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Entropy of flexible chains placed on Bethe and Husimi lattices
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We consider the problem of placing self- and mutually avoiding chains, each formed by M con-
secutive monomers, on the Cayley and Husimi trees. As particular cases, we could mention the di-

mer (M =2) and the polymer (M~ ~ ) problems. Defining an activity x for a monomer, we obtain
the density p(x) of sites occupied by chains in the central region of the trees, as well as the entropy
as a function of p. On the Bethe lattice (central region of the Cayley tree), we were able to obtain
closed expressions for general M. On the Husimi lattice (central region of the Husimi tree), only for
the case of dimers were closed expressions found, and the other cases were treated numerically.

I. INTRODUCTION

The problem we want to address is the calculation of
the entropy of self- and mutually avoiding chains placed
on a lattice. The chains are supposed to be flexible,
which means that no energy is paid to bend a chain.
Also, besides the infinite excluded-volume interaction, we
are assuming no interactions between the chains, so that
the problem we are considering is athermal. Neverthe-
less, it is worth mentioning that the methods we use may
be easily applied in cases where bending energies and oth-
er short-range interactions have to be taken into account.
We are faced, therefore, with a combinatorial problem on
a lattice, and we consider the general case where a given
fraction p of the lattice sites are occupied by monomers
belonging to the chains, whose length (number of mono-
mers or molecular weight) will be denoted by M.

When each chain is formed by just two monomers
(M=2), we have the dimer problem, ' and for the partic-
ular case where all lattice sites are occupied by dimers

(p = 1), the exact solution of the problem is known on the
square lattice. Another particular case which was al-
ready considered extensively in the literature is the poly-
mer problem (M ~ ~ ), and when p = 1 (Hamilton
walks) an exact solution is known on two-dimensional
Manhat tan lat tices.

Subsets of the general problem have been investigated
by a variety of techniques such as mean-field and Bethe
approximations, exact calculations, series expansions, '

transfer-matrix methods, and field-theoretic ap-
proaches. ' Recently, on hypercubic lattices, an exact
field-theoretic representation of the problem was found,
and the entropy was evaluated up to order z, where z is
the coordination number of the lattice. " Thus correc-
tions are found to the mean-field results (which are of the
Flory type and are exact in the infinite coordination limit
Z~aa).

In this paper we obtain the exact solution of the gen-
eral problem on two structures. The first of these struc-
tures is often referred to as the Cayley tree. The thermo-
dynamic properties of models defined on the Cayley tree
are strongly influenced by its pathologically large surface.

The solution we obtain is for the deep interior of the Cay-
ley tree, which is called the Bethe lattice. ' The second
structure we consider is the Husimi tree. ' Again our
solution is for the deep interior of this tree, which we will
call the Husimi lattice. These results may be considered
as closed form approximations to the solution on hyper-
cubic lattices. It should be remarked that for finite
chains no phase transition should be observed in the
problem we are considering, since it may be looked at as
a noninteracting lattice gas. Only in the polymer limit
M ~ ~ is a nonanalyticity expected to be present in the
thermodynamic functions associated to the model.

In Sec. II we define the problem more precisely, and in
Sec. III the results on the Bethe lattice are obtained. The
solution of the model on the Husimi tree may be found in
Sec. IV. Results are presented and discussed in Sec. V
and finally a summary of the conclusions is given in Sec.
VI.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

N

Y„(x)= y x W~(m),
m=0

(2)

where x is the activity of one monomer belonging to a
chain. The activity of a chain will be x . The summa-
tion on m is over the multiples of M.

In this new ensemble the density p(x) will be given by

Let W~(m) be the number of ways to place p chains,
each occupying M neighboring lattice sites, on a lattice of
N sites, with m =Mp. The density p of sites occupied by
monomers belonging to chains will be p=mlN In the.
thermodynamic limit N~ ~, with p held fixed, the en-

tropy per lattice site is given by

s(p)= lim N '1n[W~(m)] .
&~ oo

For the purpose of our calculations, it is convenient to
work in the grand-canonical ensemble, so the number of
chains placed on the lattice will not be held fixed. The
grand-canonical partition function Y~(x) will be given by
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p(x) =x [$(x )],
dX

where

P(x ) = lim X 'ln F~(x) .
jV~ oo

(3)

(4)

In the thermodynamic limit s(p) and P(x) will be relat-
ed to each other through the following Legendre trans-
formation:

