
PHYSICAL REVIEW A VOLUME 42, NUMBER 1 1 JULY 1990

Anomalies of the Schwinger variational phase shifts
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The origin of certain anomalies of the Schwinger variational phase shifts in momentum space is

investigated. It is demonstrated that these anomalies are related to the appearance of continuum
bound states in the approximate calculation.

I. INTRODUCTION

The Schwinger variational principle has been extreme-
ly useful in the calculation of scattering phase shifts in a
diverse class of quantum-mechanical problems. The
complete equivalence between the method of separable
expansion and the Schwinger variational principle has
made the calculation of phase shifts using square-
integrable basis functions a routine task. In this method
an operator involving the Green function is to be inverted
and usually this procedure does not lead to spurious
singularities which are usually encountered in calcula-
tions involving the Kohn variational principle where the
basis functions are to satisfy the asymptotic boundary
condition of the physical wave functions.

Recently, Apagyi, Levay, and Ladanyi have noted in
their study of electron —hydrogen-atom scattering in the
static exchange approximation that certain spurious
singularities appear in the tangent of the singlet phase
shifts computed by the Schwinger variational method in
momentum space. Their triplet phase shifts, however,
were free of these anomalies. The anomaly in the case of
singlet scattering manifested itself in a sudden extra drop
of the phase shift through m as energy is increased so that
the phase-shift difference between 0 and ~ energies
5(0)—5(ao) increases by tr under this situation. In a
completely different context Haidenbauer and Plessas
found in their study of separable expansions of realistic
nucleon-nucleon potentials that certain spurious
anomalies appear in the triplet phase shifts computed in
the S&

—D, channel. In particular, they found that the
phase shift suddenly increases through m as energy is in-
creased representing a resonancelike behavior. Both
these anomalies apparently indicate a nearby pole of the t
matrix. These anomalies together with the belief"' that
for local short-range potentials the Schwinger method is
free of spurious singularities have led us to study the ori-
gin of these singularities. It is interesting to investigate
whether these singularities are universal, i.e., independent
of specific properties of the potential or the expansion
functions, in nature or dependent on some specific prop-
erties of the potential or the expansion functions.

It is well known that the Schwinger phase shifts are
identical with those obtained from a rank-N separable po-
tential Vz

where

(1.2)

where ~f; ), i =i,2, . . . , N, are the L expansion func-
tions of the Schwinger method. The resultant t-matrix t~
is given by

(1.3)

where

(D '),;=(f)l(V VG V)~f, ), (1.4)

where Go:(E Ho+—t'0) —' is the free-particle Green
function, E is the parametric energy, and Ho is the kinet-
ic energy operator. A nonlocal potential, in general, and
also the separable rank-N potential Vz, may sustain a
continuum bound state' (CBS) at a positive energy. It is
well known' that the appearance of such a CBS may lead
to anomalies in the phase shifts calculated from t~. In
particular, we shall see that this may lead to a resonance-
like jump of ~ in the phase shift when the CBS is nearby
(as found in Ref. 8) and a drop of n in the phase shift
when the CBS is on the real energy axis (as found in Ref.
7). From our study we find that the anomalies found in
Refs. 7 and 8 are caused by a CBS. These anomalies are
quite universal in nature and are not consequences of
specific properties of the potential and expansion func-
tions. Unless the expansion functions are also of definite
sign, such anomalies, contrary to popular belief, ' may
appear even in the case of positive definite local short-
range potentials. They do not appear for a positive
definite local short-range potential if the expansion func-
tions are also chosen to be of definite sign. We illustrate
our conclusions by using a semiphenomenological
nucleon-nucleon potential and a simple exponential ex-
pansion function.

In Sec. II we present a brief account of the CBS for a
separable potential. In Sec. III we present a numerical
investigation of anomalies for the Schwinger variational
phase shifts. Finally, in Sec. IV we present some con-
cluding remarks.
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II. CONTINUUM BOUND STATE FOR SEPARABLE
POTENTIALS

We illustrate these in the case of the model nucleon-
nucleon potential

A nonlocal potential may possess a continuum bound
state. The simplest example of a CBS is in a separable
potential of rank 1. We illustrate some of the important
features of the phase shift near a CBS. In the next sec-
tion we report a numerical investigation of these proper-
ties in the case of a Schwinger variation calculation
which uses a rank-one separable potential.

