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We compute the viscosity 7 of a fluid consisting of a large number of particles, N =108 and 864,
as a function of shear rate ¥ from its maximum and minimum Lyapunov exponents. The calcula-
tion is based on an extension of Smale’s pairing rule of Lyapunov exponents for Hamiltonian sys-
tems to non-Hamiltonian systems in contact with a heat bath. The numerical values of these maxi-
mal Lyapunov exponents as a function of ¢ are determined using nonequilibrium molecular dynam-
ics (NEMD) computer simulations. The 7(y) computed this way agree with those obtained directly
from NEMD within the experimental error of 2% for the triple-point N =108 system. A y'/?
dependence of 7(y ) for large ¥ is found up to a Péclet number of 5.

1. INTRODUCTION

Lyapunov exponents of a number of dynamical systems
have been determined numerically.! Most determinations
have been of the largest Lyapunov exponent because it is
the easiest to calculate numerically. Although for sys-
tems with a few degrees of freedom, all Lyapunov ex-
ponents can be determined, the numerical calculation of
all of the exponents for systems with more than ~ 50 par-
ticles or 300 degrees of freedom, becomes prohibitively
time consuming and expensive, even with modern super-
computers. Most Lyapunov exponents have been com-
puted for Hamiltonian systems in thermal equilibrium
and only a few studies of Lyapunov exponents for non-
equilibrium systems have been reported.’

Lyapunov exponents are not only of interest for the un-
derstanding of phase-space properties of dynamical sys-
tems. Recently it has been shown™* that for thermostat-
ted nonequilibrium steady states, i.e., systems subject to a
thermodynamic force and in contact with a heat reser-
voir, the macroscopic transport coefficients, such as those
that occur in the Navier-Stokes equations of hydro-
dynamics, are related to the sum of all the Lyapunov ex-
ponents. Since this connection involves the sum of all
Lyapunov exponents, its practical use would appear lim-
ited.

Recently however, one of us® (G.P.M.) determined all
the equilibrium and nonequilibrium Lyapunov exponents
as a function of an imposed shear rate y. This was done
for thermostatted systems of N =2,4,8 particles interact-
ing through an upshifted Lennard-Jones potential trun-
cated at its minimum, the Weeks-Chandler-Anderson
(WCA) potential (for a definition, see Sec. III). Analysis
of the simulation data indicated a rule that for all y, the
arithmetic means of each conjugate pair of Lyapunov ex-
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ponents are equal. (Conjugate pairs of Lyapunov ex-
ponents are defined by ordering the exponents according
to their size: the largest and the smallest exponents, the
second largest and the second smallest, et seq.) Thus the
sum of all Lyapunov exponents could be determined from
the values of the maximum and minimum Lyapunov ex-
ponents alone and the shear viscosity 7 could be deter-
mined from the shear rate dependence of the two maxi-
mal Lyapunov exponents, A ,, and A_;,, alone.

The calculation of negative Lyapunov exponents
presents numerical difficulties. For most algorithms used
to calculate Lyapunov exponents, the largest exponent is
the easiest to determine followed by the second largest,
the third largest, etc. Hoover et al.? calculate negative
Lyapunov exponents by analyzing, in reversed time or-
der, stored points, previously generated along a forward-
time trajectory.> We adopt a more direct approach by
calculating A.;, as the negative of the maximum
Lyapunov exponent of a simulation that is carried out in
negative time, by reversing the direction of the time. We
calculate A ,, as the maximum Lyapunov exponent of a
nonequilibrium steady state while A, is the negative of
the maximum Lyapunov exponent of that steady state
which evolves in negative time from the steady state used
to calculate A ,,.

By combining the conjugate pairing rule with this sim-
ple method of calculating the maximal Lyapunov ex-
ponents, the desired transport coefficient is easily calcu-
lated. This method of determining, for example, the
shear viscosity may well be competitive with existing
methods of direct evaluation from the Green-Kubo for-
mula or with nonequilibrium molecular dynamics
(NEMD).® Typical computation times on our Apollo
DN 10000 for our preliminary calculations so far have
been 10 h for low shear rates and 5 h for high shear rates.
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In order to calculate the limiting zero shear rate Navier-
Stokes viscosity 7(0), the same extrapolation to y =07 is
needed here as in NEMD.® Agreement between the
Lyapunov and the direct NEMD methods to calculate
7(0) is within the experimental accuracy of about 6%.
However, in common with NEMD and unlike the
Green-Kubo method, the present algorithm succeeds in
calculating the nonlinear shear rate dependent shear
viscosity 77(y). This allows us to verify the experimental-
ly observed y!/? dependence of 7(y) (Refs. 6-8) up to
very high shear rates.

