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Critical end point and singular point sets in phase diagrams
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The characterization of singular point sets in phase diagrams is surveyed in the light of catas-
trophe theory. The critical end point and the phase diagram near it, containing the unstable critical
point, are particularly examined. Some diagrams of its sections are given, which extend beyond the
standard analysis of the butterfly catastrophe. The interplaying phenomena between these points
are also briefly discussed.

I. INTRODUCTION

The study and classification of singular points is the
most powerful way to deal with phase diagrams of com-
plex systems. ' These are organized in a hierarchy in
which the lower dimensional ones can be considered as
sections of a particular diagram containing just one iso-
lated multicritical point of highest order. In its neighbor-
hood, the local properties of the system are described by
the Landau potential. Catastrophe theory provides a way
to establish the relevant topological features by analytic
methods, ' leading to a classification of general diagrams
up to some dimension as sections of a given catastrophe.

However, it is necessary to distinguish clearly between
the pure catastrophe-theoretic concepts and those tradi-
tionally used in thermodynamics. This is useful by itself
and will also show the possibility of the appearance of
some exotic phenomena in complex systems.

The tricritical system and the associated butterfly ca-
tastrophe are appropriate to study these matters, and
simple enough to allow analytic calculations and display
of the relevant diagrams. In Ref. 6 we matched the well-
known two-fluid-mixture phase diagrams with sections of
the butterfly catastrophe. Here we proceed by develop-
ing methods for the representation of these diagrams, in
order to clarify the various roles of singular points.

II. GENERAL DEFINITIONS

Singular point sets in phase diagrams are of two kinds.

(i) One set is defined as special configurations of the
minima of the thermodynamical potential. They may be
also subdivided into coexistence points, when some mini-
ma have the same depth, and multicritical points, when
some minima coincide. There are also mixed points that
exhibit coexistence of minima and multicritical points,
called, in general, critical end points.

(ii) Another set is instability points, where one
minimum merges with a maximum and disappears. It is
the subject of catastrophe theory, where it is also called
the bifurcation set.

The multicritical point may also be considered as a inter-
section of instability manifolds, because it is produced by

merging minima and, therefore, the intermediate maxi-
ma.

The mathematical conditions for both kinds of singular
points are different. In the first case, it is an algebraic
condition on the potential, and in the second, a
differential one. ' The easiest example is the liquid-
vapor transition, where phase coexistence is given by

g =0

vvv =0

(g, =&g/», . . . ).

The already cited mixed points are given by a mixture
of algebraic and differential conditions and can be under-
stood as the intersection of pure coexistence manifolds
and pure multicritical manifolds. The critical end point
(CEP) is defined in a physical system when two coexisting
phases become identical in the presence of a third. We
shall be considering henceforth a system with at least
three thermodynamical fields, for instance, a two-fluid
mixture. ' Its CEP is the intersection of a triple-point
line and a critical line, with equations

NL, =fir. , =v

Rxx xxx

(4)

(5)

However, this critical line, Eq. (5), must have another
singular point, when it becomes unstable, which, there-
fore, we shall call the unstable critical point (UCP). This
point is the intersection of the line with another "critical
line*' of a different nature, defined as the line of points
where two maxima merge; that is, where the medium
phase (the vapor) becomes symmetrically unstable. The
UCP has been scarcely considered in the thermodynami-
cal literature (however, it is mentioned in Ref. 7) because
of its involved physical interpretation. However, it is
crucial in catastrophe theory.

The analytical condition for the UCP (Refs. 6 and 7) is,

~L V

(g is the potential and L and V stand for liquid vapor, the
two minima of g), while the instability or the critical
point (CP) is given by the first or both differential condi-
tions
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besides (5),

gxxxx =0 '

Since it has codimension 3, the phase diagram around it
is described by the swallowtail catastrophe. Neverthe-
less, the next-higher-order butterfly catastrophe,

f2el

r =x'+ «'+ ux'+ ~x'+.x, (7)

allowing for three phases and being compact, must be
considered. In this light, we shall unveil the phase struc-
ture of the part of the diagram near the tricritical point
(TCP), including both CEP and UCP.

