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Surface phase transitions: Roughening, preroughening, orientational roughening,
and reconstruction in an isotropic frustrated Ising model
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We study the roughening, the preroughening, and the orientational roughening transitions for in-

terfaces between phases in the isotropic competing Ising Hamiltonian %=—J g NN,s,s—2M g oNN,s,s—M Q„NNN, s,s. The symbols, NN, DNN, and LNNN represent nearest-neighbor,
diagonal-nearest-neighbor, and linear-next-nearest-neighbor pairs, respectively, with J)0 and
—~ & M & ~. By performing low-temperature expansions in the three-dimensional cubic lattice, it
is found that the roughening transition curve passes through the region in which paramagnetic, fer-
romagnetic, and modulated phases merge, and is parallel to the phase boundary of ferromagnetic
and modulated phases. It is also found that crossover behavior occurs in the roughening transition
from the surface tension dominant regime to the bending-energy dominant regime. We examine the
preroughening transition for the case of the restricted solid-on-solid (RSOS) model. The
preroughening transition line is found to be distinct from the roughening transition line. This
confirms the recent prediction by den Nijs [Phys. Rev. Lett. 64, 435 (1990)]. Within the RSOS mod-

el, we find a multistate point for reconstructed surface structures. This is analogous to the multi-
state point in the bulk phase diagram. The orientational roughening transition is also examined.
However, it was not possible to obtain the orientational roughening transition line at a temperature
higher than that of the translational roughening transition, presumably due to the limited order of
the low-temperature series. The results deduced from the low-temperature expansions are com-
pared to the sine-Gordon renormalization-group calculations based on the SOS and RSOS models.
Finally we discuss the implications of the surface structure, and the connections with bulk struc-
ture.

I. INTRODUCTION

The interface between crystals and vacuums or be-
tween solids and Auids has been thoroughly studied in re-
cent years. There is also considerable technological in-
terest in surface magnetic structure. The model we shall
study has implications for a number of such phenomena.
In particular, we shall examine the roughening transition
and the equilibrium surface or interface structure of a
spin model with extended interactions. Recall that the
roughening transition for the nearest-neighbor Ising
model interface occurs at a temperature lower than the
Curie temperature and belongs to a different universality
class, ' the Kosterlitz-Thouless transition, than that of
the bulk phase. However, the roughening transition for
more complicated Hamiltonians is not so well under-
stood, though one might expect to have more extended
interactions than nearest neighbors at the surfaces of
many materials.

We consider the Ising Hamiltonian with interactions
NN DNN LNNN

A= —J g SS,—yM g SS,—M g SS
(I,j) (, )

'''

where NN, DNN, LNNN mean, respectively, nearest-
neighbor, diagonal-nearest-neighbor, and linear-next-
nearest-neighbor pairs on a simple cubic lattice. We con-
sider the case J)0 and —~ &M(ao. The choice of
y =2 for the DNN interactions generates the richest bulk
phase diagram. ' Therefore we will consider this case
for the surface Hamiltonian in this paper. The Hamil-
tonian Eq. (1.1) exhibits many interesting phases as a
consequence of the competing interactions in the region
J &0, M &0. It was originally introduced in a study of
microemulsion, but may also be applied to a number
of physical systems such as binary alloys and ferrimag-
nets. It is worth noting that the couplings are spatially
isotropic, so that for some systems the Hamiltonian is
more realistic than traditional anisotropic models. More-
over it possesses a richer phase diagram than that of the
axial-next-nearest-neighbor Hamiltonian' (ANNNI).

The competing interactions in the spin Hamiltonian
generate many modulated phases, as well as the fer-
romagnetic and paramagnetic phases. Within mean-field
theory the bulk phase diagram of this Hamiltonian has an
isotropic Lifshitz point X at which the paramagnetic, fer-
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romagnetic, and infinite period lamellar phases merge.
Naive dimensional arguments indicate that the lower
critical dimension for the Lifshitz point X should be

dL =4, so the mean-field theory is unlikely to be valid in

this region. "' However, if the layers are suSciently far
apart, then one might argue that the disordering transi-
tion is driven by a roughening phenomenon. As we shall

see, the curve of roughening transition, as derived from
low-temperature expansion, does indeed pass through the
point X as determined by simulations.

In this paper we investigate the property of the inter-
face in relation to the bulk phase structure. Our study re-
lies mainly on the results of low-temperature series ex-
pansions. The outline of the paper is as follows. In Sec.
II the roughening transition is considered. First, in Sec.
II A, we present a computer algorithm to enumerate clus-
ters and fugacities of overtuned spins at low temeprature.
We also introduce modified order parameters, which are
more appropriate for the roughening transition of the
Hamiltonian (1.1). In Sec. II B we present the solid-on-
solid model (SOS) and the restricted solid-on-solid model
(RSOS) associated with the Hamiltonian (1.1). In Sec.
II A we present the roughening transition line in the pa-
rameter space of j=J/kT and m=M/kT, obtained
from the low-temperature expansion and Pade analysis.
We find the crossover behavior from the surface tension
dominant regime to the bending-energy dominant regime,
and discuss this crossover behavior in momentum space.

