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Experimental studies of defect dynamics and interaction in electrohydrodynamic convection
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A report about experimental studies of the dynamics and interaction of topological defects in the
roll structure of electrohydrodynamic convection in nematic liquid crystals is given. It is found that
the motion of defects of opposite topological charges towards annihilation has two stages. At large
distances they move with a constant velocity that depends mainly linearly on the wave-number

mismatch. At a later stage, when the defects come closer, they are accelerated due to attraction. In
order to compare these results quantitatively with available theories that are based on the
Ginzburg-Landau equation, all coeScients of this equation are measured.

I. INTRODUCTION

It is well established that the transition to chaotic be-
havior in spatially extended systems occurs through a
loss of spatial coherency together with the onset of tem-

poral complexity. In isotropic pattern-forming systems,
for which Rayleigh-Benard convection is a prominent ex-

ample, in large-aspect-ratio containers "textured" struc-
tures with many difFerent types of defects are the general
rule. ' Both the rotational invariance in a horizontal
plane and the lateral boundaries are responsible for this
complexity. The texture that appears near the threshold
either relaxes toward the stationary state or leads to weak
turbulence (time-dependent nonrelaxational behavior).

In both cases spatiotemporal dynamics of the texture is

closely related to the dynamics of the defects. For an
ideal pattern structure the system loses the structure
coherency just through the nucleation of topological de-
fects (dislocations) while a control parameter is in-

creased. In anisotropic pattern-forming systems, for
which electrohydrodynamic convection (EHC) is a
canonical example, an ideal pattern structure can be
achieved near the threshold due to an appropriate sample
preparation. '

Thus in both isotropic and anisotropic cases the corn-
plex regime called "spatiotemporal turbulence, " or
"weak turbulence, " is typically accompanied by the ap-
pearance of defects. Their dynamics defines the specific
features of the state. In order to understand the complex
dynamics of the weak turbulence, it is natural to study
first the dynamics and interaction of topological defects.
Moreover, for the reasons presented below, EHC is con-
sidered as an appropriate system to study the problem.

There have been several experimental studies of the de-
fect motion in recent years. The most extensive semi-
quantitative studies were conducted on the climbing
motion of an isolated dislocation induced in an otherwise
ideal roll structure of Rayleigh-Benard convection. " It
was shown that the dislocation motion along the roll

axis (climb) provides an effective wave-vector selection
mechanism. However, the experiments were mostly per-
formed at high values of the control parameter R (here R
is the Rayleigh number), where perturbative theories are
expected to break down. At small values of the control
parameter where the theoretical predictions are valid, a
dislocation does not move smoothly but shows small
abrupt variations in its position. It is not clear what the
reasons for such discrepancies are. One of the possible
explanations could be the method of stabilization of ini-

tially ideal roll structures by sidewall heating. Neverthe-
less, this experiment demonstrated that the dislocation
climb occurred with a uniform velocity, at least in some
range of the control parameter which was a fundamental
result of theoretical works.

Another important and earlier experimental study of
the velocity of motion of a row of dislocations gives
valuable information about the Prandtl number depen-
dence. The latter experiment initiated theoretical stud-
ies of the dislocation motion. The main result is the
relation between the climbing velocity and the deviation
of the wave number k of the structure from the critical
one k, for small enough values of the control parameter
R. It was also shown that the gliding motion of a disloca-
tion (perpendicular to the roll axis) does not occur in the
potential case. '

The role of the vertical vorticity in defect dynamics
was studied in Refs. 9 and 10. It was emphasized that
since the vertical vorticity always appears together with
dislocations it should be taken into account explicitly in
the modified amplitude equation. " As was shown, ' this
is a way to incorporate nonvariational terms into the am-
plitude equation and to study their effects on dislocation
motion. However, later studies showed that the vertical
vorticity does not have a strong effect on the defect dy-
narnics. Another result in the same paper is that glid-
ing should show pinning to an underlying short scale
structure. A study of defects in waves using topological
arguments and numerical simulations is given in Ref. 12.
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More intensive studies of the defect dynamics were
conducted in anisotropic flows. First, in a series of
several papers, ' ' a theoretical phenomenological mod-
el based on the phase diffusion equation was used to de-
scribe the defect dynamics and the strain field around it
for the shear-flow instability. ' An analogy between the
elasticity of smectic layers and the roll structure was
developed to describe the deformation field around an in-
dividual defect. It was suggested that, in the case of a
static defect, a characteristic length of the order-
parameter field exists. This characteristic length, which
corresponds to the penetration length in smectic liquid
crystals, can be introduced if one takes into account the
curvature elasticity of the roll structure. In the case of
the shear-flow instability, this length tends to be smaller
than the cell depth d. "'

