the
LJ system is given by r=(mo /E)' and we use the usu-
al expressions for reduced temperature T*=kz T/c. and
reduced density n '=no. .

In Fig. 7 we show how the density correlation function
P(q, t) for the LJ fluid behaves with time at a temperature
T*=0.60 and density n*=0.98. On the same figure we
also show the results obtained from Eq. (34) where the
cutoff y is ignored. This result clearly indicates that the
cutoff' mechanism is very important in justifying the
simulation results. It is useful to note also that in the
simple mode-coupling model, the LJ system undergoes
the so-called ideal glass transition at a density
n *=0.965 and T*=0.6. Next, in Figs. 8 and 9 we show
the time dependence of P(q, t) for higher densities,
p'=1.02 and 1.10, respectively. The temperature is kept
fixed at T*=0.6. Also on the same figures we show the
corresponding results from computer simulations. Al-
though the cutoff mechanism is effective in keeping the
system ergodic at high densities, the relaxation time be-
comes very large due to the mode-coupling effect.

V. DISCUSSION

We have considered here the self-consistent mode-
coupling theory for dense fluids and its implications for
the liquid-glass transition. The basic dynamic mecha-
nism considered here was originally introduced in Ref. 5

by Das and Mazenko. In the present paper we have in-
corporated the proper equilibrium structure for the fluid
in the theory, in order to compare its predictions with re-
sults from molecular-dynamics simulations. The analysis

1 ~ 0
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. 02
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FIG. 8. g(q~, t) for T"=0.60 and n =1.02, qo being same
as in Fig. 7. The solid line is the present work, and the dashed
line is the computer simulation.

involved a self-consistent mode-coupling theory with the
relevant nonlinearities for a compressible liquid taken
into account. We have showed here that if we ignore
terms that are higher order in wave number, we obtain
from our model results similar to earlier works, i.e., a
sharp transition of the fluid to a nonergodic phase above
a critical density. Next we solved the complete model to
show that there exists a cutoff mechanism mainly due to
nonlinear couplings between density fluctuation and
currents in the compressible fluid. It removes the sharp
transition described above. However, there is some rem-
nant of the transition, and the relaxation times in the
fluid get longer with the increase of density. We per-
formed our analysis for a hard-sphere system as well as
for a one-component Lennard-Jones system. The upper
cutoff of wave-vector integration is kept fixed at ku =25
in all the calculations. For a hard-sphere system we show
how the relaxation becomes slower with the increase of
fluid density. We compute the longitudinal and shear
viscosities, taking into account the mode-coupling contri-
butions. It is found that for intermediate densities the
viscosity diverges as a power-law with an exponent
a =2.0 but for very high densities the sharp divergence is

O~ 0. 4-

1.0
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0. 6

12 18 24

O
0. 4

0 ~ 2

FIG. 7. The normalized density correlation function g vs re-
duced time at qo0. =6.82 for a LJ fluid at T*=0.60 and
n =0.98. The solid line is the result from the present work,
the long dashed line is from the simple mode-coupling theory,
and the dashed line is the computer-simulation data.
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12 24

FIG. 9. Same in Fig. 8 for T =0.60 and n*=1.10.

48
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cut off and viscosity increases at a slower rate. We also
compute the diffusion coeScient for the dense fluid using
the Stokes-Einstein relation. The results obtained are
close to those reported by Angell and Woodcock for
molecular-dynamics simulation of a hard-sphere fluid for
supercooled densities. We show the decay of transverse-
current correlation in the fluid demonstrating the ex-
istence of shear waves at finite wave numbers due to
mode-coupling effects. For a I.ennard-Jones system, we
have used the proper static structure factor which is an
input in solving the mode-coupling equations. The re-
sults for the density autocorrelation function show good
agreement with those from the molecular-dynamics simu-
lation by Ullo and Yip. Here, we also indicate the result
obtained from the simpler mode-coupling theory, which,
it seems, gives rise to a too-enhanced effect.

Our results here demonstrate how the cutoff mecha-
nism obtained in Ref. 5 affects the dynamical behavior of
a dense fluid and they are in agreement with computer
simulations done on similar systems. The results are
qualitatively similar to the weak power-law behavior of
the viscosity seen in a large number of laboratory systems
as well as computer fluids over an intermediate-
temperature regime than is usually associated with the
glass transition. However, it is clear at this point that
while such mechanisms result in considerable slowing
down of transport in the dense fluid, they do not give rise
to extremely slow relaxation observed in more complex
systems. It is likely that such relaxation is related to the
development of energy barriers in the supercooled liquid
and the transport in such systems is an activated process.
Identification of the proper dynamic property for the
fluid that is sensitive to such processes is necessary for
this purpose.

The present theory illustrates how coupling of density

fluctuations is effective in slowing down transport pro-
cesses in a dense fluid. It indicates the importance of col-
lective processes or correlated collisions in the dense fluid
for its dynamical properties. Although the basic mecha-
nism that is responsible for slow relaxation is essentially
dynamic, the quantitative effect is very much dependent
on the structure of the fluid. Thus with the increase of
density the decay of dynamic correlation gets slower and
produces a stronger feedback effect on the transport
coefficients. But in a compressible fluid the current is
also coupled to the density fluctuations. In the model de-
scribed in Ref. 5 this was taken into account through the
nonlinear constraint (2.1). The cutoff mechanism then
follows naturally from the appropriate field-theoretical
analysis. In the present work we have demonstrated how
strongly it influences the dynamical behavior of the fluid
at supercooled densities and that is shows reasonable
agreement with computer-simulation results. However,
in order to obtain results that are definitive in a strictly
quantitative sense, it will be necessary to compute the
correction to the linear dynamics from a nonperturbative
approach.
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