II. OUTLINE OF PREVIOUS WORK

In order to place our results for Lyapunov exponents
of dissipative systems in context, we briefly mention some
previous work with no attempt to be complete.
Lyapunov exponents for simple dynamical systems have
been determined for many years now. Thus Livi, Politi,
and Ruffo’ numerically determined the complete
Lyapunov exponents for the Fermi-Pasta-Ulam (FPU) 8
model for various numbers of oscillators, N =40-80.
For B=0.1 and sufficiently large energy densities,
e=E /N >e,~0.35, they found that a thermodynamic
limit existed for the spectrum of the Lyapunov ex-
ponents, so that (keeping N /L constant, when L is the
length of the system) the ith Lyapunov exponent for a
system of N oscillators A(i, N) becomes independent of N
for large N. For N=160 and 320, they determined a
number of the largest Lyapunov exponents.

Since the FPU model is a Hamiltonian system the
Lyapunov exponents exist in conjugate pairs with equal
values but opposite signs, so that their sum also vanishes,
ie, SN, A>)=0.

A different many-body system consisting of a three-
dimensional, N =8 particle system with a finite-range in-
terparticle potential, ¢(r)=g[1—(r /0 )?]* where ¢ is the
energy at interparticle distance » =0 and o the cutoff
length of the potential), was studied by Hoover and
Posch.> Twenty-one equilibrium Lyapunov exponents
were determined and a Debye-like Lyapunov spectrum
was found. Away from equilibrium they studied diffusion
by using an external field £ F, to accelerate half the parti-
cles to the left and the other half to the right—the color
field algorithm® for the self-diffusion coefficient. They
noted that the sum of the Lyapunov exponents for such a
system is negative and corresponds to the irreversible en-
tropy production. As a consequence, a quadratic depen-
dence of the nonequilibrium Lyapunov exponents on the
external field was expected. Later Posch and Hoover'®
determined the full Lyapunov spectrum of N =8,32 par-
ticle, three-dimensional systems with a repulsive
Lennard-Jones interaction. A nonequilibrium state was
realized in the same way as before. The Lyapunov spec-
trum again exhibited a Debye-like power-law behavior.
They also showed that the sum of all Lyapunov ex-
ponents indeed equals the rate of phase-space contraction
as well as the irreversible entropy production for this
model. In yet another paperll they studied the nonequili-
brium Lyapunov spectra corresponding to planar Couette
flow. They considered a system of N, two- or three-
dimensional particles in a container with moving boun-
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daries, so that a steady shear flow was induced. They
determined all the Lyapunov exponents for systems up to
N =281 particles in two dimensions and up to N =27 par-
ticles in three dimensions for reduced shear rates 7,
0<y <2. The shapes of the corresponding Lyapunov
spectra were unlike those found earlier in three dimen-
sions. They noted that the sum of conjugate pairs of
Lyapunov exponents was negative instead of zero, con-
sistent with their sum being negative and a contracting
phase space. Using this, they obtained a relation between
a viscosity coefficient 7(N,y) and the sum of all
Lyapunov exponents.