Recently, several experimental studies on defects were
performed on EHC in nematic liquid crystals. A study of
the statistics of defects in traveling waves is given in Ref.
17. A description of the shape of dislocations was given
in Ref. 5. The dynamics and the interaction of defects
were studied recently. ' ' Defect dynamics during the
pattern formation process near the threshold for Willi-
ams rolls (WR, somestimes also called Williams domains)
together with the statistics and the frequency spectrum of
WR near the threshold of a defect nucleation were stud-
ied quantitavely in a relatively thick cell (100 pm). '

In Ref. 18, the dynamic of single defect was measured
during the evolution process of the pattern which makes
the theoretical description difFicult. A recently published
experiment ' with well-controlled initial conditions was
conducted in a cell with specially prepared interdigital
electrodes. The results obtained show a contradiction to
the theory, probably because of the electrode design.
Another interesting issue is the nature of the transition
from very well-ordered WR to a defect-mediated spa-
tiotemporal disordered structure. ' It was claimed in
Ref. 20 that the transition from WR to fluctuating WR
(this is a defect-affected WR state where defects never
disappear) is a hysteretic first-order phase transition
while in Ref. 22 the authors claim that it is an activation
energy process; i.e., there is no well-defined transition.

During the past two years two theories of the defect
nucleation, dynamics, and interaction in an anisotropic
flow based on different ideas were suggested. The first
one ' is based on the amplitude equation and assumes
that this equation can describe the structure and dynam-
ics of dislocations in anisotropic pattern-forming systems.
The appropriate solution for the dislocation core and the
far phase field which bears the important topological
properties of a defect, was obtained from the amplitude
equation. The equation was derived from conservation-
law equations and is similar to the Ginzburg-Pitaevskii
equation for superfluid helium. A defect is an analog to a
quantum vortex in the latter case. In contrast to the iso-
tropic case both glide and climb are possible in EHC due
to this theory. Another theory (the ideas and results of
this theory are also explained in Ref. 3; in Ref. 25 a more
detailed derivation of this theory is given} takes a
different approach: The authors of Ref. 25 claim that
since the amplitude equation describes just long-

wavelength perturbations it cannot describe correctly a
singularity of the amplitude field on the short scale. The
presence of defects suggests an introduction of an addi-
tional degree of freedom that may be presented by a
gauge field. This phenomenological theory based on a
gauge symmetry consideration introduces a new charac-
teristic length in the system, in addition to the coherence
length.

This paper deals with the dynamic and interaction of
defects in a stationary roll structure. The main charac-
teristics of the experiment are as follows.

(i) The sample preparation leads to well-ordered struc-
tures without any structural defects on the scale of the
sample (about 2000 rolls). The sample is stable on the
level of resolution for a period of several weeks.

(ii) It was possible to change the wave number of the
roll structure in a well-controlled way by using the
dependence of the critical wave number on the frequency
of the driving ac voltage. Thus the defect dynamics and
interaction as a function of the control parameter and the
wavelength could be studied.

(iii) A digital filtering technique (complex demodula-
tion) allows pinpointing the defect core with a spatial
resolution in the order of 1 pm (Fig. 2).

For quantitative studies of the defect dynamics and
their interaction and the comparison of the results with
available theories one needs to measure all parameters
which appear in the theoretical models. This was done
for Rayleigh-Benard convection, which is a canonical
system for quantiative studies of pattern formation and
dynamics based on the Ginzburg-Landau (GL) equation,
more than ten years ago. The experimental determina-
tion of the coefficients of the GL equation for an aniso-
tropic system is presented in this paper. The values of
the coefficients are in a reasonable agreement with
theoretical calculations. A short report on the dynam-
ics and interaction of topological defects in EHC was
published elsewhere. '

The paper is organized as follows. We describe our
sample preparation procedure and experimental tech-
niques in Sec. II. The measurement of the coefficients of
the GL equation is described in Sec. III, and experimen-
tal results on the defect dynamics and interaction are
given in Sec. IV. A discussion of the results and con-
clusions are presented in Sec. V.

II. EHC IN NEMATIC LIQUID CRYSTALS,
SAMPLE PREPARATION,

AND EXPERIMENTAL TECHNIQUES

When an ac voltage with a low frequency is applied
across a thin layer of a nematic liquid crystal having neg-
ative dielectric anisotropy e„sufficient ionic conductivity
0., and uniform orientation of the director n in the layer
an instability from the uniform electroconductive basic
state to a stationary periodic pattern of convecting rolls
(WR) occurs at a threshold value of the voltage ampli-
tude. In the low-frequency conductive regime the
periodic pattern is related to an almost static periodic dis-
tortion of the direction field. When the frequency f of
the applied ac field is varied the critical voltage V, (f ) and
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the critical wavelength of the structure k, (f) change. The
conductive regime exists up to the cutoff frequency f, at
which the nature of the instability changes. For a
simplified theory this cutoff frequency is approximately

]/)
0 O'2 0

2' E()

where o
~

and o.
~ are the electrical conductivity in direc-

tions parallel and perpendicular to the director n;
(T cT j' 0 g is the conductivity anisotropy; e, =

e~~
—

e~ is
the dielectric anisotropy which is negative for the nemat-
ic liquid crystal that was used [4-methoxybenzylidene-4'-
n-butylaniline (MBBA)]; a2 and g, are the viscosity
coefficients; and eo is the dielectric constant of the vacu-
um. Both V, and k, diverage at f, and the conductive
regime ceases to exist above f„where the nature of the
instability changes.

