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Collision rates in chaotic flows: Dilute suspensions
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We have computed collision rates between passive marker particles subject to the blinking vortex
flow, a chaotic flow. The case of low number densities is considered, which is relevant for the later
stages of the aggregation processes. The theory pertaining to this case is first reviewed. The corn-

putational results indicate that the time-averaged collision frequency achieves an asymptotic value

((f ) „) for all number densities that is nearly independent of the initial positions of the particles.
The dependence of (f )„on the system parameters was found to be similar to the predictions of the

gradient theory of Levich t'(Physico Chem-ical Hydrodynamics (Prentice Hall, Englewood Cliffs, NJ,
1962), Sec. 40]; the magnitude of the collision rate was significantly smaller. The deviation, attribut-

ed to the structure in the flow, decreases rapidly with increasing number density. The results imply

validity of the gradient theory for low number densities for chaotic flows.

INTRODUCTION

Aggregation processes can be considered to comprise
two basic components: "collision" between two particles
followed by a "reaction. " In the limit of an instantaneous
reaction step, every collision results in aggregation, and
the particle kinematics determine the overall rate of the
process. Collision rates thus provide the basic informa-
tion for determining aggregation rates and have been ob-
tained for a number of systems. ' Flow kinematics and
particle kinematics coincide when Brownian forces,
particle-particle interactions, and inertial forces are
neglected. Particles then act as passive nondi6'usive
tracers of flow, and the aggregation rate is determined by
how frequently pairs of trajectories approach within the
collision diameter. For a simple shear flow, and spherical
particles, the collision frequency is given by the classical
gradient theory of Levich. We examine the applicability
of the theory to the case of chaotic flows here.

Muzzio and Ottino recently studied the pairwise
coagulation in the blinking vortex flow, ' a chaotic flow,
for a large number of particles. Upon collision, one of
the particles was assumed to disappear while the "order"
of the second was increased. Consequently, there was a
tendency for local reduction in the number density of
particles in regions of higher shear rate. When the rate
of mixing (characterized by a parameter N, „) was
sufficiently large, the number-density fluctuations were
smoothed out and the computational results matched
closely with those predicted by the gradient theory. In
the case of regularly spaced drops on square grid, coagu-
lation occurred only in particular regions of the flow, in-
dicating the importance of location of the drops.

We have computed the collision rates in the limit of
very dilute suspensions for the blinking vortex flow. The
local depletion of particles observed by Muzzio and Ot-
tino does not occur since the particles are assumed to
remain unaffected by collisions. We have considered the
effect of the parameters of the system on the dilute sus-
pension collision rate, and the crossover that occurs

while going from a dilute to a nondilute suspension. The
latter by definition corresponds to the number density
when the gradient theory is valid. The results are useful
for understanding the behavior at later stages of aggrega-
tion processes in chaotic flows, and as a probe of the sta-
tistical properties of the flow.

In the following sections we first define the blinking
vortex flow, and review the theory for collision rates in
laminar flows. The computational results and discussion
are then presented.

BLINKING VORTEX FLOW

The blinking vortex flow is a kinematically defined flow

comprising two corotating point vortices separated by a
fixed distance 2a. Each vortex acts alternately for a time
T with a circulation I", and the dimensionless parameter
governing the flow is the flow strength

is, =I T/(2tra ) .

The system has been analyzed in detail ' and we briefly
enumerate some of the pertinent results below. At low
flow strengths (@=0.01) the flow is regular on a large
scale, almost everywhere. With increasing flow strength
macroscopic regions of chaotic flow [i.e., of length scale
O(a)] appear, and at p, =0.36 there is a transition to glo-
bal chaos when three unconnected regions merge, to form
a single one. The chaotic region formed is bounded by a
Kolmogorov-Arnold-Moser (KAM) curve, and chains of
small islands are evident near the boundary. At flow
strengths slightly greater than p, a cantorus encircling
each vortex acts as a partial barrier to the flow. The
Liapunov exponents calculated for the flow are O(1) and
are nearly independent of the initial position.

The area of the chaotic region has a complex shape,
and was obtained computationally. The boundary of the
chaotic region was found by repeatedly mapping a parti-
cle and noting its maximum radial distance from a refer-
ence point at difFerent discretized angular positions. The
area of the chaotic region was then found by summing
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THEORY
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We consider pairwise collisions between n circular par-
ticles of diameter d on a plane. The particles move as
passive tracers in the flow so that

r, =P, (r;), r, =$0(r;), (2)
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~here r, is the position of the center of the particle i at
time t, and P, is the fiow. P, acts on an area A, with a
normalized Lesbegue measure da=dA/A, which is
preserved by the flow. The triplet ((41„u, A) defines a
dynamical system. '