III. THE SYSTEM

In the present paper we study three-dimensional fluids
of N=108 and 864 WCA particles,'” that
interact with a finite-range pair potential given by ¢(r)
=4¢[(0 /r)'2—(0 /r)®]+¢ for r <2'/%0 and ¢(r)=0 for
r>21%¢. We consider these systems at a constant re-
duced energy per particle, e=E/Ne =1.93010 and at
two reduced densities n =no>=0.4 and 0.8442, where
the latter is close to the triple-point density of a
Lennard-Jones fluid.'> The fluids are subject to a shear
rate ¥ =3du, /9y, i.e., a constant gradient of the x com-
ponent of the local velocity u, in the y direction. The
particles of the fluid move according to the thermostatted
SLLOD equations of motion,® i.e., the internal energy is
kept constant by contact with an attached heat bath.
The SLLOD equations of motion are then

Pi
aq. = — +1 . (1a)
4=, 17y,
p;,=F,—iyp, —ap, . (1b)

All quantities in (1) are reduced by the parameters € and
o of the Lennard-Jones potential that corresponds to the
WCA potential. Thus q; stands for q; /0 =(x;,y;,z;)/0,
p, for p,/(me)'’/? the force on particle i, F, for
F,/(e/0), t for t(e/mo?)!/% and vy for y(ma?/e)'/? [for
argon (e/mo?)"/2=5x10'"' Hz]. In all that follows we
will use only dimensionless reduced quantities. i is a unit
vector in the x direction. The p; are peculiar momenta,
defined in terms of the peculiar velocities, i.e., the veloci-
ties of the particles with respect to the (local) fluid veloci-
ty u,(y)=yy. The last term in (1b) removes heat, gen-
erated by the work done by the shear forces y, from the
system so as to keep the instantaneous internal energy,
H,=3,p2/2m)+®(q), fixed. g stands for the set {q,}
(i=1,...,N). This can be accomplished by introducing,
after Gauss,'’> a Lagrange multiplier a that takes the
value®

a=PXy7/V/2p,-2, @)

where P, is the xy element of the instantaneous pressure
tensor,®

nysz(px,'py,/m +inyi) . (3)

Equations (1) are equivalent to Newton’s equations of
motion in the presence of frictional forces —ap;, if a con-
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stant shear rate y is imposed on the fluid at 1 =0.> The
equations of motion (1) are supplemented by Lees-
Edwards periodic boundary conditions.*!* In their adia-
batic form, i.e., for a=0, the SLLOD equations of
motion give an exact description of adiabatic planar
Couette flow arbitrarily far from equilibrium.® We note
that the SLLOD equations of motion cannot be derived
from a Hamiltonian.

The procedure we used to calculate the maximal
Lyapunov exponents for the equations of motion (1) was
the following. We used a trajectory obtained from Egs.
(1) at zero shear rate, i.e., for y =a=0, and for which
Hamilton’s (or Newton’s) equations hold, to generate
starting states in phase space for our nonequilibrium, i.e.,
y#0, a#0, calculations (cf. Fig. 1). The equations of
motion were integrated using a fourth-order Runge-
Kutta algorithm. The reduced time step used in this
work was At=0.004. Every 100 time steps a group
(group 2) of nonequilibrium trajectories was initiated
from this zero shear rate trajectory. These nonequilibri-
um trajectories were followed for 1600 time steps using
the SLLOD equations of motion (1). We assumed that
from 1200 to 1600 time steps the nonequilibrium systems
were sufficiently relaxed toward a nonequilibrium steady
state (SS), that the SS maximal Lyapunov exponents
could be determined. This was checked by computing SS
ensemble averages for the shear stress and the hydrostatic
pressure and ascertaining that they were essentially time
independent for ?>1200At=4.8. The SS maximum
Lyapunov exponent was calculated by considering the
growth in distance between two nearby trajectories.

Thus at the 1200th time step a new group (group 3), of
trajectories was begun. These trajectories employed ex-
actly the same equations of motion as the second group
of trajectories. The strain rate was the same and the tra-

‘/

Trajectory Groups
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Relaxation to SS

FIG. 1. We give a schematic representation of the generation
of the various groups of trajectories. Group 1 is an equilibrium
trajectory; group 2 is generated from group 1 by applying a
shear; group 3 is generated from 2 after it has relaxed to the
steady state (SS), by applying a slight phase-space displacement;
group 4 originates from 2 after a time reversal and group 5 is
generated from 2 by simultaneously applying time reversal and
a slight phase-space displacement.