The weakly nonlinear behavior of EHC in the conduc-
tive regime is reminiscent of the Rayleigh-Benard convec-
tion. However, the former system has a number of ad-
vantages which makes it particularly suitable for studies
of spatiotemporal turbulence in large aspect ratio sys-
tems. These specific advantages are (i) the possibility to
use a very thin layer of a nematic liquid crystal in EHC
leads to very short relaxation times, which is usually a
strong limitation to study large aspect ratio systems; (ii)
small thickness and an experimental technique to pro-
duce the pattern oriented with respect to the preferred
axis give the opportunity to prepare almost ideal samples
with a large aspect ratio in one or two directions; (iii)
easily accessible control parameters such as the ampli-
tude and the frequency of the applied ac voltage make the
system very convenient for experimental studies.

The mechanism of the stationary instability in the con-
ductive regime is well understood, and all parameters
necessary to describe linear and weakly nonlinear dynam-
ics were recently calculated in detail.

A. Sample preparation and apparatus

The experiments were done in a thin layer of the
nematic liquid crystal MBBA confined between transpar-
ent electrodes. The horizontal dimensions of the cell are
30 X 7 mm and the depth of the cell is 15 pm, so that one
gets about 2000 convection rolls. In order to achieve a
uniform unidirectional alignment of the molecules in the
whole sample the electrodes were covered by a polymer
and subsequently rubbed unidirectionally. This tech-
nique together with the filling procedure leads to a unique
orientation of the convection rolls above the onset. The
cell was sealed completely with epoxy. The temperature
of the water bath was stabilized to 21+0.01 C. Under
these conditions the rate of deterioration of MBBA was
negligible on the time scale of many days so that the criti-
cal voltage of the convection onset V,. was reproducible
and stable within 2%%uo during 30 days.

The experimental results on the critical voltage V, and
the critical wave number k, of the Williams rolls as a
function of the reduced external frequency fIf, are
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shown in Fig. 1. The cutoff frequency f, of the sample is

at 570 Hz. Most of the experiments were done at f= 114
Hz or fIf , =0.2, i.e.,'far away from the cutoff frequency.
We use further on the reduced values of the control pa-
rameter E=(V —V, }/V, and flf, . The WR are ob-
servable under a microscope with polarized light due to
the anisotropy of the refraction index of the nematic
liquid crystals. In Fig. 2(a) a shadowgraph image of the
convection rolls is shown with five gray scales taken with
a charge-coupled-device (CCD) camera and digitized by a
frame grabber with a spatial resolution of 512X512 pix-
els and an 8-bit gray scale resolution.

The wave number of the pattern was obtained by per-
forming a fast Fourier transform (FFT) on lines in the x
direction (perpendicular to the rolls) and interpolation in
the discrete values of the power spectrum. For pictures
with one or two defects, the wave number on the side of
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FIG. 2. (a) A shadowgraph image of a single defect in Willi-
ams rolls, and (b) the corresponding field of the absolute value
of the amplitude and two lines corresponding to Re( 3)=0 and
Im(A) =0.

f/f (Hz)

FIG. l. (a) The critical voltage V, and (b) the critical wave
number k,. are shown as a function of the external frequency

fIf, (f, =570 H. z}.
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the defect(s) with one period less was taken. It was not
possible to measure a wave number in the y direction (i.e.,

the tilt of the rolls). Therefore no quantitative studies of
the glide motion of defects could be made. The wave
number k always means k in this paper.

(a)

B. Digital filtering of pattern images

In order to study quantitatively the defect dynamics
and also to get the correlation lengths of the amplitude
field we used digital filtering of the pattern images. The
roll pattern in the 2D space (x,y) can be presented by

P(x,y) = A (x,y)e' '+c.c. , (2)