The average collision frequency in this case is given by

(f )„=lim(1/4t) g g f 5(S; )dS,
f ~ ao 1j =1 'j

where 5(x) is the Dirac delta function, and

S,, (r) =
I Ir, —r, I

—d I

(3)

(4)

is the shortest distance between the perimeter of particles
i and j. The integral is over the trajectories of each pair
of particles i and j, and the factor 4 appears since every
collision involves two particles and two zeros of the dis-
tance function S,, (t). Equation (3) can be written more
conveniently as

FIG. 1. Boundary of the chaotic region used to calculate the
area with the corresponding Poincare section for the blinking
vortex flow. (a) @=0.4, (b) @=0.75, and (c) p=0. 8.
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(f )„=lim(l/4t)g g f 5(S~)
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the areas of the sectors. As is evident from Fig. 1, the
boundary used to calculate the area matches closely with
that of the corresponding Poincare sections. The area of
the chaotic region has a complicated dependence on flow
strength (Fig. 2): near (M=0. 7S there is a sharp decrease
in area, and in some ranges of p computation of the area
is difficult due to the presence of large islands.

n n= lim(1/4t) g g f g(r;, r, )dr .
t~co i=1j =1

(Sb)

We examine below the conditions under which the above
time average can be replaced by a space average, which is
much simpler to evaluate.

Defining a new phase space 8; with elements

x; =(r;,r ), and a fiow f,(xj)=($,(r, ), (tj, (r, )), we ob-
tain the collision frequency as
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FIG. 2. Graph of the area of chaotic region (A) vs the flow
strength (p} for blinking vortex flow. A is not calculated for

p E(1.0-1.5) and p & 2.5 because of large islands in the chaotic
region.

(f )„=lim(1/4t)g g f g(x;~)dr,
t ~ ao i=1 j=1

The normalized measure in this case
dPJ =d A, d A~ /A and is preserved by the fiow.

f( as defined above is said to be the direct product of
P( with itself, and the following relations hold between
them: (i) if tA is ergodic then P, is ergodic; (ii) if f( is
weak mixing then (I1( is weak mixing; (iii) if g, is mixing
then P, is mixing. The converse of the above statements
is true for (ii) and (iii) but not for (i). Thus P, must at
least be weak mixing for t/i, to be ergodic. In this case

1S

where p = n /A is the number density. (Note that the

(f)„=fq=—,'g g f 5(S~) dP;
i =1g =1

where f„denotes the space average. Since every pair of
trajectories is identical we obtain

dS;,f„=—,'p'J f 5(S ) "dAdA),
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number density appears outside the integral. ) From the
definition of 5; we get

(9)

where v is the imposed velocity and r; is a unit vector
along the line joining the center of particle j to particle i.
By defining p=(r —r, ) and p, =(r, —r, ) we get

f„=(p'/4) f dA,
' f p, 5(ip, —di)

X ~[v(0)—v(p~)] r,, ~d8, dp,
(10)

where p~=~pj~ and 8~ is the angle between r, and a
reference line. Upon simplification we finally obtain

f„=(p d/4) f dA, f ~[v(r, )
—v(r, +rd)] r(8)~d8,

A 0

where r(8) is the unit outward normal vector to the per-
iineter of particle i, and 8 is the angle between r and a
reference line.

Ergodicity of f„however, is not required for the ergo-
dicity of the system (i.e., for (f )„=f„)if the system
size is suSciently large. In the limit n~ac, for fixed
number density, the collision frequency is time indepen-
dent if the particles are uniformly distributed initially
(Vp~, 0=0) or if v Vp=0. In this case the collision fre-
quency is

where n; are the number of particles uniformly distribut-
ed in a strip

A; = [x,y:y E(y; —d, y;+d), x E(O, L)], (20)

and y; is the position of particle i In .deriving Eq. (19),
the fluctuations in (&', ) „due to the fluctuations in num-
ber density inside the strip are neglected. The collision
frequency is then

(f ) „=—,
' g jd'n, /A, ,
i=1

(21)

and the mean value (f„) and the standard deviation of
(f ) „are obtained by taking an average over the proba-
bility distribution of n, given by

using D=(j/2)(e, ez+e2e, ). Equation (18) is the two-
dimensional (2D) analog of the expression proposed by
Levich for simple shear flow.

In the case of systems of finite size, and when the im-
posed flow is regular, the collision frequency ( (f ) „)will
deviate from the theoretically predicted value (f„). We
estimate this deviation for the case of a simple shear flow
(U„=yy, v~=0). Consider the collision frequency of n

circular particles of diameter d uniformly distributed on
a square of side L with the edge x =0 joined to x =L.
The collisions experienced by particle i are given by

(19)

(f ) „=f„=lim —,
' g g g ( r, , r, ),

n~oo
(12) n! n, n —

n,P(n, )= '

q '(1 —q)n!(n n; )!— (22)

Replacing the sum by an integral over the probability dis-
tribution of (r, , r, ) we obtain

f„= lim —,
' J f p(r;)p(r )g(r;, r, )dA;dA~, (13)

n ~co A A

which upon simplification becomes

f„=lim —„' f dA, p(r, ) f d8p(r, +rd)
n~oo A 0

where q
= A;/A. Thus

(f ) „=f~ 1+ —(L /2d —1 )
' i

n
(23a)

(23b)

X~[v(r, ) —v(r, +rd)] r(8)~ .