DENIS J. EVANS, E. G. D. COHEN, AND GARY P. MORRISS 42

jectories were run at constant internal energy. The initial
phase for the third group, I'(3,0), was obtained by very
slightly displacing the phases at the 1200th time step,
I'(2,1200At¢), from the second group. The initial dis-
placement distance, d(0)={[I'(2,1200A¢)—TI'(3,0)]*}'/?
was set at 1075 The subsequent exponential growth
of this distance, (d())=({[T(2,+1200A¢)
—TI'(3,£)]1*}'?) =d(0)exp(Agst ), enabled us to calculate
the largest Lyapunov coefficient for the steady state,
)\'SS:)\'max'

At a time r=1600Ar=6.4, the group-2 phases,
I'(2,1600At), were used as the starting phase for yet
another group (group 4), of trajectories. These trajec-
tories evolved from I'(2,1600At), in negative time at the
same strain rate magnitude and internal energy as group
2. (Note that since the strain rate is an odd function of
time, it actually changes sign under time reversal.) The
last group of trajectories (group 5) was obtained by apply-
ing small phase-space displacements to I'(2,1600A¢)
=I'(4,0) in the same way as group-3 trajectories were
obtained from I'(2,1200A¢).

The group-4 and -5 trajectories evolve backwards in
time in the steady state. A diagrammatic representation
of the interrelations between the five groups of trajec-
tories is given in Fig. 1. The maximum and minimum
Lyapunov exponents were determined by averaging over
the members of the groups, where typically each group
consisted of ~200 members.

IV. LYAPUNOV SUM RULE FOR THE VISCOSITY

For the non-Hamiltonian dissipative system of Egs. (1),
the Liouville equation for the probability distribution
function f in 6 N-dimensional " space reads®

df(T,t) d . .
—_—Y—‘ = — —— = . 4

ar de‘ I'=3Naf 4)

Here d/dt is the material time derivative, T
=(q1x>Pix> - - - »4nz PN )» and a term of order 1 has been

neglected.

On the other hand, if a small volume V(I',¢) contains a
fixed number M of ensemble members and
f(C,t)=M/V(I',t), we find from the definition of the
Lyapunov exponents A; that for ergodic systems

fdrdf(l‘,t) :~<d1nV(F(t))>

6N
=— 34,

i=1

dt dt

where ( ) denotes a phase-space average. Combining (4)
and (5), we obtain a relation between a and the sum of all
Lyapunov exponents:

ON
(3Na)=— 3 A, . (6)
=1

Our thermostat coupling constant a ensures that the rate
of energy produced in the system in the stationary state,
due to the work done on the system by the shear forces, is
exactly balanced by the energy (heat) removed by the
thermostat, so that

Hy=—P,Vy—2Ka=—P, Vy—3NkyTa=0. (7
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K is the microscopic expressions for the instantaneous
peculiar kinetic energy

K= 3 p}/2m=3NkgT /2 ®)

with kg Boltzmann’s constant and ¥V the volume of the
system. In the stationary state (7(I")) is the kinetic
temperature of the nonequilibrium steady state.

Using that dH,/dt =0 and that a viscosity coefficient
n(N,y) can be defined from the steady state average
(P,,)=—n(y)y, one has, from Egs. (6) and (7),

—kpTsg 6N

s
— > NNy, 9)
vy? ,g'l

n(N,y)=
where the N dependence of n and the A; are explicitly in-
dicated. Equation (9) allows a determination of n(N,y)
in terms of all the (nonequilibrium) Lyapunov exponents
of the fluid, as has been done by Posch and Hoover!! and
Morriss.” We call Eq. (9) the Lyapunov sum rule for
shear viscosity. The shear viscosity occurring in the
Navier-Stokes equations is given by
n= lim lim n(N,y) .
y—0tTN—w

As mentioned before, the actual determination of 7
from (9) is hampered by the very large number of ex-
ponents in a macroscopic system. The arithmetic mean
rule enables one to calculate the viscosity using (9) by el-
iminating the need to know all 6N Lyapunov exponents.
Using this rule, Eq. (9) becomes
- 3)’!1(8 TSS
n(N?y):—:}/2_[}\'max(N’7/)+A'min(N’y>] ’ (10)
where n =N /V is the number density of the system.

For a sufficiently large system, the N dependences of 7
and A will disappear, so that then

- 3nk5 TSS
n(y):—z__[)‘max(y)+}‘min(y)] (11)
Y
holds for the shear rate dependent viscosity.