where k is the wave number of the roll structure and
A (x,y) is the complex amplitude field which describes
slow variations. At the defect core both Re(A) and
Im(A) are vanishing. Far from the defect A (x,y) mostly
describes slow variations of the phase field. However,
near the core it describes also variations in the amplitude
field. In order to remove fast variations with the wave
number k we used a 2D FFT. Because there is only a
periodicity of the pattern in the x direction, it is also pos-
sible to demodulate the pattern by using only 1D FFT's
performed on the 512 lines of the picture. The FFT gives
the Fourier transformation of the complex and the
complex-conjugate (c.c.) part of P as complex and
complex-conjugate numbers. By taking only the complex
part of the spectrum (the complex-conjugate part is set
equal to zero), isolating the peak at k, and shifting it to
the origin of the Fourier space the periodicity with the
wave number k is taken out of the Fourier spectrum.
In the sideband of k is the information about the
complex amplitude A (x,y) [because of
A (x,y)e' '=+,„A,„(y)e '" e'" =g A,„(y)e '" ].
In our spectrum we have not only the wave number k but
also the higher harmonics (2k, 3k, . . . ), which have to be
filtered out. After this procedure we perform the FFT
back to the real space and obtain the complex amplitude
field A (x,y) without rapid spatial variations, i.e., without
the underlying pattern. The minimum of the magnitude
of 3 is the location of the defect core. We tested this
procedure for a model of a 1D defect
C&(x)=tanh[(x —z)/g]sin(kx). The location of the core
is at x =z. For 20 or more periods of the sine (a grid of
512 points for x was used) the error for the location of
the core we found was less than 0.01%%uo of the wavelength
of the sine.

The absolute value of the amplitude field 3 (x,y) which
corresponds to the shadowgraph image of the roll
patttern in Fig. 2(a) is shown in Fig. 2(b). At the location
of the defect a black elliptical spot can be seen. The
white lines show Re( 3)=0 and Im( 3)=0, and their in-
tersection defines the location of the defect core. This
technique allows us to pinpoint the core with a spatial
resolution of the order of +1 pm (the main limitation of
the resolution is the appearance of higher harmonics in
the spectrum). Thus this method gives us a possibility to
study quantitatively the defect dynamics [see e.g. , Figs.
3(a) and 3(b)].

(b)

FIG. 3. [a) Dynamics of defect annihilation presented in four
pictures in time, and (b) the same process but presented in the

phase field plane after the digital filtering.

III. EXPERIMENTAL DETERMINATION OF THE
COEFFICIENTS OF THE GINZBURG-LANDAU

EQUATION

To study quantitatively the defect dynamics and make
a comparison with the theoretical results based on the
GL equation one needs first to find experimentally the
characteristic time, length, and the nonlinear coefficient
which appear in the GL equation. Together with the
critical voltage V, (f If, ), the critical wave n. umber

k, (flf, ), and the optimal , wave number kf(E)(k& is the
wave number where the velocity of a single defect in the
pattern is equal to zero) of the pattern, one gets a full set
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of the parameters which are necessary to describe the
linear and nonlinear dynamics of the WR close to the on-
set.

The amphtude equation for the roll pattern in an aniso-
tropic system like EHC can be written in the following
form:

0.0

r,—A=eA+ g' 2+g,' A —g~A~'A, (3)
BE ~) Bx 'By

where ro is the relaxation time,
g~~

and gt are the longitu-
dinal and transversal coherence lengths, respectively, g is
the nonlinear coupling coefficient, and c is the control pa-
rameter of the problem. All parameters are functions of
the external frequency f /f, . By definition the relaxation
time ro is equal to (t)o /BE) ' at k„=k,and k =0 where
0. is the growth rate and k, and k are the wave numbers
perpendicular to and along the rolls. The coherence
lengths

g~~
and gt are defined from the curvatures of the

neutral surface at c.=0 and k, =k„k=0. These
definitions will be used to find experimental values of
these parameters.

To get the value of ~o the central region of the cell with
about 40 rolls was studied. The spatial variations of the
amplitude in this region is negligibly small, because it is
located far away from the lateral boundaries. In that
case the amplitude equation describes just the temporal
behavior of the amplitude. The experiment was conduct-
ed by jumping several times from a value of the control
parameter above the threshold value to values below the
threshold value; from a fixed c, )0 to different c. &0. An
example of the time dependence of the averaged rms in-
tensity of the shadowgraph picture for one jump is shown
in Fig. 4. Starting from a small e, (typically e, +0.02)
mainly the linear part of the GL equation describes the
decay of the pattern and we get the exponential decay
A = A, e ' with o. =c/vo and c. &0. The nonlinearities of
the shadowgraph method can be avoided by taking the
pictures far enough from the image plane where the caus-
tic appears. The solid line in Fig. 4 is the exponential fit
to the experimental data.

In Fig. 5 the c dependence of the decay rate 0. for the
external frequency f /f, =0.2 is presented. The slope of

-0.04 -0.03 -0.02 -0.0i 0.00

FIG. S. Linear decay rate o. as a function of the control pa-
rameter c. The solid line is a linear fit to the data. The slope
(1/ro) defines r, &

= 0048+0. 003 sec. f/f =0.2.

A (x =O,y) = Aotanh(y/gi),

A (x,y =0)= A, tanh(x/g„),

(4a)

(4b)

the fitted straight line (1/ro) gives the value of the charac-
teristic time with ~o=0.048+0.003 sec at 21'C. The fre-
quency dependence of ~o at two temperatures of the sam-
ple (21'C and 25 C) is presented in Fig. 6. Good agree-
ment with the theory is evident.