In Sec. III the preroughening transition is considered.
In Sec. III A we present the preroughening transition line
obtained from the low-temperature series. In Sec. III B
we study the reconstructed surface structures and their
connection to the multistate point in the bulk phase dia-
gram. In Sec. IV the orientational roughening transition
is considered. The final section is devoted to the discus-
sions and conclusions. In Sec. V A we briefly review the
sine-Gordon renormalization-group (RG) study for the
roughening and preroughening transitions; the latter was
first discussed by den Nijs. We also discuss the sine-
Gordon RG study for the orientational roughening and
translational roughening transitions. In Sec. VB we dis-
cuss the connections of bulk structure to surface struc-
ture.

study. First, we define a three-dimensional cubic lattice
of linear dimensions I. with periodic-boundary conditions
in the x and y directions and antiperiodic boundary con-
ditions between the positive- and the negative-z boun-
daries. The interface at T=O is chosen to lie at z =0 and
in the zero temperature state, all spins are positive for
z (0 and negative for z & 0. Thus the ground-state nor-
malized layer density is p(z ) = 1 for z (0, associated with
positive spins, and p(z ) =0 for z & 0, associated with neg-
ative spins. Spins are located at positions on half-integer

To study the excitations above the ground state, we
generate clusters of overtuned spins by a computer algo-
rithm that is based on Martin's backtracking method. '

For each cluster, we then calculate the energy and the as-
sociated change in height with respect to the Oat surface.
The present problem of generating clusters is consider-
ably more complicated than for the Ising case, because
one must consider the interaction energy of clusters that
are separated by DNN or by LNNN sites. These are
considered to be connected clusters for the Hamiltonian,
Eq. (1.1), whereas they are disconnected for the Ising
Hamiltonian. The principal idea we have used in over-
coming this problem is that the DNN and LNNN sites
are considered to have higher values than their physical
coordination numbers. Accordingly, the total coordina-
tion number of the system is 24 instead of 6 as for the cu-
bic lattice. The enlarged coordination number requires
significantly more computer time. We have also
developed a computer program to consider completely
disconnected clusters, leaving only a relatively small
number to do by hand. The main problem in computing
contributions due to disconnected clusters is counting the
excluded volume, which depends on the relative heights.
Therefore, whenever clusters are generated or deleted, we
count the number of NN, DNN, and LNNN sites of the
occupied sites for each height. This method is analogous
to the one used to count the perimeter sites of percolation
clusters. '"

To study the roughening transition, Weeks et al. intro-
duced two types of order parameter, moments of the den-
sity gradient and the surface density. First, the moments
of the density gradient are defined as

II. ROUGHENING TRANSITION ( '")= y [p( —
—,') —p( + —,')] '", (2.1)

A. Low-temperature expansion

To obtain the roughening transition line in the parame-
ter space of j=J/kT and m =M/kT, we shall apply the
method of low-temperature series expansion. Indeed this
method was applied in one of the first studies of the
roughening transition for the nearest-neighbor model.
Our treatment is quite similar in spirit, but with the
Hamiltonian defined in Eq. (1.1). In general the task of
constructing the low-temperature series for the surface
transition is more demanding than for the bulk case be-
cause the contributions due to the excluded volume of the
disconnected clusters depend on the relative heights of
the disconnected clusters.

We begin this section by outlining the system we shall

1 —2p(1)
(2.2)

which again diverges as T~T„because the surface den-
sity p( —,') approaches the value of one-half as T~Tz.
However, since the Hamiltonian, Eq. (1.1), contains the
LNNN interaction, it is more natural to define the quan-
tity

1

1 —p( —,') —p( —,')
(2.3)

which also diverges, since p( —,')+p( —,') approaches unity

which diverges as T~ TR. Another order parameter is
defined via the surface density; thus
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as T~T„. This order parameter includes the bulk exci-
tation at z =

—,', which is regarded as a connected cluster

by the LNNN interaction with the flat surface.
We obtain the low-temperature series of the order pa-

rameters, (z ) and R', in terms of the small parameters
x=e and y:—e . We consider the case of
J &M including the region of the competing interaction.
In this region, y is smaller than x, so that one may take y
as a small parameter of the series expansion. Thus the
low-temperature series may be written

(z2)Bo= g g Aao(p, q)x~ y~, (2.4)
p=0 q=0

(2.6)

Also, according to the sine-Gordon formalism, ' the
singularity for the interfacial width is related to the
correlation length g by

&z'& -ln(-
I
T—Ta I

" (2.7)

Although the d log Pade analysis is performed only to or-
der [2,2] we believe the analysis is sufficient to derive an
accurate phase diagram of the roughening transition.
The corrections due to the higher-order d log Pade terms
are presumably of comparable magnitude to those for the
nearest-neighbor model, and in this case the [2,2] approx-
imation is typically accurate to 5%.