V. CONJUGATE PAIRING
OF CHARACTERISTIC EXPONENTS
FOR THERMOSTATTED SHEARING SYSTEMS

Before we consider an outline of the proof of the conju-
gate pairing rule for thermostatted shearing systems de-
scribed by the equations of motion given in (l1a) and (1b)
we will discuss conjugate pairing firstly for Hamiltonian
systems and secondly for thermostatted Hamiltonian sys-
tems. The Hamiltonian case is well known'’ but the ex-
tension to thermostatted Hamiltonian systems which en-
ables one to discuss the properties of dissipative none-
quilibrium steady states, including shearing systems (1), is
new.

Consider the equation of motion for a set of orthogonal
tangent vectors, 8T';(z), describing the progressive sepa-
ration of two phase trajectories initially separated by
8T';(0). The set {8T,(¢)} forms a complete orthogonal
basis for the tangent space with 8I"|(¢) being parallel to
the direction of fastest phase separation, 8I",(¢) being or-
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thogonal to 8I'((t) and 8T ,(#)X8I',(¢) generating the
fastest growing area, etc.'> The equations of motion for
the infinitesimal tangent vectors are

_ 3l(r()
ar

(i=1,...,6N). (12

%ar(r)zz(r)-arm ST(1)

The matrix T(T') is often called the stability matrix. It is
a local matrix, depending on the phase point I'. In the
infinitesimal limit 8T'(0)—0 the formal solution of this
equation can be written as'®

8I'(¢t)=exp;

J/ds T(rs) | 8r00)

=L(1)-8I'(0) , (13)

where exp; indicates a time-ordered exponential with the
latest times s to the left. We will also need to refer to the
Hermitian adjoint of Eq. (12), namely,

d

Ear*mzsr*m-z Yy, (14)

with solution
8T"(1)=8T"(0)-expy | [/'ds T '(F(s))

=&T%0)-L (1), (15)

where expy indicates a right-ordered exponential. For
convenience we will now introduce two matrices J and K
as

-1

0 I
0

-1

I~ IO

, K=

) (16)

IO I~

J=

where I is the 3N X3N identity matrix and Q is the

3N><31-\} null matrix. For Hamiltonian systems, T

satisfies the infinitesimally symplectic condition,!’
rtj=—J-T. (17)

It is known that this condition is satisfied if the matrix T
can be written in the form

) (18)

where the matrices B and C are symmetric and the super-
script T indicates a transposed matrix.

It is easy to show that if T is real and satisfies the
infinitesimally symplectic condition (17), then L satisfies
the globally symplectic condition!’

LTIL=J. (19)
The proof relies on the fact that
t t
—T(s)lds |- T
€Xpg [fo[ T(s)]ds |-expr fo_(s)ds]

=exp, [fotI(s)ds]-epr [fot[—l'(s)]ds]=1,

the identity operator. It is also easy to show that if T is
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infinitesimally symplectic then L T-L is also globally sym-
plectic.

The property of symplectic matrices we use here is that
if T is infinitesimally symplectic with eigenvalue A, then
—A is also an eigenvalue. Furthermore if L (or L T-L) is
globally symplectic and has an eigenvalue A, then 1/A is
also an eigenvalue of L (or L T-L). Thus the eigenvalues
of L T-L are real and occur in conjugate pairs, A,1/A.
Now the Lyapunov exponents can be defined as the loga-
rithms of the eigenvalues of the symmetric matrix AP

A=lim A(¢)=lim [L T(¢)-L(£)]"/*" . (20)
t— t— 0

Equation (20) guarantees that the Lyapunov exponents
occur in conjugate (Smale'®) pairs, A;,A; (= —A2;). Since
the stability matrix for all Hamiltonian systems satisfies
the infinitesimally symplectic condition, (17), Smale pair-
ing is observed for all Hamiltonian systems.