P(x) =max [s(p)+pin(x)]
P

from which it follows that

pM

pf
(8)

for large N. For finite values of M, however, p diverges
in the thermodynamic limit as N' . It is, therefore,
convenient to introduce the quantity co(p) defined as

p(p) =co(p)N'

For the case of polymers (M ~ ~ ), we have 1M(p) =co(p).
In this work, however, we will not concentrate our at-

tention on co(p) since it may be calculated from the entro-
py. Actually, we have

' 1/M

[s(p)]= —ln(x) .
dp

So, if x(p) is known, the entropy may be calculated by
performing the integration

s(p) = —f [ln(x )]dp' . (7)
0

Another quantity that is often used in connection with
the combinatorial problem of flexible chains on a lattice
is the connectivity constant p(p), which is related to the
asymptotic behavior of the number of configurations,
that is,

FIG. 1. A sub tree of a Cayley tree. The drawing is for z =4
(r =3).

g2 =Xg )

gk=rxg', 'gj, » 3 K M .

(1 lb)

(1 lc)

In the expression for g &
we remark that the first term cor-

responds to having all r sub trees attached to the new
root site with empty root sites, the second term corre-
sponds to the situation where a chain end point is located
on one of the root sites of the r sub trees, and in the last
term a chain has one of the internal monomers on the site
close to the new root site.

Now, it is convenient to define new variables
R —=g +1/g„j =1,2, . . . , M —1, and the recursion rela-
tions for them will be

the operation of attaching r =z —1 sub trees to a new
root site. The result is

1) M —1

g1 g1+ xgMg 1
+ xg 1 X gjgM —j+12

J =2

(1 la)

co(p) =
Me

s(p)
exp

P
(10) XR' =—

D
(12a)

so, for brevity, only the entropy will be calculated below. R'= R, j =2, 3, . . . , M —1 (12b)

III. SOLUTION OF THE BETHE LATTICE

We now calculate the partition function for chains
placed on a Cayley tree with an arbitrary coordination z.
In a procedure closely related to the solution of the Ising
model presented by Baxter' we define M partial partition
functions on rooted sub trees (see Fig. 1), labeling them
according to the configuration of their root site. Thus g,
is the partial partition function of a sub tree with no
chain incident on the root site from above, and g, , for
2 ~ i ~ M, refers to a sub tree with the ith monomer of a
chain located on the root site. The definition of the par-
tial partition functions is illustrated in Fig. 2.

It is straightforward to write down recursion relations
between partial partition functions g; of sub trees with a
certain number of generations and those g of sub trees
with on additional generation. This is done considering

C:; 0 C

I

FIG. 2. Root configurations of sub trees on a Cayley tree for
z =4.

where

r(r -1) M
D=l+rxRM 1+ x g Rj 1RM j . (13)

2 =2

Any density in the central region of the Cayley tree [in
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particular, p(x), which is needed for the calculation of
the entropy] may be written as a function of the R's and
since we are interested in results for an infinite lattice, the
fixed point values R;* of R; should be considered,
since they are attained after an infinite number of itera-
tions of the recursion relations. The fixed point values

R,* have a quite simple structure: rR', =R*/R* „
j =2, 3, . . . , M —1. If we introduce an auxiliary variable
a by a=rR f, we have R,*=a~/r. From Eqs. (12a) and
(13) we obtain the following equation for a:

where

1 2z
"MF (1 ) MP (21)

is the expression for x in the limit of infinite coordination
number, which corresponds to the mean-field result.

It is not difficult to perform the integration in Eq. (7)
with the expression (20) for x(p). The following expres-
sion for the entropy per site is obtained:

T —1
rx =a+xa 1+ (M —2)

2T
(14) s(p) =sM„(p)+ 1 — p ln 1 ——+ 1 —

p
2 1 1

After solving this equation for a, we obtain R *, ,
R 2 y

~ ~ ~ y RM J ~

The partition function of the model on the Cayley tree
is obtained by the operation of connecting z sub trees to
the central site. The result is

r+1 r(r +1)Y=g", +(r +1)xgtgM+ g gjgM q+i—2
J =2

(15}

+ —— 1 —
p ln 1 —— 1 —

p
z 1 2 1

2 M z M

where

sM„(p) = —(1—p)ln(1 —p) — ln
2p

+ 1 — p(lnz —1)
1

M

(22)