As an additional check on this conclusion we have car-
ried out the following analysis. The location of the singu-
larity and its residue are first fixed according to the [2,2]
Pade analysis. This implies an infinite series, the leading
terms of which agree with the low-temperature analysis.
Now one can begin to vary the coefficients in this series
beyond those that we explicitly determined in the low-
temperature expansion. It is found that variation in the
coefficients of the O(y ) and higher-order terms have al-
most no effect on the properties we have calculated. It
therefore seems unlikely that correct treatment of such
terms within the low-temperature analysis can affect our
results.

g Bao(p, q)x~ y~,
p=O q=O

where the subscript BO means that the series includes
bulk excitations and overhangs. Later in this paper we
shall use the same notation to distinguish this series from
the ones based on the SOS and the RSOS models. The
series for (z )ao and [p( —,')+p( —,')]no are derived up to
O(y ), and the polynomials are given in the Appendix,
Eqs. (Al) and (A2). We note that the coefficients reduce
to the nearest-neighbor Ising ones in the limit of x~1,
that is, as M~O. The roughening transition singularity
is determined by using the standard d log Pade approxi-
mant analysis. Since the series is obtained up to order
O(y ), we use only the [2,2] d log Pade analysis. In order
to perform these calculations, one may first choose x
values, and then locate the singular values, y~(x ), for a
given x value. The dominant singularity is assumed to be
of the form

B. The SOS model and the RSOS model

We now consider the solid-on-solid model in which
bulk excitations and overhangs are excluded, and the re-
stricted solid-on-solid model, which is an SOS-type model
where the differences between NN heights are restricted
to 5h =0,+1. The SOS Hamiltonian that is equivalent to
Eq. (1.1) is

NN

&sos=(J+4M) g Ih„—h„ I

(r, r')

DNN LNNN

+2M y Ih, —h, I+M y Ih, —h, I,
( r, r' ) (r, r')

while the RSOS Hamiltonian is

NN DNN

~Rsos J g lh h
I
+2M g lh„—h,

(r, r') (r, r')

LNNN

+M g Ih„—h„.
(r, r')

(2.8)

(2.9)

where NN, DNN, and LNNN mean nearest-neighbor
columns, diagonal-nearest-neighbor columns, and linearly
next-nearest-neighbor columns, respectively. The corre-
sponding Gaussian Hamiltonians are

&sos=(J+4M) g (h& h& )

(r, r'&

DNN LNNN

+2M g (h„—h„) +M g (h„—h„)
(r, r') (r, r')

(2.10)
NN

~Rsos= J
DNN LNNN

+2M g (h„—h„) +M g (h„—h„)
(r, r') (r, r')

(2.11)

We note that the coupling constants between the NN
columns are slightly different in the SOS model and the
RSOS model. This is a reflection of the difference in the
number of DNN sites within the NN columns.

For the SOS and RSOS models, we have also obtained
the series for the second moment of height in a low-
temperature expansion. These are defined, respectively,
as

(z ~sos= g X ~sos(p q)x y
p=O q=O

~Rsos X X ~Rsos(p&q )x' y
p=O q=O

(2.12)

(2.13)

C. Numerical results for the roughening transition

We begin by recalling the bulk phase diagram in Fig. 1

as obtained from mean-field, Monte Carlo, low-

The polynomials may be found in the Appendix, Eqs.
(A3) and (A4). The singular behavior of the series is ana-
lyzed in the next section.
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FIG. 1. Rouglmning transition lines based on (z') so denoted
by o, (z')sos denoted by X (z') R$QQ denoted by (), and %8p
denoted by +. They are compared with the bulk phase boun-
daries (solid) quoted from Ref. 8.

temperature expansion, and e-expansion methods, so that
comparisons may be made with surface phase diagram.
As shown in Fig. 1, the paramagnetic, ferromagnetic, and
modulated phases merge at that point which we have la-
beled X (j-—0.08, m ——0.9). The boundary of the
ferromagnetic-modulated phases is asymptotic to
j+10m =0 in the T~O limit.

Now we present the numerical results for the roughen-
ing transition obtained from the series, Eqs. (2.4), (2.5),
(2.12), and (2.13). In Fig. 1 we plot the roughening tran-
sition lines obtained from yII(x) in Eq. (2.6). Near m =0,
which is the Ising limit, all singular points from the
different series are consistent with each other. Even for
large ~m ~, all transition lines are almost consistent, ex-
cept the line obtained from (z )Bo. We interpret this
discrepancy as follows. As ~m

~
increases, the bulk modu-

lated phase becomes more favorable. Accordingly, bulk
excitations cause modulated phase structure to develop
parallel to the surface. A similar phenomenon was ob-
served in earlier mean-field calculations. This effect may
enhance the contributions of bulk excitations in the
series, Eq. (2.4), causing an apparent enhancement in the
height fluctuations of the interface. At the moment,
since we are interested in the evolution of the equilibrium
interface fluctuations with increasing temperature, the
order parameter (z &so is not appropriate to our study.
Instead, we compute, the SOS model order parameter
(z )sos. We note that the transition lines obtained from

the series, (z )sos and ABo, are in good agreement, and
this confirms the conjecture that the surface phase transi-
tion is not well described by calculations that are low or-
der in (z )Bo.