We will now discuss thermostatted Hamiltonian sys-
tems. In the theory of nonequilibrium steady states it is
usual to employ peculiar momenta p, (i.e., momenta rela-

|
Alt;a)= {exppg fo’ds T'Ts)— 28 g -exp; fo'ds
=A'(t)exp —fotds a(s)_l_]lm
=A'(t)exp —%‘l I
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tive to the local velocity of the fluid®). Thus the applica-
tion of a Gaussian thermostat to a (symplectic) Hamil-
tonian system adds the usual —ap; thermostatting term
to the momentum equation of motion as in (1b), and the
stability matrix takes the form

T=T'—al/2=T"—aK/2—al/2, 1)

where we have dropped the I' dependence of T and a
term of O(1/N) and all matrices are 6N X 6N. The addi-
tion of the thermostatting terms means that the stability
matrix T no longer satisfies the infinitesimally symplectic
condition (17). The matrix T 29 is just the unthermostat-
ted form of the stability matrix I, obtained by setting
a=0. It is trivial to show that since for Hamiltonian sys-
tems T 2 satisfies the infinitesimal symplectic condition
(17), so does T *¢—aK /2. Thus the Lyapunov exponents
of a system with local stability matrix T'=T *—aK /2
also occur in Smale pairs. The Lyapunov exponents for a
thermostatted Hamiltonian system can be obtained from
the eigenvalues of A(t;a),

]1/21

als)

I'(s)— >

1

(22)

where ( ) denotes the obvious time average, or for an ergodic system, a phase-space average over the steady state. In
deriving (22) we use that for all s,s’, a(s)I /2 commutes with T'(s’). The Lyapunov exponents A; of the thermostatted
Hamiltonian system are the solutions of the determinantal equation,

|A—exp(A,I)|= |A’exp —%g —exp(A,I)|=0.
From (23) it follows that
A'exp —%l —exp(A;L) |- |exp ——(;)—1 =
so that
A'—exp x,.+<L2) I|=0. (25)

Since the eigenvalues of A’ occur in conjugate pairs
(i (=1/u)}={exp(A; +{a) /2), exp(r.+{a)/2)},
the Lyapunov exponents will occur in conjugate pairs
(A +<Ca) /2,hp+ @) /2] = {In(u)In(;),[ = —In(g,)]}.
This implies that conjugate pairs of Lyapunov exponents
A, A, for Gaussian thermostatted Hamiltonian systems
obey the conjugate pairing rule

AitAr,=—(a)=2x. (26)

Here A is the Lyapunov exponent that vanishes when

(23)

(24)

Yy =a=0, and the dependence of the A; on y has been
suppressed. The sum of conjugate exponents, (26), is thus
independent of the pair index i and is equal to the average
Lagrange multiplier —{a).

For SLLOD dynamics (1), the adiabatic stability ma-
trix that corresponds to the stability matrix, T ad  for
Hamiltonian systems discussed above, does not satisfy the
infinitesimal symplectic condition (17). However, one can
easily prove that for t >0, SLLOD dynamics is identical
to Newtonian or Hamiltonian dynamics.® This can be
seen by eliminating the momenta from the adiabatic form
of (1a) and (1b) yielding

F;
G o=—1 1 _
4= iyd(ty; , (27)
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where we assume that the shear rate takes the form of a
Heaviside step function about ¢ =0. (For a full discussion
of SLLOD dynamics, the reader is referred to Ref. 6.)

Now for Newtonian mechanics the phase space is de-
scribed in terms of the laboratory coordinates and mo-
menta, {q;,mdq,/dt;i=1,...,N}, while for SLLOD
dynamics the phase space is described in terms of labora-
tory positions and peculiar momenta,

{q;,p;=mdq;/dt —iyy;i=1,N} .

This linear transformation of the phase-space coordinates
leaves the eigenvalues of the local and global stability ma-
trices unchanged. This is easily seen by applying this
coordinate transformation to the respective eigenvalue
equations. Alternatively one can see this by explicit com-
parison of the corresponding characteristic equations for
the Newtonian and adiabatic SLLOD stability matrices.
It is easy to show then that the eigenvalues of the adia-
batic SLLOD stability matrix have no dependence on the
shear rate.

The subsequent inclusion of a thermostat then
proceeds as in the Hamiltonian case. We also note that
the use of Lees-Edwards shearing periodic boundary con-
ditions®!* does not change the fact that the matrix C in
(18) is symmetric.