(23)

and, again, the first term corresponds to not having a
monomer on the central site, whereas in the two other
terms there is a monomer on the central site. If we were
interested in the thermodynamic properties of the model
on the full Cayley tree, they could be obtained through
the thermodynamic potential associated to the partition
function (15). Since it is the behavior of the model in the
deep interior of the tree we are interested in (Bethe lat-
tice), we write down an expression for the density of
monomers at the central site

(16)

In the thermodynamic limit, this expression may be writ-
ten in terms of a. We get

r+1p= where P= xMaM
1+f3 2T

(17)

If a is obtained as a function of x, then we get p as a
function of x. However, it is easier to take the opposite
approach and obtain x as a function of p. From Eq. (14)
we have the expression

2ra
2r [2+ ( r —1 )M]a—

(18)

Now, if we eliminate x from Eqs. (17}and (18) we obtain
1/M

2r 2p

zM —2(M —1)p
(19)

Equations (18) and (19) give, then, x as a function of p.
After some algebra, we have

2/I —1

+MF 1 —— 1 —
p

2 1

z M
(20)

=1 r(r+1)p= —(r +1)xg",gM+
Y 2 X gqgM J+i—

is the mean-field result for the entropy.
It is of some interest to verify how the closed form

(22) —(23) for the entropy on the Bethe lattice, which may
be considered to be an approximation for the entropy on
a regular Bravais lattice with coordination number z,
compares with the expansion of the entropy in powers of
1/z for hypercubic lattices. " The expansion of the
correction to the mean-field entropy in (22) up to second
order in 1/z gives

2 1s=s + — 1 — p+ 1 — pMF M M
3

1 2 2 1 3 1+ —— 1 — p+ —1— P2 M 3 M z

'2

(24)

(r + 1)(rx —1)
p (r —1)+(r + 1)(rx —1)

(25)

which is the result already obtained in a direct calcula-
tion of polymerization on the Bethe lattice, where a phase
transition is present at x, = 1/T. '

As expected, for any finite value of M, p(x ) is a con-
tinuous function, but in the polymer limit it will not be
analytic at the transition activity x, . The entropy (22) in
the polymer limit M~ ~ is given by

Comparing this expression with the expansion in powers
of 1/z by Nemirovsky and Coutinho-Filho, "we see that
the Bethe lattice solution is correct up to order 1/z.

A particular case which is worth looking at is the poly-
mer limit M~oo. From Eq. (14) for a, it is apparent
that, in this limit, two situations should be considered. If
rx 1, we have a=rx and Ma =0 when M~ ~. Thus,
fro.a Eq. (17), we see that p =0. Now, when rx ) 1, it fol-
lows that a= 1 and Ma =2r(rx —1)/(rx —x), when
M~~. So, in this case we get a nonzero limit for p,
namely,
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z 2
s(p) =p ln(z —1)+ ——

p ln 1 ——
p2 z

—(1—p)ln(1 —p), (26)

and is consistent with the calculation by Nagle on the
Bethe lattice for p = l.

Another interesting particular case is the entropy of di-
mers (M =2). In this case, expression (22) gives

s(p) = —(1—p)ln(1 —p) —+lnpz+ — 1 —+ ln 1 —+
2 2 z z

(27)

and again this result agrees with earlier work by Nagle.

IV. SOLUTION OF THE HUSIMI LATTICE

As is well known, the Bethe lattice solution of a model,
viewed as an approximation of this model on a Bravais
lattice, takes into account only the coordination number
of the lattice. As an example, no distinction is made, in
this approximation, between the simple cubic and tri-
angular lattices, since both have coordination numbers
z=6. One way to improve this approximation is to
define the model on a Husimi tree, ' which is a tree built
by putting together polygons attached to each other by
their vertices. Therefore, on a Husimi tree, there are
closed cycles, but they are all of the same size. As was
argued in the Introduction, we will consider the proper-
ties of the model in the deep interior of the tree, the
Husimi lattice. So, if we were interested in finding an ap-
proximation of a model on the triangular lattice, we
could solve this model on a Husimi lattice with three tri-
angles incident on each vertex similar to the one shown in
Fig. 3. An exact solution on the Husimi lattice with
three squares incident on each vertex would be an ap-
propriate approximation for the solution of a model on a
cubic lattice.

In this section we present a calculation of the entropy
of chains of length M on a Husimi lattice built with
squares. Since the elementary closed cycles on all hyper-
cubic lattices are squares, our calculation may be viewed
as an approximation of the problem on hypercubic lat-
tices.