The on-shell t-matrix t(k), k =E in units (fi /2m)=1,
where m is the reduced mass, parametrized as

e "sinS
k

can usually be written as

N(k)
D(k)

(2. 1)

(2.2)

where D (k) is the Fredholm determinant and possesses
the unitarity cut and bound-state poles. The function
N(k) contains the left-hand singularities of the potential.
Constraints of unitary require that ImD(k) =kN(k) and
consequently

(2.6)

where V, = —13.752 87 fm ', p& =1.55 fm
V&=34.68727 fm ', pz=3. 11 fm ', cf. Eq. (34} of Ref.
3. We consider the expansion functions

f„(r)=e (2.7)

2 y.

, (p +a) +k

D(k)=—(f)IV—VGOV)lf) &

(2.8)

, (p, +2a)

in configuration space. In this case the t-matrix tz of Eq.
(1.3) is analytically calculable, cf. Eq. (30) of Ref. 3. For
simplicity we consider the S-wave rank-one t matrix of
the form (2.2) with

N(k)
ReD (k)+ikN(k)

(2.3)
V;V+

&
(2a+p;+pj )(a+@; ik)—(a+p~ ik)—

where Re and Im denote the real and imaginary parts, re-
spectively.

At a CBS D (k}=0 and, consequently, N(k) =0. From
Eqs. (2.1)—(2.3) it follows that at a CBS (Ref. 10) tan5,
given by

N(k)
ReD (k)

(2.4)

becomes zero. The phase-shift 5 drops through m as the
energy k increases through the CBS energy, which will
lead to a modification of Levinson's theorem to'

5(0)—5( ~ )=(n+n')m, (2.5)

where n is the number of bound states and n
' is the num-

ber of CBS's.
A CBS corresponds to simultaneous zeros of N(k) and

D (k) so that tan5 of Eq. (2.4) is zero. If the potential pa-
rameters are slightly adjusted so that zeros of N(k) and
D (k) are not simultaneous, the CBS disappears and
moves into the complex energy plane. Then the nearby
pole of the t matrix in the complex energy plane produces
a resonancelike behavior and consequently, the phase
shift jumps through m as the energy increases through
this pole. Hence a nonlocal potential may produce a rap-
id variation in the phase shift due to the appearance of a
CBS, which is not possible in the case of a local potential.

Next let us consider the problem of calculating the
phase shifts of a local short-ranged potential using the
Schwinger variational principle. It is well-known that
this problem reduces to the evaluation of the t-matrix t~
of Eq. (1.3) for the rank-N separable potential Vz of Eq.
(1.1). As the rank-N potential Vz is not local it may sus-
tain a CBS and the phase shift so calculated may lead to
spurious singularities discussed above for a specific
choice of expansion functions.

(2.9)

and the easily verified relation ImD(k)=kN(k). At a
CBS both N (k) and D (k) should vanish. If both the po-
tential V(r) and the expansion function f, (r) are of
definite sign N(k) is not expected to vanish. If either
V(r) or f~(r) have an attractive and a repulsive part
N(k) can easily vanish and so can D (k) leading to a CBS,
which will lead to spurious singularities in the Schwinger
variational phase shifts. The same thing should hold for
a rank-N t-matrix tz which may possess a CBS, though in
the general rank Ncase t-he expression for N(k) and
D (k) can not be easily written down.

III. NUMERICAL INVESTIGATION

In this section we present results for phase-shift calcu-
lation of the potential (2.6) for the expansion function
(2.7} with n =1. The reason for considering this model is
that it is rich enough to exhibit all the anomalies of the
Schwinger variational phase shifts yet simple enough to
be manipulated in a controlled way and it is easy to iden-
tify the appearance of a CBS and the associated
anomalies of the Schwinger variational phase shift.

The phase shift in this case is calculated via Eq. (2.1),
(2.8), and (2.9). In this case the center-of-mass energy is
given by E=R k /2m, where m is the reduced mass of
the nucleon-nucleon system, so that A /2m =41.47
MeV fm . In this case we find that N ( k) has a zero for an
E in the range 0 & E & ao. The zero of ReD (k) coincides
with that of N(k} for a =0.14 fm ' signaling the appear-
ance of a CBS at E =92 MeV.