(14)

In the case of uniform density we get

fq =(p dl4) J dA; J [v(r;)—v(r;+rd)] r(8)~d8,

(15)
which is identical to Eq. (11).

Further simplification of Eq. (15) is possible for special
cases. For sufficiently small particles (d

~ VVv ~ /~ Vv~ &&1)

f„=(p d /4) f dA f d8~D r r~,

where D is the symmetric part of the velocity gradient
tensor. In the case of homogeneous flows for any particle
size Eq. (15) reduces to

f„=(p d l4)A f d8!D r.r~ . (17)

Finally, for simple shear flow we obtain

where f„=j n d l2L and e is the area fraction of the
particles. Equation (23) gives the standard error which is
implicit in the use of gradient theory for regular flows.
For fixed e, the error decreases with system size (L/d);
however, it can be quite significant for small e (e.g. , error
=20% for @=0.01, L =10 cm, and d =100pm).

Two-dimensional chaotic flows, in general, exhibit is-
lands and cannot be ergodic since the islands form an in-
variant set of finite measure. ' (We note that the net flux
across any cantorus must be zero by area conservation"
so that cantori would not contribute to nonergodicity of
the flow. } Trajectories in the chaotic region of the flow
have positive Liapunov exponents, and the flow in these
regions is mixing. Consequently, f, is ergodic in the
chaotic regions with the islands excluded, and
(f ) „=f„ independent of the number density. If the
area occupied by the islands is sufficiently small, (f )
would approach f„ for chaotic flows even in the limit of
very low number densities. Any deviation between the
two would be essentially due to the trapping of some par-
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ticles within island chains, and the exclusion of the rest
from the islands. Collisions may occur between a particle
trapped within an island chain and those in the chaotic
region; however, collisions between two particles trapped
in different island chains would generally not be possible.

na ytical treatment of the problem is extremely diScult
since, in general, there is a large number of islands of
different periodicities. These effects are screened out with
increasing number density, and at sufficiently high num-
ber densities the complex structure would play no role in
determining the collision rate.

COMPUTATIONS

A number of particles (6—3000) were plac d
in e c aotic region. The particles were mapped for
several cycles (100—5000) to distribute them uniformly
over the chaotic region. The avera ll' '

erage co ision rate was
then computed by counting the collisions in each cycle
or a number of cycles. A collision was said to occur if

the particle centers approached each other closer than
the collision diameter (d). Only pair

' ll' '

y pairwise co casions were
counted.

Cotnputations were carried out to stud (i) the
metric deic ependence of the collision frequency for very di-
lute suspensions (n =6—12), and (ii) the crossover from

ilute to nondilute suspensions keeping the system pa-
rameters fixed. Computations in (ii) were carried out at

p =0.4, which is close to p„and p=1.0.

RESULTS AND DISCUSSION
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FIG. 3. Graph of deviation of (f ) (o' l(f )' ) vs 1/N for

p = . , = . , for different number of particles n =6 ( CI ),u, =1.0, d =0.6
n = 8 (6 ), n = 10 ((&), and n = 12 (+).

In all the cases hthat we studied the average collision
rate approached an asymptotic value which was nearly
independent of the interval of averaging. The rate of ap-
proach to an asymptotic value for the dilute suspensions
was studied by considering the mean-square deviation of
the collision frequency averaged over N cycles ((f &z
from its asymptotic value ( (f & „)as
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where the overbar represents the average over several
runs of duration X. The asymptotic collision frequency
or the dilute suspensions was taken to be the average

computed over 30000 cycles since the fluctuations were
very small beyond this value. The decay of the mean-
square deviation was found to be

2

(f&' (25)
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The dependence on p and d was found to be
more complex and is shown in Fig. 4. The rate of conver-
gence decreases with increasing flow strength and de-
creasing particle diameter.

The above results indicate that the interval of averag-
ing required to approach (f & „within a fixed accuracy
decreases with increasing number of particles (n), as ex-

convergence of the asymptotic value with a given accura-

0,('0
O.Q 2 0.04 0.06 0.08

FIG. 4.. 4. Dependence of rate of convergence (Cl ) on system
parameters (p, d): (a) Cl vs p for n =10, d =0.6; and (b) Cl vs d
for p = 1.0, n = 10.
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(f ) —n2. 23d2 (26)

In fact, in all the cases there is a slow variation with n in
addition to the n dependence.

