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Monotonicity of the electron momentum density for atomic closed shells
in a bare Coulomb field
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For the bare Coulomb potential energy —Ze'/r, it is shown that the total electron momentum

density IIO(p) for an arbitrary number of closed shells is a monotonically decreasing function of p.
Since it is known that II(p) is nonmonotonic for all atomic ground states with completely closed
shells except helium, the implication of this result is that the observed nonmonotonicity is due to
terms of higher order than IIO(p) in Z perturbation theory. Numerical calculations are presented

and analyzed for the ten-electron isoelectronic series.

I. INTRODUCTION

Although not yet formally proven, ' there is numerical
evidence ' that the spherically averaged charge density
P(r) is a monotonically decreasing function of r for atom-
ic ground states. The corresponding quantity in momen-
tum space, the spherically averaged momentum density
II(p}, is known " to be a monotonic function of p for
some atomic systems and nonmonotonic for others. In
particular, for all of the noble gases except helium, II(p)
exhibits nonmonotomic behavior. As shown by West-
gate, Simas, and Smith" in their thorough study of the
behavior of II(p} for the atoms from hydrogen to urani-
um, it is the orbitals of the two outermost shells which
are responsible for the appearance of nonmonotonic be-
havior. There are two distinct types of maxima by which
the nonmonotonic behavior may be characterized. The
first type occurs for values of p in the slower momentum
region (0.0,0.6)lao ' and a second type which occurs in
the faster momentum region (0.7,1.6)trtao ' and for which
II(p,„) may be very small or large as compared to the
momentum density at the origin.

March' has recently established that in the case of the
bare Coulomb potential energy (v = Ze /r) p—(r) is a
monotonically decreasing function of r for any arbitrary
number N of closed shells, i.e., dp/dr (0. This result for
the bare Coulomb model, which is the zeroth-order con-
tribution" ' in a Z ' expansion, ' ' is in agreement
with the numerical evidence, mentioned above, for the
atomic ground states.

It is the purpose of the present paper to consider the
behavior of the momentum density 11(p) for the bare
Coulomb model. We shall do that in Sec. II. In Sec. III,
we present the results of numerical calculations for the
ten-electron isoelectronic series and discuss them in the
light of our result for the bare Coulomb model.

II. BARE COULOMB FIELD

For N closed shells, the spherically averaged momen-
tum density, II&(p), may be written' ' as a sum' over
the contribution from each of the Xclosed shells, i.e.,

N l6p 5j2 N

II.(p)= y, ,', , = g J'rr(p, ,p),
j =i ~'(p,'+p')'

where

11(pj,p)=16p, /n (p +p }

p. = Z/j and the number of electrons N„
N (N + 1)(2N + 1)

N, = 2j'=
j=l 3

Differentiatio yields
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FIG. 1. The spherically averaged momentum density II(p)

for the ten-electron atomic ions.
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128p j[Hc(p)]'= —p X
, =t m(p, +p }

(4)

which vanishes at the origin and which is less than zero
for all positive p. Hence Hc(p} is a monotonically de-
creasing function ofp.

III. THE TEN-ELECTRON ISOELECTRONIC SERIES

Since the bare Coulomb field model for N closed shells
yields the zeroth-order term in the Z ' expansion' of
II(p),

members of the ten-electron series (e.g., F, Ne, Na+,
Mg, Al', etc. ). In Fig. I, H(p)/II(0) is plotted for
several members of the sequence. Examination of this
figure shows that the degree of nonmonotonicity, as mea-
sured by H(p, „)/H(0), decreases towards 1 (the value
for a monotonic function) as Z increases. The value of
the location of the maximum, p,„,becomes successively
smaller as Z increases for Z ~ 11 while p,„/Z decreases
towards zero (the location of the maximum for a mono-
tonic function) as Z increases for Z ~ 10. Hence the non-
monotonicity disappears as Z ~ ~.

II(p)=II (p)+Z 'I1,(p)+Z H (p)+ (5)
IV. SUMMARY

for a 2-, 10-,28-, . . . , electron system; the result obtained
in Sec. II,

[Hc(p)]' &O,p & 0

means that in the particular case of the ten-electron
isoelectronic series the observed nonmonotonicity " for
neon is due to one or more of the correction terms to
Ilo(p) in Eq. (5) and that the nonmonotonicity would
disappear as Z ~~. Whether one is discussing the exact
or Hartree-Fock (HF) I1(p), an expansion of the form (5)
is applicable.

We examine this by considering the results of our cal-
culations of II(p) using the self-consistent-field (SCF)
wave functions of Clementi and Roetti' for various

We have shown that the momentum density of the bare
Coulomb model for the ground states of fully closed-shell
atomic systems is monotonically decreasing. In the
specific case of the ground states of the ten-electron
atomic systems the HF results indicate that the degree of
nonmonotonicity decreases as Z increases. Since the
monotonic Ho(p) of the bare Coulomb model is the
asymptotic limit for this series, the observed deviations
from nonmonotonicity are due to IIHF(p) —Ho(p).
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