III. ANALYTIC CALCULATION OF SINGULAR POINTS

The appropriate representation of the Landau potential
for studying phase coexistence is' ' 12 0

. j.

i-8

I'(T, P,p;x)= g [(x b, ) +—tI;],
i =1,2, 3

where d& can be taken to be null, d2, d3)0, and the
remaining five variables satisfy an additional condition
which removes the equivalence under x translation. If we
want that condition to be the usual in catastrophe theory,
the nonappearance of the derivative of the highest-order
term (the germ), we must demand

b)+b~+b3=0 . (9)

This representation was also used in Ref. 10 in an
analysis of the tricritical phase diagram, but no connec-
tion with the butterfly catastrophe was made.

In that parametrization, roughly speaking, b, corre-
sponds to the position of the minima, which we call
A, B,C, taking b, &bz &b3 and 1, to their height. The
manifolds of double coexistence A-8 or 3-C are easily
expressed as d2 or d3 =0, while the one for 8-C demands
further elaboration (see Appendix). Triple coexistence is
given by dz=d3=0. In the thermodynamic literature,
they are usually represented in the (T,P,p) phase dia-
gram as surfaces intersecting in the triple line. However,
if metastable phase coexistence is also considered, they
extend beyond the triple line and a clearer picture is ob-
tained from the coexistence lines in the constant P planes
or, equivalently, the constant (t, u) sections of the
butterfly catastrophe (7). For example, we sketch how to
obtain analytically the line of A-C (liquid-liquid) coex-
istence. Apart from d3=0 we need the expression of
(t, u) as functions of (b, , d; )

first one solves for di, b3 in (10) and (11); second, one
finds (U, w) as functions of (b;, d; ); and third, one inserts
the previous functions for them. This rather cumber-
some process is exposed in the Appendix.

All coexistence lines are shown in Fig. 1, with the in-

stability line, for the case t = —4, u =1. The CEP, as an
intersection of the triple line and the critical line BC, is
given by

d2 —d3=0, b2 —b3 (14)

Taking b2=b3=b &0, b&
= —2b, there is one free pa-

rameter in the four-dimensional phase diagram and it
constitutes a line. The potential becomes

I =(x+2b) (x b)—
It was studied by Schulman and is represented in Fig. 2.

FIG. 1. Phase diagram in the (U, m) plane for t = —4, u =1.
The physical coexistence lines are solid, while the unphysical
ones are dotted. The dashed line is the usual instability line of
the butterfly catastrophe.

t=di+d3 —(b, +b2+b3)
—(b2+b2 +bi )

u =2b2d2+2b3d3 —2b)b2b3

—2b2d2 —2b, b2b3 .

(10)

They are the implicit equations of the line. To And the
explicit ones in the (v, w) plane, using b2 as a parameter,

U =U(t, u;bi),
w =w(t, u;b2),

(12)

(13) FIG. 2. Landau potential for the critical end point (b =1).
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at constant u from low t values, for which the "triangular
pocket" in the (u, w) plane exists. In the crossing point,
the curve for BC coexistence disappears (Fig. 4).
Through the relation between t and P (Ref. 6} it is possi-
ble to deduce the features in the ( T,P, IJ, ) diagram.

IV. DISCUSSION

2

FIG. 3. CEP and UCP lines in the (t, u) plane. A physical
trajectory of constant u, u =1, is displayed, with three marked
points, phase diagrams of which are drawn in Figs. 4 and 5.

There is also another symmetric line of CEP (Ref. 1},
given by b, =b2, which corresponds also to (15) with
b (0. They join at the TCP.

It is useful to draw the CEP and UCP lines together in
the ( t, u ) plane. For the first ones, we need the expression
of (t, u) as functions of b, either extracted as a particular
case of (10) and (11)or directly from (15):

It is interesting to note that between the CEP and UCP
lines we have at constant pressure a phase diagram like
Fig. 4 (3), showing no medium phase (vapor) in equilibri-
um but having it still as metastable inside the triangle.
The corresponding ( T,x) diagram is rather peculiar. It is
inferred from the (x, w) diagram, conveniently construct-
ed by pulling up the coexistence curve to the equilibrium
surface and then projecting it on the (x, w) plane. For
diferent values of t around and on the CEP, we have the
sequence shown in Fig. 5. The inner arc in Fig. 5 (3}cor-
responds to metastable 8-C coexistence.