The values of the coherence lengths were determined
by two different techniques. The first method was based
on the fact that the spatial variation of the amplitude in
the defect core is scaled by the coherence length. Using
the digital filtering technique described before we ob-
tained the amplitude variation in the defect core which is
presented in Fig. 7 by two cuts through the core of the
defect parallel and perpendicular to the underlying pat-
tern. The amplitude field near the defect core is de-
scribed by the right-hand side of Eq. (3) with A =0 at the
core center and A = A 0 at infinity for the boundary con-
ditions. The numerical solution of the 2D problem is
fairly close to the well-known solution of the 1D problem
in the x and y directions. We can therefore use the ap-
proximate solution

0.25

0.20—
Q
@

0.&5—

0.10—
t-

0.05
0.0 0.2 0.4 0.6

TIRE (sec}

FIG. 4. Intensity of the optical signal as a function of time.
The solid line is an exponential fit to the decay. The jump was
from e=0.02 to c.=-0.035 at t=0.5 sec. f/f =0.2.

FIG. 6. The scaled characteristic time ~o/d as a function of
the reduced frequency fIf, The solid line is the . theoretical
calculation from Ref. 27 (at 25 C). Triangles present the mea-
surement at 21 C, diamonds at 25'C. The error for ~o is less
than 10%.
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the coherence lengths, is about 25% steeper for the 2D
solution. That means that the coherence lengths are
smaller at this amount than those we get from the fit of
the 1D solution jEq. (4)]. The results for the coherence
lengths based on the 2D solution at f/f, =0.2 are

d =0.26+0.05, Pld =0.12+0.03, (t'g,'=2. +0
while the theoretical values at this frequency are

/d =0.28, g, 0 10
To check the reliability of this method we also used

another more common technique to obtain the coherence
length from the curvature of the neutral curve at k =k, .
This was done in a diff'erent sample (MBBA, d=12 pm)
at a diff'erent frequency f /f, =0.3. It is only possible to
get g', ,

~

with this method:

0.24+0.05

0.29+0.03

50 ioo

x ~ Y (yxn)

150

FIG. 7. Cuts of the amplitude field through the defect core in

two perpendicular directions: (a) cut in x direction; (b) cut in y
direction. The solid lines are the fit to the data (see text).
6 =0.02.

with gt=g~ (2/e)', and
g~~~

=(~~(2/e)', to get the values
of the coherence lengths from the fit of the profiles given
in Fig. 7. Both coherence lengths as a function of the
control parameter at f /f, =0.2 are presented in Fig. 8.
The 2D solution for the amplitude will drop steeper at
the defect core, so we will get an upper limit for the
coherence lengths with the fit of the 1D solution. We
compared the shape of the amplitude at the defect core of
the 2D solution taken from Ref. 23 with the 1D solution.
The drop near the defect core, which determines mainly

from the fit to the core profile and the neutral curve (Fig.
8, inset), respectively. Longitudinal and transversal
coherence lengths as a function of the reduced frequency
based on the 1D solution (open symbols) and based on the
2D solution (closed symbols) are presented in Fig. 9.
Good agreement between the theory and the experi-
mental data analyzed on the basis of the full 2D solution
of the defect core is demonstrated in Fig. 9.

To have the complete set of coefficients of the GL
equation we also measured the amplitude of the director
distortion angle Oo as a function of the reduced frequency
using the method from Ref. 29. This gives us the non-
linear coefficient of the GL equation g =Oo, and in spite
of the scatter the agreement with the theory is reason-
able {Fig. 10). This value of g is valid for the GL equa-
tion, when the amplitude A (x,y) is chosen to be the
director distortion angle in degrees.

0.4

O.OS

O.oo
0.2—

0.1—

0.0
0.0 0.2 0.4 0.6

io

FIG. 8. Longitudina)
g~~

{triangles) and transversal
(squares) coherence lengths as a function of the control parame-
ter c ' '. Solid lines are a linear fit to the data from which the
characteristic lengths in the system g and P are defined. Inset:
measured neutral curve for the onset of convection. The solid

2
line is the fit of E=(~~ (k —k, )'/k, ' to it to get P. From the fit:
g~~/d=0. 29. fIf, =0.3

FIG. 9. Longitudinal and transversal characteristic lengths
of the systems as a function of the reduced frequency f/f,
Open symbols present the data analyzed by using the 1D solu-
tion for the defect core, closed symbols present the data ana-

lyzed with the 2D solution, triangles correspond to the data for
g",

~, diamonds for g, {the error for this value is less than 20%).
The solid curves are the theoretical calculations (Ref. 27) for
these lengths, respectively. The cross is the value for P taken
from the neutral curve (Fig. 8, inset).
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FIG. 10. The director distortion angle Oo as a function of the
reduced frequency f/f, The solid line presents the calculation
from Ref. 27.

a sudden jurnp to a supercritical value of the control pa-
rameter through the threshold imposes the fastest-
growing mode k (e) while an adiabatic change of e favors
k, . The result of the experiment is presented in the inset
of Fig. 11 with crosses. The large scatter is due to the
fact that defects often appear together with the pattern
after jumping from e (0 to e & 0, and they slightly change
the wave number. For a smaller value e & 0 fewer defects
appear and the corresponding scatter is less. This mea-
surement gives at a frequency of fIf, =0.2 (assuming
again a linear dependence) k =s,a+k, with
s =0.059+0.019 pm '. Within the errors it is possible
that the fastest-growing mode k corresponds to the op-
timal wave number kf, but because of the large scatter it
is not possible to make a definitive decision.