As one may see in Fig. 1, the roughening transition
occurs at lower temperature than the para-ferromagnetic
transition. However, as the effects of the competition in
interactions become stronger, the roughening transition
line becomes closer to the para-ferromagnetic transition
line. Indeed, it seems likely that the roughening transi-
tion curve passes through the region where the bulk fer-
romagnetic, paramagnetic, and modulated phases are in
close proximity. %'e return to this point later on in Sec.
VI. On the other hand, for m ~ —0. 11, the roughening
transition line for the SOS model appears to be parallel to
the bulk ferro-modulated phase boundary which, at low
temperature, is asymptotic to j+10m =0. This suggests
that modulated structure, rather like the bulk structure is
forming at the interface. Indeed at T=0, for
j+10m =0~0, the column layer structure with infinite
height is more favorable than the flat surface. Moreover
as in the bulk phase diagram, the equation j+10m =0
represents a degenerate line of multistate points at T=O.
Thus, as in the bulk case, there is a progression of surface
reconstructed phases. However, for the SOS model this
is not so interesting, because the surface is at this stage
already rough. Therefore the roughening transition line
is j+10m =0 as T~O.

Now, the presence of the column modulated structure
for m ~ —0. 11 implies that the surface has large fluctua-
tions with short-ranged correlation. In this case, the
bending energy is more dominant than the microscopic
surface tension. On the other hand, in the Ising model,
m ~0, it is known that the surface tension plays a dom-
inant role in the formation of a rough surface with long-
ranged correlation. Therefore we can expect some cross-
over behavior to occur between —0.11 & m &0 from the
surface tension dominant regime with a large correlation
length to the bending-energy dominant regime with short
correlation length. This crossover behavior is evidenced
in the exponent 0. Thus 6I increases for m ~ —0.06, but
decreases for m ~ —0.06 in Table I. Note that a smaller
8 implies a shorter correlation length.

In order to further discuss this crossover behavior, we
consider the Hamiltonian Eq. (2.8) in momentum space.
We perform the Fourier transformation for the height
variables,

(2.14)

and then write the Hamiltonian as

%sos( q ) = g [4(j+4m )( 2 —cosq —cosq» )

q

+ 16m ( 1 —cosq„cosq» )

+4m(2 —cos2q„—cos2q )]hqh q
.

(2.15)

In the q ~0 limit, Eq. (2.15) becomes
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TABLE I. The values of 0 as a function of m based on the
SOS model.

0.00
—0.02
—0.04
—0.06
—0.08
—0.10
—0.12
—0.14

1.076
1.154
1.208
1.239
1.225
1.138
0.980
0.794

~sos(q ) = g [2(j+ 12m )q —8mq ——', m (q„+q» ) ]
q

XA A (2.16)

III. PREROUGHENING TRANSITION

Here the coefficient of the first term plays the role of a
surface tension, and that of the second term plays that of
a bending energy. The last term turns out to be ir-
relevant. For j+12m &0, the surface tension term is
negative. This implies that long-range correlation is no
longer present. However, the bending energy is positive
for m &0. This fact is related to the presence of the
modulated phase, where the correlation length is short.
Therefore the crossover behavior is expected to occur
near the intersection to j+12m =0, which is estimated as
m ——0.06. That is comparable to the crossover behav-
ior for 0 in Table I.

It is worth pointing out that the column modulated
surface structure does not appear within the RSOS mod-
el. The reason is that the infinite height changes between
NN columns are excluded. Moreover the crossover be-
havior occurs near the intersection to j+8m =0 instead
of j+12m=0. That is due to the difference in the NN
coupling constant. This effect may cause small
discrepancies in the roughening transition lines of the
SOS model and the RSOS model for large ~m

~
in Fig. 1.

Finally, we note that this appears to be no theoretical
description for the evolution from the surface-tension to
bending-energy dominant regions, a matter to which we
return in Sec. V.

Let us begin this section by recalling the order parame-
ter for the PR transition. The order parameter used in
the original paper is (cos(m.h ) )Rsos where h is a column
height, and the brackets mean the average over the posi-
tions r. This quantity is finite in the ordered Hat phase,
and is zero in the disordered Bat phase. However, we
have obtained the low-temperature series for a slightly
modified quantity,

pR, Rsos =1 (cos(~h ) ~Rsos ' (3.1)

008 I I I I I I I I I

0.06 — x

0.04—

0.02—
Q X

Q X

QX

0 I ~ a ~ s
I I

This form is more convenient because it causes the con-
tribution of the fiat surface at T=0 to be zero. The de-
tailed polynomials appear in the Appendix, Eq. (A6).
With the quantity (3.1), the PR transition line is deter-
mined as a curve of roots of NPR, Rsos 1. The solutions
are located by the Newton method, and we have present-
ed the results of the PR line in Fig. 2. In the same figure
we also compare the roughening transition line and the
PR transition line within the RSOS model. Note that
they overlap in the region j & 0, m (0, but are distinct in
the region j &0, m &0. This diagram is topologically
similar to Fig. 2 of Ref. 16.

We also examine the PR transition line with the SOS
model (cos(m.h ) )sos. The series may be found in the Ap-
pendix, Eq. (A5). We recall that there is no restriction in
the column height change in the SOS model. In this case
we could resolve the PR transition line from the roughen-
ing transition line even in the region j &0 and m )0.
Consequently, we might conjecture that the PR transition
is a characteristic of the RSOS model, not of the SOS
model. Its significance for the true surface would, in this
case, not be entirely clear. Evidently this problem will re-
quire further careful examination.