A. Dimers

g2 =2[xgi (g i +x&g2g i ) +x g 1 ] (28b)

Defining a new variable R by R =xogz/g, , we get the
following recursion relation:

2ox [(1+R) +x ]
(1+R) +2x (1+R)

The fixed point equation is

(29)

2ox +[2o(1+R) —2R(1+R)]x —R(1+R) =0,
(30)

with the real solution for x

R (1+R) cr(1+R) o (1—R)
Rz

(31)

Now, to obtain the Husimi lattice solution, we consider
the operation of attaching e+ I sub trees to the central
site of the tree, we obtain the following expression for the
density of monomers on this site:

1p= —x(o+1)gzgi (32)

where

Let us consider a Husimi tree with o. +1 squares in-
cident on each vertex, so that the coordination number
will be z =2o+2. Again, we obtain recursion relations
for partial partition functions of the model on rooted sub
trees. A sub tree with an additional generation is ob-
tained by attaching three groups of cr sub trees to the ver-
tices of a new root square. The fourth vertex of this root
square will be the new root site as shown in Fig. 4. The
labeling of the partial partition functions will be as fol-
lows: g& is the function of a sub tree with no dimer in-
cident on the root site from above, and g2 is the function
of a sub tree with a dimer incident on the root site from
above.

It is not diScult to obtain recursion relations for the
partial partition functions g, and g2. The result is

gi =(gi +xcrgzgi ') +2x gi +2x og3i 'g2, (28a)

FIG. 3. Husimi tree formed with triangles with coordination
number z =8.

FIG. 4. A sub tree of a Husimi tree. The figure was drawn
for z=4 {a=1).



ENTROPY OF FLEXIBLE CHAINS PLACED ON BETHE AND. . . 5959

F=g, '+x(o+1)g2g,

In the thermodynamic limit we get

(cr + 1)R
o + ( cr + 1 )R

(33)

(34)

cr(o. —1)
G) =g ) +Oxg ) g3+ Xg ) g2

G =0 2X
2g 2' 2g2

G —~2x 3g 3' 2 2

(42a)

(42b)

(42c)

Equations (31) and (34) give, then, x as a function of p: Defining the ratios R, =g2/g, and R2=g, /g, , it fol-
lows that

x =xMF 1 ——
p ( I+ & )'"2

(3&) a +b+a+1R') =20R)
a +2ab+b

(43a)

where

XMF

' 1/2

(36)
where

b(a+2}
a +2ab+b

(43b)

is the mean-field result for dimers and

2 1/2

1 o(cr —1)a= —+0R +2 R (44a)

Z —1 +
2p

Z —1 +1
Zp

(37) b =0-2R 2 (44b)

After performing the integration in Eq. (7) we get the
following expression for the entropy:

1 z 2
s —sMF+ ———

p ln 1 ——
p +p

2 2 z 2

=1 cr(o +1)p= —x(o+ 1)g, g&+x g, 'gz (45)

where

The density of monomers on the central site is given by

T

+ ———
p In(1+ A) ——ln(1+23 —A ),1 z Z 2

2 2 8

where SMF is the mean-field result given by

s = —(1—p)ln(1 —p) —+In+ —+ .MF 2 z 2
'

(38)

(39)

o (cr+ 1}Y=g, +' +x( rc+1)g,g i+x g, 'g2 .

In the thermodynamic limit we obtain

(46)

(47)

If the entropy (38) is expanded in powers of 1/z up to
second order, the result is

'2
2

1 p3

4 z 12 z
(40}

B. Polymers

and it is clear that these terms are the same as those of
the Bethe lattice solution for M=2. Thus, the second-
order term above is not correct for a Bravais lattice, al-
though higher-order terms are improved when compared
with those of the Bethe lattice solution.

where

2
(48)

1 1
X +X +X 2' z —2

(49)

So, the polymerization transition in the Husimi lattice
occurs at a critical activity x, given above.