In order to study the defect dynamics one needs also to
know the optimal wave number kf(e,fIf, ). The
theory ' predicts that the defect motion serves as a
wave-number selection mechanism, and the velocity of an
isolated defect depends on the deviation of the wave num-
ber of the underlying pattern from kf. For k =kf the ve-

locity should be zero. We measured the velocity of the
defect motion as a function of the wave number at two
values of the control parameter a=0.03 and 0.06. The re-
sults of the measurements at a=0.06 are shown in Fig. 11
where the value for kf is taken from the intersection of
the fitted straight line with the k axis to
kf =0.3814+0.002 pm '. At @=0 one has kf =k, . k,
was measured by applying a slightly overcritical voltage
(e=—10 ) so that the pattern will develop slowly without
defects. The result of several runs gives

k, =0.3769+0.0005 pm '. The values of kf and k, are
shown by triangles in Fig. 11. This gives (assuming a
linear dependence) kf =sfe+ k, with sf =0.072+0.016
pm '.

We compared this with the wave number correspond-
ing to the maximal growth rate. As suggested in Ref. 23

IV. EXPERIMENTAL RESULTS
ON DEFECT DYNAMICS
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According to the theoretical predictions defects in
an anisotropic flow climb or glide [Figs. 12(a) and 12(b)]
depending on whether the underlying structure has a
wave number k different from the optimal one kf (in the
case of climbing) or the rolls are tilted from the normal
direction (in the case of gliding) [Figs. 12(a) and 12(b)].
In order to perform the experiment in a controlled way
one should first prepare the system in the state with the
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FIG. 11. Constant defect velocity u as a function of the wave

number k for a=0.06. The intersection of the linear fit (solid

line) with u=0 gives the value of the optimal wave number k&

(band center). In the inset the optimal wave number k& as a
function of e is shown (triangles) and the wave number corre-
sponding to the maximal growth rate is presented (crosses).
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FIG. 12. Shadowgraph pictures of Williams rolls with two
annihilating defects of opposite topological charge: {a) glide
and (b) climb.
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chosen k. Then in order to create defects one needs to
adjust the control parameter e above the value for a de-
fect creation which in our cell happens to be at a=0.08.
After some defects were created the voltage was switched
back to a value of e at which the defect motion is sup-
posed to be investigated. After a while most of the de-
fects are annihilated until a few defects remain in the
whole cell (about 1 defect on several hundred rolls). Then
the velocity of an isolated defect and the wave number of
the underlying pattern are measured.

To perform this experiment we used several experimen-
tal techniques. First, to produce a pattern with the
chosen wave number we used the frequency dependence
of the wave number of the WR [Fig. 1(b)]. The experi-
mental procedure was the following. The state with only
a few defects was reached at a frequency different from
the working frequency with a k different from k, at the
working frequency. Then the frequency and the ampli-
tude of the external driving voltage were rapidly adjusted
to the working frequency (fIf, =0.2 in our experiment)
and the chosen value of the control parameter e. Due to
this rapid change the optimal wave number kf (f)

changes, and this results in a wave-number difference
Ak =k —kf because the wave number k of the pattern
will not change with this jump, as long as it is inside the
stable band. In this way it was possible to scan the whole
band of stable wave numbers for the WR. The reason for
choosing the mentioned value for fIf, =0.2 was to reach
the whole band of stable wave numbers by the frequency
variation.

Using these techniques we measured the velocity of a
single defect as a function of the wave-number difference
Ak. The results of these measurements for two values of
the control parameter a=0.03 (squares) and a=0.06 (tri-
angles) are shown in Fig. 13. The solid line is a linear fit
to the data. The dashed line is the theoretical prediction
from Fig. 23 which will be described in Sec. V. Each
point on the graph was obtained by taking ten pictures of
the moving defect at fixed time intervals. Using the digi-
tal filtering technique described in Sec. II, we pinpointed

the defect location at the crossing point of the lines
Re( A) =0 and Im(A) =0 [see Fig. 2(b)]. An example of a
measurement of the velocity of a single defect is given in

Fig. 14. With this technique we are able to reach an ac-
curacy in the velocity measurement better than 1%.