A. Preroughening transition
-0.02— XO

Recently another surface transition, the preroughening
transition (PR), was introduced by den Nijs. ' The PR
transition is a transition from a Hat surface to a disor-
dered fiat surface in which an array of steps with posi-
tional disorder and long-range up-down-up-down order
exists. The original Hamiltonian that was used to study
the PR transition is based on the RSOS-type model. It is
the same as Eq. (2.11) except for the LNNN coupling.
Therefore it is likely that this transition would also be
present with the present Hamiltonian. Indeed one hopes
to provide a confirmation of the existence of the PR tran-
sition line by the use of low-temperature expansions.

-0.04—

-0.06—

-0.08—

-0.10
0

I I I l

0.5 1.0

FIG. 2. Compared are the PR transition line X with the
roughening transition line C) based on the RSOS model.
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B. Reconstructed surface structures

One of the features of the RSOS model with the com-
peting interactions is the presence of the reconstructed
surface structure. Thus by reconstructed surface struc-
ture we mean the flat rippled structure that is present,
even at T=O. Interestingly this reconstructed structure
grows from a multistate point as is the case for the bulk
phase diagram.

We first consider a surface lamellar structure as shown
in Fig. 3. In order to describe the configuration, we in-
troduce a quantity l, . Here s is the number of layers
comprised of overtuned spins, and l is the height of the
layers. A sequence of layer structures' is described by
using the notation ( ). For example, the flat surface in
the ferromagnetic phase is given by (0„). The
configuration of Fig. 3 is denoted (12,02), the latter
meaning a sequence of two layers with height one, and
two layers with height zero. The (12,02) state corre-
sponds to a two-band structure in the bulk phase, which
is degenerated with the flat surface (0„) along
J+6M=O at T=O. When J+6M(() )0, the phase
(lz, Oi) is more (less) favorable than the flat phase at
T=O. However, since surface states include up-down
symmetry with respect to the flat interface, the (12,02)
state is infinitely degenerate with a linear combination of
(1„0,) and ( —1„0,). F«example, (1„0„—1,,0, ) is

one of the states.
Besides the degeneracy due to the up-down symmetry,

the (12,02) state is also degenerate with (1,0 ) for
m ) 3 when J+6M =0 at T=O. This degenerate behav-
ior is analogous to the multistate point of k bands for
k ~2 in the bulk case when J+10M=O at T=O. In or-
der to discuss the multiphase behavior of the surface, we
rewrite ( li, 02) as (2)s, while two-band structure in the
bulk is denoted as (2)z. The subscripts S and 8 stand
for surface and bulk, respectively.

In the bulk phase, by calculating the one spin-flip exci-
tation, it is known that ( k )s for k )4 states are exclud-
ed when TAO. Moreover near T-O, the degeneracy of
(2)s and (3)s is resolved by generating the states of
(2 '3) s for k ) 1. Likewise, even in the surface phase,
near T-O, the states of (2" '3)s for k ~ 1 are created.
Thus the point of J+6M =0 at T=0 is a multiphase de-
generate point at which ( 2 )s —( 3 )s phases are degen-
erate. Moreover for J+6M ~0, many multiphase points
exist at T=O, which are tabulated in Table II.

TABLE II. The reconstructed surface structures at T=O.
Here rn is any integer for )2.

Configuration

(1.,0. )
(1,0,—1,0)
(1,0 ) and (1,0, —1,0)
(1,0, 1,0)
((1,0)., —1,0)
(1,0)

Degenerate line

J+6M =0
J+—"M=O
J+5M=O
J+ —M=O
J+ [4+2/(m + 1)]M=0
J +4M =0

creased the interface undergoes a conventional scalar
Coulomb-gas roughening (TR) transition at which the
fluctuations in the height diverge. There remains some
orientational order that is lost after one further
Kosterlitz- Thouless (vector Coulomb-gas) transition.
The latter is known as the orientational roughening (OR)
transition. The OR transition results from the decorrela-
tion of the surface normals to the interface, while the
TR transition is due to the increase in height-height fluc-
tuations. Nelson and Halperin' ' considered the Lapla-
cian roughening model and argued the presence of both
the OR and TR transitions. Later numerical studies' for
the Laplacian roughening model were performed, and
evidence for two transitions was found, though they
occur at very nearly the same temperature.

A convenient order parameter for the OR transition is
t 2

NoR sos =— g (
—1)jh(r+5 )

' j=-1 sos
(4.1)

where r+5 is a NN site to r, and the brackets mean the
average over the position r We h.ave obtained the low-

temperature series for this order parameter and it is
presented in the Appendix, Eqs. (A7) and (A8). As be-
fore, by using the d log Fade analysis, one can now locate
the OR transition line. It is plotted in Fig. 4 along with
the TR transition. Evidently the two lines are barely
resolved for m ) —0.06, where the surface tension is
moderately large. However, the two lines do not slightly
deviate when m & —0. 1, where the bending energy is
supposed to be dominant, rather they are both parallel to
the line j+ 10m =0. Hence it is not obvious that the OR
transition line is distinct from the TR line. We attribute
this result to the limited order of the low-temperature
series.