Thus although there is no Hamiltonian which can gen-
erate the adiabatic SLLOD equations of motion for shear
flow, a modified pairing of Lyapunov exponents still
occurs. Furthermore the Lyapunov exponents for ther-
mostatted SLLOD dynamics, (1), obey the same conju-
gate pairing rule as their thermostatted Hamiltonian
counterparts, namely, Eq. (26).

VI. RESULTS

In Fig. 2 we plot 8A,(y)=A,(y)—Aly), with A(y)
defined in (26), for a three-dimensional N =8 particle

Conjugate Exponents, N=8
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shear induced exponent shifts
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+

exponent index
0 10 20 30 40

FIG. 3. For the same system as considered in Fig. 2, we show
the shear induced shifts relative to equilibrium, A(iy)
=A,(y)—A,(0), in the Lyapunov experiments. The largest in-
dexed exponents show the largest shifts. The shifts are ap-
parently linear in the exponent index and asymptotically quad-
ratic in the strain rate.

shear flow, with periodic Lees-Edwards boundary condi-
tions. We see that within estimated numerical uncertain-
ties the data are in agreement with the conjugate pairing
rule, Eq. (26). In Fig. 3 we plot the shift of the values of
the Lyapunov exponents relative to those at equilibrium.
We might expect that since the exponents measure the
stability of phase-space trajectories, the shifts,
A(iy)=A,;(y)—A,(0), would be a monotonically decreas-
ing function of the exponent index i. This is indeed ob-
served. In fact we see from Fig. 3 that the shifts seem to
be a linear function of the exponent index, which is
sufficient for the global form of Eq. (17) to hold, but not
necessary.

In Fig. 4 we show a comparison of the viscosity com-
puted directly from NEMD for N =108 WCA particles
with the viscosity 7; computed from the Lyapunov ex-
ponents using Eq. (11). The system has a density that
corresponds to a moderately dense gas. As can be seen

WCA fluid, n=0.4, e=1.9302, N=108

40T5
3510 Tat e,
301 "1'::;:-

: Trire, (Y)
2.51 t'!‘ ly:%
] : t
20 N R
1.51

1.01

SN, (Y) +8A(Y)
0.51
RPN TP S
0.0 )
05 —
10 20

exponent index

FIG. 2. The top three curves show 8A,(y)=A,(y)—Aly),
i <6N /2, for a three-dimensional system of 8 WCA particles in
three dimensions. The state point considered is T=1.0, n =0.4.
The lower three curves show 8A;(y)+6A;:(y). Our conjugate
pairing rule, Eq. (26), predicts 8A,(y)+8A,(y)=0, for all i,y.
This is clearly consistent with the data. The first exponent in-
dex corresponds to the largest Lyapunov exponent, exponent in-
dex 2 gives the second largest Lyapunov exponent, etc.

035
o TINemD
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0.307 * TMnemp ~ N
n _
t =4an
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FIG. 4. Using Eq. (11) we compute the shear viscosity 1, for
a system of 108 WCA particles directly from the Lyapunov ex-
ponents. This is compared with the standard NEMD calcula-
tion of the viscosity, 7ngmp, for the same system. The state
points considered are e =1.9302 and n =0.4. Both sets of data
are in agreement and are consistent with a linear dependence on
y12,
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TABLE 1. Triple-point viscosities and Lyapunov exponents. 7, is the viscosity computed using Eq.
(11). Mnemp is the NEMD viscosity, determined directly from the NEMD simulation. N =108 or 864
as indicated, n =0.8442, e=E /Ne=1.930 19, WCA potential. The variation in temperature is due to
the constant energy condition. ¥ =1 corresponds to a Péclet number ~5. 7, (error) is the estimated
uncertainty in 7, . The uncertainty in 9ngump i relatively insignificant.