The existence of a uniform defect velocity in a
nonequilibrium structure has already been observed. ' '

However, it was only observed in the range where the
control parameter is far outside of the validity domain of
perturbative theories. Moreover, as was already pointed
out, at values of e closer to the convection onset this be-
havior was not observed and the defect velocity did not
reach zero at the wave number k =kf in the experiment
described in Ref. 21. This could be because of the experi-
mental techniques which were used there. ' This defect
dynamics leads to the wave-number selection predicted
theoretically, ' ' while the experiment in an isotropic
flow" did not present the evidence of this selection at low
values of the control parameter e(e(&1). The essential
difference demonstrated by our results with those ob-
tained in the Rayleigh-Benard convection is the existence
of the uniform velocity of the defect motion to zero
values of Ak at e as small as 10 . This is an experimen-
tal verification of the selection mechanism due to the de-
fect climbing suggested for an isotropic as well as an
anisotropic ' fluid. The theory suggests that the uni-
form defect velocity is the result of a balance between
elastic force and dissipation. The elastic force which acts
on a dislocation is similr to the Peach-Koehler force act-
ing on a dislocation in a crystal under the stress caused
by interaction of a strain produced by a dislocation and
external stress. Due to this analogy the external stress
exerted on the nonequilibrium structure is the wave-
number difference Ak. Therefore the defect climbing
may occur in both directions along the roll axis depend-
ing on the sign of Ak. Thus for Ak )0 where the pattern
is narrower with respect to the optimal one, the disloca-
tion with an additional pair of rolls will climb downward
in order to insert one pair of rolls, and an opposite
motion will occur for Ak (0. That is exactly what was
observed in the experiment and is presented in Fig. 13.

Using the same procedure and experimental technique
we followed also the dynamics of two defects on their
way to pairwise annihilation. Since defects always are
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FIG. 13. Constant defect velocity as a function of the wave-

number difference between k and k&. The solid line is a linear
fit to the data. Triangles and squares present measurements at
c.=0.03 and 0.06, respectively. The dashed line is a theoretical
prediction of Ref. 23, the dash-dotted lines indicate the range of
this prediction due to the experimental errors for g, P~~, and r„
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FIG. 14. Distance vs time for a single-defect motion.
v=0.02, 5k=0.008 p, m ', u= 1.6 pm/sec.
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nucleated in pairs one can find a couple of defects at a
large enough distance apart, moving toward each other
and far away from other defects (about 100 rolls). In this
case, two defects move first with a constant velocity to-
ward each other if the wave-number difference of the un-

derlying pattern is different from zero and the pattern
prefers to expel a pair of the rolls. At a later stage when
the defects in the pair come closer they are accelerated
due to the attraction. In a climbing motion two defects
move along the roll axis as shown in Fig. 12(b). An ex-
ample of this behavior is shown in Fig. 15(a) where the
distance of the defects in dependence on the time is plot-
ted.

We observed both climb and glide in the experiments.
While climbing is smooth, a defect motion which consists
predominantly of gliding [Fig. 12(a)] shows steplike be-
havior [Fig. 15(b)]. This modulation of the velocity with
a periodicity given by the roll pattern is the result of the
so-called "nonadiabatic effects" which couple the slow
and the fast variables. The existence of the pinning
effect in a glide motion was predicted first in Ref. 9 for an
isotropic flow and then in Ref. 23 for an anisotropic fiow.

It was found experimentally that the distance where
the peach-Koehler force comes in the range of the size of
the attractive force is proportional to the inverse wave-
number difference 1/bk (F!g. 16). At small values of bk
it reaches a value of at least one magnitude larger than
the coherence length in the system.

On the basis of the experimental observations the fol-
lowing essential features of the defect motion should be
noticed.
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FIG. 16. The crossover distance R as a function of 1/bk.

R * was measured by taking the intersection of a linear fit to the
upper part of measurements of the kind presented in Fig. 15(a),
and a quadratic fit to the lower part. R* presents the distance
where the attraction force becomes dominant.

(i) For a distance between the dislocations being large
enough there exists a regime with a uniform relative ve-

locity of the defects.
(ii) Two kinds of forces acting on defects were ob-

served: One which caused the defect motion at the con-
stant velocity in the direction perpendicular to b k is an
analog to the Peach-Koehler force exerted on disloca-
tions in crystals; and the other one is an attractive force
which is acting between a pair of defects and causes their
acceleration toward annihilation. The distance R *,
where the attractive force becomes visible, is for small hk
much larger than the coherence length.

V. DISCUSSION OF THE RESULTS
AND COMPARISON WITH THE THEORIES
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There are two theories ' of defect dynamics in EHC
at the moment which can be compared with the experi-
mental results presented above. One theory which is
basically similar to the theory of defect dynamics in an
isotropic fluid is based on the GL equation. The main as-
sumption of this theory is that the structure, dynamics,
and nucleation of topological defects can be described by
the GL equation. According to the theory stationary
dislocations exist only at b,k=O. For 5k+0 the direc-
tion of motion is perpendicular to Ak and can, therefore,
take on any direction (climb or glide) which is very
different from the isotropic case where glide occurs only
in a nonpotential situation. The relation between the ve-

locity and the wave-number mismatch for ~U~ = U ((1 is
predicted to be

100
i+oooe t~

yt
U ln(3. 29/U) = 2b, q for UR ))1—,

U ln(R /1. 13)=—2hq forUR (&1,
(sa)

(5b)

10
TIlER (eee)

FIG. 15. Distances between two topological defects on their
way to annihilation as a function of time. (a) The motion is

predominantly climb. (b) The motion is predominantly glide.

where U=(U, U ), Aq=(Aq„,Aq ) are the velocity and
the wave number in scaled units:

U, =u, (r0/g~~)E ', U~ =u~(r0/(!)c.