IV. ORIENTATIONAL ROUGHENING TRANSITION

A pinned, tensionless surface is believed to undergo
two types of transition. ' As the temperature is in-

V. DISCUSSIONS AND CONCLUSIONS

A. The sine-Gordon RG analysis

Most of the roughening transitions mentioned in the
preceding sections may be studied using a sine-Gordon
renormalization-group analysis. The translational
roughening and preroughening transitions may be de-
scribed using the Hamiltonian

FIG. 3. A configuration of the reconstructed structures is

shown.

&=——fd (VxQ) +y, f d x cos2vrg

+$2 G x cos4% (5.1)
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I I I I we shall return in Sec. V B.
The orientation roughening transition may also be for-

mulated as a sine-Gordon renormalization-group prob-
lem. The Hamiltonian has been determined to be

Og ~ ~ ~

~ ~ I
= ——J d x(V P) +A, g f d x cosa. VQ

2
(5.2)
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FIG. 4. The OR transition line X is compared with the
roughening transition line 0 based on the SOS model.

Rough.
I

Prerough. Flat
I I

FIG. 5. RG flow diagram of the roughening and preroughen-

ing transitions.

The essential features of the analysis may be readily un-
derstood by examination of Fig. 5. Thus, depending on
the choice of initial condition on the critical surface, one
finds that two, one, or none of the fugacities flow to zero.
If both do so, then one has no restraining potential for
the surface, and it becomes rough. Conversely, if only
one of the fugacities is finite, then the phase is prerough.
Note that, when the coeScients of the cosines become
finite, one often says that the charges that define their
fugacities "unbind. " Implicit is the basic relationship be-
tween the interfacial and the Coulomb-gas analysis.

Clearly the sine-Gordon analysis starting from Eq.
(5.1) is straightforward. However, the claim that this
effective Hamiltonian, Eq. (5.1), is equivalent to the basic
lattice model is not firmly established, a matter to which

where a stands for the unit lattice vectors, and this Ham-
iltonian reproduces the flow equations for a vector
Coulomb gas. ' ' It transpires that there exists also an
orientational preroughening transition by analogy with
that for translational roughening, though the structure
of the phase diagram is somewhat richer for the orienta-
tional problem.

Combing the Hamiltonians (5.1) and (5.2) and adding a
coupling term of the form

U g J d x cosa/ cosa VP (5,3)

with the coupling constant v, one may obtain both the
translational and orientational roughening transitions
from a single Harniltonian, by appropriate choice of ini-
tial conditions on the initial surface. However, the inter-
facial phase diagram in the space of 0. and ~ has not yet
been determined in that region where the orientational
and translational transition collapse to a single transla-
tional roughening transition. There appears to be a rath-
er spherical transition point located in this region. Fur-
ther analysis of this problem will be presented at a later
date.

B. Discussions and conclusions

As we pointed out in the Introduction to this paper,
the nature of surface phase transitions in the Hamiltoni-
an with extended interactions is still relatively poorly un-
derstood. Some of the results presented in this paper are
inconclusive and must be viewed as a first step in sys-
ternatic investigation of the problem. A curve of TR
transitions was clearly identified and the exponent 0 was
calculated. The origin of the variation of the exponent
along the roughening curve is not properly understood.
Possibly it is a consequence of the limited order of the
low-temperature series, but given the size of the variation
compared with the typical errors, one might question this
conclusion. Jt is also possible that one is observing cross-
over due to proximity of the vector Coulomb-gas fixed
point, but since the series is unable to resolve this transi-
tion, there is no simple way of checking this conjecture.

The presence of the PR transition within the RSOS
model is encouraging in that it appears to confirm the
predictions of den Nijs. However, the PR transition
could not be observed for the Ising or the SOS model,
and one is concerned that the phenomenon might be
present only in the restricted model. Presumably this
would mean that the transition is unlikely to be observed
in real surfaces. The sine-Gordon renormalization argu-
ments of den Nijs are based on the ideal that +2e charges
of cos4m.g(x) can unbind at higher (Coulomb-gas) tem-
perature than the +e charges of cos2vrg(x ). The vanish-
ing of the fugacity of the cos2vrg(x) term results in a
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Kosterlitz-Thouless transition that is universal and has a
fixed exponent. The unbinding of the +2e charges should
result in a PR transition. However„ this transition is no
longer universal because the fugacity of the first harmon-
ic is still finite and the interface height-height correla-
tions are still suppressed. This results in a continuously
varying exponent along the putative PR line. Given the
nature of the transition, it is possible that, for an SOS
model, there exists a more relevant operator than the
cos4ng(x ) term, and this may ultimately preclude the PR
transition. It is known that the cos2mg(x) operator is
more relevant than any other, so the true roughening
transition would not be affected by such effects.

Another alternative explanation is as follows. Within
the sine-Gordon formulation one may choose initial con-
ditions for the surface free energies and the coefficients of
the harmonic operators corresponding, in the Coloumb-
gas language, to the fugacities of the charges. In the mi-
croscopic Hamiltonian one chooses only the surface free-
energy terms. Consequently, a given RSOS or SOS model
Hamiltonian must imply some fixed choice for the bare
initial conditions. It is possible that the SOS model im-

plies initial conditions that do not permit a flow to the
PR region. The fact that the microscopic RSOS model
significantly enhances those configurations that drive the
PR transition may reflect this behavior.