Other higher singular point sets of the first kind come
up in higher-dimensional phase diagrams: the critical
double point, etc. As long as we restrict ourselves to
corank 1, the analysis can be carried out with the repre-
sentation (8) and the same techniques. The result is the
appearance in the phase diagram of zones that corre-
spond to phases only existing as metastable phases but
exhibiting phenomena proper for equilibrium ones. For
corank 2 or higher, the representation (8) is no longer
possible and finer methods must be devised. '

t= —6b, u =4b

Eliminating b,

(16)
ACKNOWLEDGMENTS

u +2(t/3) =0 . (17)

u + "(t/3) =—0 . (18)

There is an error in the edition of Ref. 9 available to us.
Both curves, which are similar, are drawn in Fig. 3. The
CEP line is on the inside and is crossed first when moving

These two lines of CEP, joining in a cusp, have been pre-
viously described in a qualitative way [Ref. 11, Fig. 4(a)].

The UCP lines are given by the usual analysis of the
butterfly catastrophe, from the conditions [(5) and (6)]
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He also thanks Professor J. M. Cervero for a careful
reading of the manuscript.

APPENDIX

We briefly comment here the mathematical methods
used for the construction of the phase diagram in the
(u, w) plane, Fig. 1. See also Refs. 10 and 5.

Let us start with the expression of U, m as function of
(b;, d;):

t =-4 .38

wI
V V

2

FIG. 4. Phase diagrams in the (U, m) plane, showing how the BC coexistence line disappears at the CEP but still remains metasta-
ble inside the triangle.
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FIG. 5. Phase diagrams in the (x, w) plane for the cases of Fig. 4. The triple-point line is dotted. The ends below it correspond to
metastable coexistence. Observe how at the CEP the ends of the AS coexistence line disappear (2) while the ones of the SC coex-
istence line become a whole arc, which still remains afterwards (3).

bi(blb2b3+blb2b3+blb2d3+blb3d2+b2b3

+b~d3+b3dz+dzd&), (Al)

w =b, b z +b &b 3 +b zb 3 +4b, bz b3+4b, b zb3+4b, b~ b 3

+b, (dq+d3)+b dt3+b3dp+4b, bqd3

+4b, b3ctg +8/6(3 (A2)

dq (2bt+tb~+u )/3bq . (A4)

For the A-C coexistence line, we make d3 =0 and solve
for dz, b& in (10) and (11),

b, =[(—15b~ —12tb~+6ub~)'~ —3b~]/6b~, (A3)

the new t, u, m, U expressions are obtained. In the second,
one solves for d, and b„ finding (A3) and (A4), but sub-
stituting 1 for 2 and 2 for 3. Therefore (v, iv) is again as
in (A5) and (A6), this time with b, as parameter.

The startling conclusion is that the three coexistence
lines are three parts of the same curve, which has a triple
autointersection at the triple point. Each one is
parametrized by the physically allowed range of
b ] b p b 3 . %hile b z and b 3 are positive and always

bt (b3, b, is negative and is such that (A7) is satisfied.
We may label each part by the value of the parameter at
the triple point. Taking dz =d3 =0 in the first represen-
tation, or d, =0 in the second, we have the same cubic
equation

Upon substitution of them in (Al) and (A2), after making
b, = —bz —b3, we get its parametric equations

2b +tb+u =0, (A8)

v =(8b~+4th~+2ub~+2tub~ —u )/12b~,

iv = ( 20b ~ + 12th ~ + 8ub ~ +4t b ~
—u ) /12b ~ .

(A5)

(A6)

whose three solutions are b „bz,b3 at the triple point. It
may be checked from the fact that they give the same
(v, w) values. For the t = —4, u =1 case of Fig. 1, they
are

The A-B coexistence line is obtained with the analo-
gous procedure from dz =0, yielding formulas similar to
(A3) and (A4), but interchanging 2 and 3. Inserting in
(Al) and (A2), after making b, =bz b3, we find t—he
same [(A5) and (A6)] with b3 instead of bz

For the B-C coexistence line, it is necessary to leave the
d, =0 condition in (8), because otherwise the condition
for it does not have a simple form. We can, instead, take
d, &0 and dz=d3=0. This represents 8-C coexistence
as long as

—d, &(b~ b,)—
In this case, the process goes as follows. In the first step

b&
= 1.526 bg =0.259 b3 1 267

(A9)
U = 2, m=4.

If we consider only one parameter bE( —oo, oo ) in
(A5) and (A6), we describe the whole curve. It has two
branches, one for b&(0, oo) that includes the A Band-
A-C coexistence lines, another for b E( —oo, 0) that in-
cludes the 8-C coexistence line, and another line corre-
sponding to the condition that the two maxima have the
same height, which passes by the lower critical point.
The two short links, also shown in Fig. 1, mean that one
maximum and one minimum have the same height.
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