We plot in Fig. 1 the phase shifts versus center-of-mass
energies for various values of e. For a =0. 14 fm ' there
is a CBS at 92 MeV and consequently the phase shift
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modified according to Eq. (2.5) in order to accommodate
the CBS. The anomaly observed by Haidenbauer and
Plessas (see Fig. l of Ref. 8) is due to a resonance for en-

ergy EL =300 MeV. The phase shift jumps approximate-
ly through m. as EL increases past this value. The CBS in
this case has moved into the complex energy plane and
the usual Levinson's theorem holds in this case.

The potential (2.6) of the present study has a positive
and a negative part; the expansion functions are, howev-
er, positive definite. This can make the form factors in
Eq. (2.8) and consequently D (k) vanish simultaneously at
a particular k to make a CBS appear at this k, which
leads to the anomaly we have studied. A CBS will not
appear if the potential and the expansion functions are
both chosen to be of definite sign. However, a CBS may
appear in the case of a short-range potential of definite
sign if the expansion functions are chosen to have a posi-
tive and a negative part.
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FIG. 1. Schwinger variational phase shifts for the potential
(2.6) and expansion function exp( —ar) vs energy E for various
a. For a=0. 14 fm ' we have the CBS at E=92 MeV and
5( ~ ) goes to —180' consistent with the modified Levinson's
theorem 5(0)—5( ~ ) =2m. .

drops through m as the energy increases through the CBS
energy. For a in the vicinity of 0.14 fm the CBS moves
into the complex energy plane and its effect on phase shift
is like that of a resonance as is clear from the phase-shift
curves for a=0. 13 and 0.15 fm '. In both cases the
phase shift increases approximately through m as the en-
ergy increases through the spurious resonance energy. It
is called spurious because the original potential (2.6) does
not have any resonance. For a =0.14 fm
5(0)—5( ~ ) =2m. according to the modified' Levinson
theorem (2.5), as there is a real bound state and a CBS.
For all other a's there is no CBS, at best there is a reso-
nance and 5(0)—5( ~ ) =n

The rank-1 model, despite possessing all these impor-
tant features of the general rank-S model and of a gen-
eral Schwinger variational calculation, has the limitation
of producing phase shifts which are far from the con-
verged result. For all a, N(k) of Eq. (2.8) and hence tan5
of Eq. (2.4) has a zero at a particular energy. Hence 5 be-
comes either zero of ~ at this particular energy, which is
clear from Fig. 1. This drawback is removed in a general
rank-N (N ) 1 ) model where 5 does not need to be 0 or m.

between E=0 and ~. This drawback does not, however,
invalidate our conclusions.

Now it is easy to see that the anomaly observed by
Apagyi et al. of the Schwinger phase shift (see Fig. 3 of
Ref. 7) is due to a CBS for N=5 and k =0.9 a.u. The
phase shift drops through m as k increases through this
value. Consequently, Levinson's theorem has to be

IV. CONCLUSION

It is demonstrated that Schwinger variational phase
shifts may present two types of anomalies. The first type
is due to the appearance of a CBS at a positive energy,
when the phase shift drops through m as the energy in-
creases through this value. The second type appears
when the CBS moves into the complex energy plane and
behaves like a resonance. Then the phase shift increases
sharply through m as energy increases through this value.
These two types of anomalies were observed in Refs. 7
and 8, respectively, in the study of electron —hydrogen-
atom and nucleon-nucleon scattering. We have demon-
strated these anomalies in a simple Schwinger variational
calculation which leads to a rank-one t matrix. This
model allows one to vary the parameters of the expansion
function in a simple and controlled way and allows one to
interpret the anomalies in the Schwinger variational
phase shifts easily. The conclusion about the anomalies
are supposed to hold true in a more general context.
These anomalies of the Schwinger variational phase shifts
should be rare in practice and are expected to have little
relevance to the usefulness of the Schwinger variational
method, as has been pointed out recently. "

Finally, we should mention that the anomalies of the
Schwinger variational phase shifts are of a different na-
ture than those of the Kohn variational phase shifts. In
the Kohn method one has to invert the operator E—H,
where H is the full Hamiltonian. As H has continuum
spectra at positive energies, unless the basis states of the
Kohn method satisfying the scattering boundary condi-
tion are carefully chosen (E H) ' may lead t—o spurious
poles, which lead to the anomalies in the Kohn variation-
al method.
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