Finally our observation might also be rationalized as
follows. We have noted that the RSOS restrictions
enhance those configurations that drive the PR transi-
tion. Thus it may be that the transition is present in both
SOS and RSOS theories but that the low-temperature ex-
pansion is only capable of capturing it when it is perspi-
cuous, that is, within the RSOS model. Evidently, these
issues will have to be investigated further.

The lack of evidence for an OR transition from the
low-temperature expansion is, perhaps, not so surprising.
The PR transition is driven by configurations that are
well represented at low order in the series. The OR tran-
sition results from decreasing correlation of coarse-
grained surface normals. The order of the present series
permits only rather compact excitations and this may not
be sufficient to define significantly separated, oriented
normals. Thus the orientation of the surface, as de-
scribed by the expansion, becomes decorrelated only
whenever the height fluctuations diverge; that is, whenev-
er the conventional TR roughening transition takes place.
This reasoning is consistent with our observation that the
curves of OR and TR transitions, as signaled by their
respective order parameters, are essentially degenerate.
We have undertaken the task of obtaining the low-
temperature series to higher order and, though this may
well resolve the preroughening issue, it does not seem
likely that this will be sufficient to resolve the question of
the OR transition. Thus for the moment we must rely on
the conclusions of the sine-Gordon analysis discussed in
the preceding section.

The question of surface reconstruction is also of some
interest, and probably worth pursuing. The observation
that, for our model, multiphase surface reconstruction is
present, suggests that such a phenomenon may be present
in nature. However, the detailed evolution of the phase

diagram in this region is not yet understood. Evidently,
there are two prominent tendencies. Thus the surface
ripples can melt and if this is described by some defect
Hamiltonian, one would ultimately be led to a floating
phase akin to that of the two-dimensional ANNNI mod-
el. However, the surface is still free to undergo overall
height fluctuations. If these become unbounded before
the melting of the ripples one presumes that the roughen-
ing transition is merely shifted in temperature. However,
if these fluctuations compete, then the surface free ener-
gies will be renormalized by both height fluctuations and
the meandering of the surface ripples. This problem is

presently under study.
At this stage it is, perhaps, worth placing some of the

observations of this paper in the broader context of the
bulk phase diagram. As we mentioned in the Introduc-
tion, one of the fundamental objectives of the study was
the hope that some light would be cast on that region of
the bulk phase diagram where the ferromagnetic, and
modulated phases were in close proximity. Within
mean-field theory, these three phases merge at an isotro-
pic Lifshitz point X at which the period of the modulated
phase diverges.

However, fluctuations strongly renormalize the
paramagnetic-modulated boundary and drive it to
fluctuation-induced first order. Furthermore, based on
naive engineering dimensions, the lower critical dimen-
sion of the isotropic Lifshitz point X is dI =4. For these
reasons, it seems unlikely that mean-field theory can be
relied upon in this region of the phase diagram. On the
other hand, Monte Carlo simulations of this region are
inconclusive as to the nature of the Lifshitz point, though
they do provide a fairly reliable guide to the location of
the transitions. We argue that, if the mean-field predic-
tion that the period of the lamellar diverges at the transi-
tion is valid, then the bulk order-disorder transition may
be connected to the roughening of dilute interacting lay-
ers. In fact, it is noted that, within numerical error, the
roughening curve from low-temperature expansions
passes through the putative point X as calculated by
simulation. This is hardly compelling evidence that the
two phenomena are related but it has prompted us to be-

gin to study the collective roughening of tensionless sur-
faces.

Though the low-temperature expansion was unable to
locate the translationally rough, oriented interface, it is
probably present for the Hamiltonians, Eqs. (5.1) and
(5.2). If this is indeed the case, and the lamellae in the
bulk phase are indeed far apart in the vicinity of L, one
has the intriguing possibility that a second bulk orienta-
tionally disordered phase may exist. Presumably this
phase would be composed of dilute interfaces each of
which is orientationally smooth, but transitionally rough.

Evidently, for both the bulk and surface Hamiltonians
there is much yet to be done, and it seems possible that
some qualitatively novel phenomena may emerge from
the study.
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APPENDIX

The polynomials are presented below with x =e
and y =e

The series for (z )Bo is

(z ) =y (2x )+y (gx +6x 8x )+y (8x +gx 36x + 8x +24x + 12x + 16x )

+y'(2x' +48x' +72x' —280x' +32x' +68x +60x '

+ 16x +80x +40x +24x +24x + 16x —58x )

+y ( 24x ' + 12x ' +48x ' —276x ' —360x ' + 848x ' + 136x '"—158x "+268x ' —784x

352x»+80x'4+ 368x"—108x "+268x "+162x'8+100x "+394x'o

+ 106x + lgx + 32x )

+y (24x 16+24x 17 7gx 18+ 160x + 168x + 596x 21 2592x 22 4568x 23+ 10 848x 24+ 236x

—3260x —758x —1736x —3528x + 1072x +3456x ' —1136x +2152x +762x

+524x' +624x' +312x +72x'9+152x4 +124x '+104x —378x —106x ) . (A1)

The series for [p( —,
' )+p(=,' )]Bo is

[p( —,
' )+p( —,')]13o=y'(x')+y'(4x "+x' )+y (4x' +4x"—lgx "+4x "+12x "+6x "+6x'0)