Y Tss TINEMD ML Amax — Amin 1, (error)

N=108

0.35 0.7623 2.053 2.03 4.1938 4.0647 0.04

0.5 0.7563 1.961 1.92 4.3061 4.0555 0.04

0.75 0.7412 1.883 1.86 4.545 3.9874 0.04

1.0 0.7236 1.783 1.77 4.8732 3.9097 0.027
N=2864

0.5 0.756 1.984 2.02 4.28 4.017 0.15

0.75 0.743 1.887 1.94 4.51 3.93 0.20

1.0 0.7218 1.749 1.74 4.8298 3.88 0.1

the agreement between 77; and nygmp is Within estimated
statistical uncertainties (£5%) for all shear rates studied.
Because the shear induced shift in the Lyapunov ex-
ponents is asymptotically quadratic in the strain rate, the
Lyapunov method becomes very difficult at small shear
rates.

The N =108, NEMD data for ygmp(y) and 7. (y) as
a function of ¥ can be fitted to the equation

n(y)=n0)—Ay'/?, (28)

where one has, for 7ngmp, YNemp(0)=0.402 and
Angmp =0.087, while for 7; one has 7, (0)=0.384 and
A; =0.074, respectively.

Table I shows a comparison of Nygmp(¥) and 7, (y)
for a WCA fluid close to the Lennard-Jones triple point,
with ¢=1.93019 and n=0.8442 for both N =108 and
864. Figure S gives a comparison of the N =108 viscosi-
ties at this state point. As can be seen the Lyapunov and
the NEMD data are in excellent (£2%) agreement with
each other for all y. At this state point the viscosity is
approximately five times larger than at the lower density

WCA fluid, n=0.8442, e=1.9302, N=108

2.1
2.01
n
19 a  NEMD
*  Lyapunov
1.81
,YIIZ
1.7

05 06 07 08 09 10 1.1

FIG. 5. We make a comparison of Lyapunov and NEMD
shear viscosities for a dense fluid state point: e=1.9302 and
n=0.8442, N=108. Both sets of data are in agreement and are
consistent with a linear dependence on y!/2, indicated by the
straight line.

state point. This improvement in the signal-to-noise ratio
enabled us to continue the calculations and make com-
parisons at smaller shear rates than was possible at
n=0.4.

The coefficients for the fit to the square-root functional
form (28) are Nnpmp(0)=2.425, Aygmp =0.639, and
n.(0)=2.37, A; =0.601. All these values are again con-
sistent with each other within the experimental uncer-
tainties. Table I also shows a limited set of N =864 re-
sults. It is clear from these data that as expected,'’ there
is only a slight number dependence in 1ygpmp(7 ) in going
from N=108 to 864. The results suggest that for large
enough N, not only is 7, (y) and therefore A, +A_;,, in-
dependent of N, but, as in the FPU system,’ A,,, and A
also appear to be independent of N.

We should comment that while in this paper we com-
pare 7, () with yygmp(¥ ), we know from previous stud-
ies that extrapolation to ¥ =0, via the square-root expres-
sion, (28), yields excellent agreement'® with estimates of
7(0), obtained from the Green-Kubo formulas.

min

VII. DISCUSSION

We end with the following remarks.

(1) The basic relation (11) between the viscosity 7 and
the sum of the two maximal Lyapunov exponents allows
not only a computation of 7 from the maximum and
minimum Lyapunov exponents but holds for any conju-
gate pair of Lyapunov exponents. In addition it also
holds for the perturbed equilibrium zero-valued
Lyapunov exponent A in that {a )= —2X, connecting the
shift of the zero eigenvalue for ¥y =0, and the coupling
constant of the fluid to the heat bath.

(2) Equation (11) also provides information about the
dependence of the Lyapunov exponents on the state of
the system in the stationary state. In fact, since for
y =07, the (linear) shear viscosity 1 for a dilute gas is in-
dependent of the density,?® A;+ A, must be inversely pro-
portional to the density. Similarly, for a dilute gas of
hard spheres, A; +A; ~ T'/2, since this holds for 7.2 One
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could wonder whether this density and temperature
dependence are also obtained for the individual
Lyapunov exponents A;. Also, as one approaches the
glass transition, A, +A; must diverge.

(3) The Lyapunov sum rule and the conjugate pairing
rule show that Lyapunov instability and chaotic dynam-
ics are relevant for the understanding of nonequilibrium
processes and the calculation of transport coefficients. In
fact the existence of Lyapunov exponents in the contract-
ing phase space of thermostatted dissipative systems is in-
timately related to the very existence of transport
coefficients.
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