The normalized collision frequency defined as

(f)„/A
P

(27)

is shown in Fig. 5 and was found to increase with increas-
ing flow strength. The increase in area with p
(A o- p

'
) results in the particles exploring regions of

relatively lower shear rate. At the same time the absolute
shear rate increases at a rate proportional to p. Thus
there is an effective increase in the average shear rate,
leading to an increased rate of collisions. The rate of un-

mixing thus increases with flow strength in contrast to
the average stretching rate (Liapunov exponent), which
shows a maximum value at p=1.

Crossover from the dilute to nondilute regime

The collision frequencies were calculated over a wide
range of number densities to study the approach of the

cy occurs in one cycle of the flow, the flow is essentially a
regular flow (i.e. , a shear flow due to a point vortex). For
p= 1.0 and d =0.06, the number of particles required for
o, /(f ) =0.01 (in one cycle) is n, =1250 using Eq. (25)
and C, ~ n . While a considerable extrapolation is re-
quired in the above calculation, n, gives an estimate of
the number density at which the crossover to the nondi-
lute regime occurs.

Parametric dependence

The dependence of (f ) „on d and n for the dilute
solutions was found to be qualitatively similar to that of
nondilute suspensions ((f ) „o-n d ) when p was
sufficiently large. ' The behavior for p=0. 4 was some-
what different with

asymptotic collision rate to the area averaged value, and
the ratio f„/f„ is shown in Fig. 6. Following Muzzio
and Ottino, f„was found by evaluating the area integral
[Eq. (16)] over two circles centered on the vortices, with
the area equal to the area of the chaotic region. The area
averaged frequency is then

f„=ep d I j'dA, (28)

where e is fitted by matching f„ to (f )„at high number
densities and L represents two circles. In our computa-
tions we obtained c =0.82 for both p=0. 4 and 1.0.
Muzzio and Ottino obtained c =1.0.

The results show a significant deviation of (f ) „/f„
from unity at very low number densities: for p=0.4 the
maximum deviation calculated was about 25% and for
p, = 1.0, a maximum of about 12%. As discussed earlier,
the higher value of deviation cannot be due to the pres-
ence of cantori, but is due to a greater fraction of the area
covered by islands at lower flow strengths. In both the
cases the time-averaged frequency is lower than the area
averaged value at low number densities. This is expected
since the trapping of particles in islands would reduce the
efFective concentration in the chaotic region and thus the
collision frequency.

At both flow strengths, (f ) „approaches f„rapidly
with increasing p, and the deviation is less than 5% for
p=5. 2. This implies that in the case of chaotic flows, the
gradient theory is reasonably accurate even at later stages
of the aggregation process when the number density is
low. In contrast, the deviations would be much greater
in the case of a regular flow at the same number density.
The convergence does not seem to be uniform with fur-
ther increase in number density; however, at n, =1000
the deviation of (f ) „ from f„ is less than 2% (i.e. , the
error of computation). For this number density (f ) „ is
reached within one time period of averaging. This value
is in reasonable agreement with the predictions based on
the results of the preceding section.
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FIG. 5. Graph of the normalized collision frequency
(f )*„=((f)„/Ap d ) as a function of the flow strength (p)
forn=6(()), n=8(D), n =10( ), andn =12(X).

FIG. 6. Ratio of the asymptotic collision frequency ((f )„)
to the area averaged value (f„)vs the number density (p) for
p=1.0 (0) and @=0.4 (8, ); d =0.06.
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CONCLUSIONS
%e have computed to a high accuracy the collision

rates in very dilute suspensions subject to the blinking
vortex flow. Our computations show that the long time
average of the collision frequency achieves an asymptotic
value which is nearly independent of the initial positions
of the particles, and at high flow strengths the behavior
for dilute suspensions is similar to the nondilute case. In
addition, with increasing number density there is a rapid
convergence of (f ) „ to the prediction of the gradient
theory. The latter is due to the mixing property of the
flow over a large fraction of the chaotic region, and
would be expected to hold for chaotic flows in general.
Thus, as suggested by Muzzio and Ottino, the gradient
theory is more accurate for chaotic flows as compared to

regular flows for a11 number densities.
The results presented here show a complex dependence

of the collision frequency on the flow at low number den-
sities. The behavior is a reflection of the structure under-
lying the flow. In the limit of two particles of sma11 diam-
eter, the ratio (f ) „If„can be considered to be a global
measure which is indicative of mixing property of the
flow. For flows which are mixing (f ) „/f ~ =1, and for
flows which are near mixing, this ratio would be less than
1. The diameter of the particles would specify the length
scale to be probed. The measure is complementary to the
Liapunov exponent, which is a local measure of stretch-
ing of material lines in the flow. A detailed characteriza-
tion of single-pair collision rates for model flows is
planned.
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