+y'(x' +24x' +36x' —164x' +16x' +41x +33x '

+gx 22+ 40x 23+ 1 2x 24+ 1 2x 26+ 4x 28+ x 29
)

+y 6( 12x ' +6x 14+24x "—154x 16 198x ' +424x 18+68x 19 79x 20+ 134x21

432x 22 19gx 23+ 8x 24+ 176x 25 27x 26+ 106x 27+ 142x 28+ 122x 29

+52x' +37x +2x' +8x )

+y'(12x' +12x' —39x' +80x' +76x +294x ' —1400x —2452x +5572x "

+ 110x —1842x —555x —956x —1936x +736x "+1700x '

—630x +924x +521x +277x' +293x +96x +20x +36x +14x '+4x +x ) .

(A2)

The series for (z )sos is

(z ) =y (2x )+y (8x' )+y "(8x' +8x"—36x' +8x' +24x' +12x' +16x )

+y (48x' +72x' —312x' +32x' +104x +64x '+16x +80x +40x +24x )

+y (24x ' + 12x ' +48x ' —276x ' —360x ' +848x ' + 136x ' —182x +268x '

784x 22 352x 23 40x 24+- 368x 25 + 12x 26+ 1 96x 27 +336x 28 +272x 29

+120x' +50x +18x +32x )

+y (160x ' + 128x +576x ' —2672x —4688x + 11 648x +384x —4272x

—896x —1928x —3664x + 1464x +3744x ' —1592x + 1952x

+ 1296x +576x + 52gx + 312x +72x + 80x ) .

The series for (z ) Rsos is

(A3)
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(z2)&so&=y (2x )+y (8x )+y (gx +8x —36x ' +8x +24x +12x +8x )

+y 5(4gx 16~72x 17 312x 18+32x 19+ 104x 20+-64x 21+ 16x 22+ gPx 23+ 24x 26)

+y (24x ' + 12x ' +48x ' —276x ' —360x ' + 848x ' + 136x ' —182x +268x '

—784x —352x —80x +328x '+ 144x + 172x '+ 220x +224x +64x +50x )

+y (160x' +128x +576x ' —2672x22 —4688x +11648x +384x —4272x

—952x —2120x —3952x +2504x +3080x ' —1280x + 1344x

+ 1096x +448x + 384x + 88x ) (A4)

The series for NPR sQs is

Npz 8~8=y (4x )+y (16x' )+y (16x' +16x"—52x' +16x' +48x' +24x' +16x )

+y (96x' +144x' —520x' +64x' +208x +128x '+32x +160x +48x )

+y (48x ' +24x ' +96x ' —448x ' —600x ' + 1696x ' +272x ' —260x +536x '

—1320x —560x —144x +672x + 356x + 360x +512x +480x + 176x + 100x +4x )

+y (320x' +256x +1152x ' —4800x —8480x +23 296x +1056x —7456x

—1136x —3944x —7008 +4544x +6720x ' —2552x +3264x +2368x

+1024x "+928x +240x "+16x +32x ) . (A5)

The series for XpR, RsQs 's

NPR „8~8=y (4x )+y (16x' )+y (16x' +16x"—72x' +16x' +48x' +24x' +16x )

+y5(96x +144xx'7 —624x' +64x' +208x +128x '+32x +160x +48x )

+y (48x +24x +96x 552x —720x + 1696x +272x +52x +536x

—1568x —704x —160x +656x '+ 288x +344x +440x +448x + 128x + 100x )

+y 7( 320x 19+256x 2O+ 1152x2' —5344x —9376x +23 296x +768x —3744x"

—1904x —4240x —7904x +5008x +6160x ' —2560x ' +2688x

+2192x + 896x +768x ' + 176x ) . (A6)

The series for NQg sQs is

No~ qoq=y (8x )+y'(32x' )+y (16x' +40x"—144x''-+32x' +64x'6+56x "+48x20)

+y (128x' +336x' —1248x' +80x' +400x +224x '+80x '+160x +160x +48x )

+y (48x ' + 16x ' + 160x ' —640x ' —1680x ' +3328x ' +496x ' —976x +952x

—2064x —1704x —800x + 1440x + 192x +448x +944x

+672x +224x +96x +72x + 128x )

+y'(400x "+256x' +2016x"—7120x —21 696x '+45 760x' +3328x"—17 440x'

—3400x —7824x —9664x +2288x + 10 944x ' —4456x +4464x

+ 3216 + 1184 + 1024 +928 + 320 + 192x ) .

The series for NQR asos is

(A7)
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Xo sos=y (Sx )+y (32x' )+y (16x' +40x"—144x' +32x' +64x' +56x' +16x )

+y (128x' +336x' —1248x' +80x' +400x +224x '+80x +160x +48x )

+y (48x ' + 16x ' + 160x ' —640x ' —1680x ' +3328x ' +496x ' —976x +952x '

—2064x —1784x +704x + 1248x +752x +344x +608x +448x +96x +96x )

+y (400x ' +256x +2016x ' —7120x —21 696x +45 760x +3328x

—17 440x —4224x —8400x —11 296x +6768x +8752x ' —3136x

+2832x +2480x +864x +672x +160x 8) . (AS)
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