~q, =~k„g',E-"', ~q, =~k, g',E-'",
and R =(r/(t)e' [1+(g~, /g'!) ]' is the horizontal size
of the system in scaled units.
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Equations (Sa) and (Sb) are analytic approximations
valid for a range of hk up to 0.02 pm '. For larger Ak
full numerical calculations are necessary. The result of
these calculations is given in Fig. 13 for the limiting
case UR ))1, which corresponds to our experimental
data. The dashed line is this result for c.=0.06 using the
experimental values ro=0.048 sec, g~/d=0. 12, and

g~~/d=0. 26. The dash-dotted lines indicate the range of
this solution due to the experimental errors for ro, g~~, and

The dynamics of defect pairs was also discussed
within the framework of this theory. A comparison of
these theoretical results with two sets of experimental
data with mostly climb motion are given in Fig. 17 (solid
lines). The coefficients of the GL equation and b,k„for
the theoretical calculations were taken from the experi-
ment. It is also possible to explain the linear dependence
of the crossover distance R ' on 1/hE (Fig. 16) within the
framework of the GL equation or the phase diffusion
equation' ' by noting that the distortion in front of a
moving defect is screened over a distance g Ulro ~ 1/b, q.

Another theory is based on a different approach. The
authors of Ref. 25 claim that singularities in the order-
parameter field cannot be described by the GL equation,
because the GL equation describes only long-wavelength
perturbations of the amplitude and therefore cannot de-
scribe the defect core when the amplitude becomes zero.
The presence of topological defects suggests the introduc-

tion of an additional field which, from symmetry con-
siderations, can be presented by a gauge field. A descrip-
tion based on the GL equation coupled with the gauge
field equation was suggested to understand the interac-
tion of defects. In Ref. 3 we have already made a detailed
comparison of our data with this theory. Here we would
like to outline the main results. The theory predicts a
linear dependence of the defect velocity (an isolated de-
fect or two defects far away from each other) on the
wave-number difference Ak and independence on the con-
trol parameter c.. From the slope of the linear fit in Fig.
13 the coupling constant between the gauge and the
order-parameter field can be found. This coupling con-
stant defines in its turn the second characteristic length of
the theory, the penetration length X which from our data
happens to be about A, —=21(. Then the theory allows the
relative distance between two defects to be calculated as a
function of time. The dash-dotted lines in Figs. 17(a) and
17(b) present examples for the theoretical calculations for
defect annihilations (the parameters ro, g~~, g~, b k, needed
for the calculations were taken from the experiment).
Also the linear dependence of R' on 1/Ak can be ex-
plained with this theory which predicts the attraction dis-
tance for two defects to be proportional to I/b, k.

In conclusion, on the current stage of the experiment
we are not able to choose between the two theories in
spite of significant differences in their basic assumptions.
Both theories are able to explain the linear dependence of
R ' on 1/hk and also the path of annihilation for two de-
fects. The dependence of the velocity of a single defect
on Ak can also be explained by both theories but, of
course, in the theory of Ref. 25 there exists one fit param-
eter which still has to be calculated from the basic equa-
tions. More experiments, made in a range where the
theories yield different predictions, are required to check
the validity of them. One example for such an experi-
ment could be the measurement of the defect velocity in
dependence on the aspect ratio of the sample. For
UR ( (1 the theory of Ref. 23 [Eq. 5(b)] predicts a size
dependence of the defect motion, while the theory of Ref.
25 does not (as long as the size of the sample is large corn-
pared to A.). Another possibility to decide experimentally
between the two theories could be a check of the depen-
dence of the defect motion on the control parameter c..
For Ref. 25 there is none and for Ref. 23 it depends on
c.' . In our experiment the scatter of the data in Fig. 13
is too large to decide about the c. dependence. One possi-
bility to reduce this scatter would be to perform similar
experiments for a larger range of the control parameter.
For large values of the control parameter c, however, the
two theories would leave their range of validity.

TIMg (sec)
SO

FIG. 17. Distance between two topological defects on their
way to annihilation as a function of time. The data pertain to e
values of (a) 0.033 and (b) 0.06 and hk values of (a) 0.0064 pm
and (b) 0.01 pm '. The solid lines are the prediction from the
theory of Ref. ?3 and the dashed lines are the prediction from
the theory of Ref. 25.
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