From the recursion relations we notice that there is al-

ways a nonpolymerized (p=O) fixed point R, =R2=0.
This fixed point is stable whenever x is smaller than x„
solution of

g') =G
) +2G, G2+G3, (4 la)

g 2 =2ox(g 1 'g2(61+ G2)+xg 1
'g2G1+x'g

1
'g2 ~

(41b)

(41c)

where

In the limit of infinite chains, it is possible to handle
the problem on the Husimi tree by defining only three
partial partition functions g, , g2, and g3. They corre-
spond to no chain incident on the root site from above,
one chain, and two chains, respectively. The recursion
relations for these functions are

C. Chains of Length M

In this section we present a calculation of the entropy
of chains of length M (M) 2 and finite) placed on the
Husimi lattice. As before, g& will be the partial partition
function of a sub tree with no chain incident on the root
site from above, whereas g;, with 2~i (I, is the func-
tion of a sub tree with the ith monomer of a chain on the
root site. The partial partition function g~ comprises,
besides root sites with the Mth monomer of a chain on it,
also those configurations where two links of a chain are
located on the bonds incident on the root site.

Again recursion relations may be obtained for the par-
tial partition functions. The results are
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g] = A +2AB+C,

gz =2xg, (A +B),
g,'=2x[crg, 'gz(A +B)],

(50a)

(50b)

(50c)

1.00

0.80

g4 =2x[og, 'g~( A +B)+xcrg~t 'gq A +x ~g3t ],
(50d)

g, =2x[crg, g, , ( A'+B)+xcrg, 'g

+x crg, g, , ], i=5, 6, . . . , M —1

(50e)

g; —2x [erg t g; t( + +B)+xog, g,

+x crg, 'g, ,], i=5, 6, . . . , M —1

where

~(~ —1)
gM xgt g g gM — +t i

2 =2'

0.60

0.40

0.20

O.OO
0.00 0.20 0.40 0.60 0.80

M —2

gggM —g+2crg t

J=2

(5 la)

(51b)

FIG. 5. Curves of the monomer density p as a function of
g=x /(1+x) for dimers (M =2) placed on a lattice with coordi-
nation number z =4. Mean-field (solid) and Bethe lat tice
(dashed) results are shown.

M —3

C=x cr gt g g gM )+2crgt gM p, (51c)
J =2

M —4

D=2x o g', ' g g, gM &
~+2og,

J =2

c=2crRM 3+o g R~ tRM J»
J =2

M —4

d =4crRM 4+2o' g R),RM
m=2

(53c)

(53d)

(51d)

Now, ratios of the partial partition functions may be
defined as R, =g, +, /g, . We have then

The partition function of the model on the complete
Husimi tree is obtained connecting o + 1 sub trees to the
central site. The result is

R2=

for 4 i M —2, and

2(a +b)
a +2ab+c
2[oR, (a +b)+a]

a +2ab+c
2[crR&(a +b )+o R ta+ 1]

R3=
a +2ab+c

2[oR, , (a +b)+crR, za+oR, 3]R)=
a '+2ab+c

(52a)

(52b)

(52c)

(52cl)

1.00

0.80—

0.60—

0.40—
2[oRM &(a+b) +oR~,a+oRM 4]+ac+2

RM —1
a +2ab+c

(52e) 0.20—

where

a =—+crRM t+ g R tR~, (53a)
x 2

0.08 0.20 0.40 0.60 0.80

M —2

b =2o RM ~+cr g Ri,RM
J =2

(53b)

FIG. 6. Same as Fig. 5, for pentamers (M =5).
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0.80— 0.80—

0.60— 0.60

0.40— 0.40

0.20— 0.20

0.00
0.00 0.20 0.40 0.60 0.80

0.00 '

0.00 0.20 0.40 0.60
I

0.80

FIG. 7. Same as Fig. 5, for polymers (M ~ 00 ). FIG. 9. Same as Fig. 8, for pentamers (M =5).

Y=g, +'+x(a+1)g, g~I—
1

g1 g gjgM —j+1
J=2

(54)

and the density of monomers at the central site will be
given by

where, in the limit of an infinite tree, the fixed point
values R should be employed.

Now the fixed point of the recursion relations (52) may
be found numerically and, once the density p is calculat-
ed, the entropy follows by numerical evaluation of the in-
tegral in expression (7).

V. RESULTS

~ M —1

where P=x(0+1) RM &+—g R~ ,R~ ~,. (55)
2 =

We present in Figs. 5-10 the plots of the monomer
density p as a function of the "activity fraction"
g—=x/(1+x ) and of the entropy as a function of the den-
sity p, all for coordination number z =4. At the scale of

0.65,

0.63

0.80— 0 80 —'"

0.59

0.60 0.60
0.57- ~ ~

0.40 0.40

0.20 0.20

0.00
0.00 0.20 0.40

I

0.60
I

0.80 0.00
0.00 0.20 0.40 0.60 0.80

FIG. 8. Entropy as a function of the density p for dimers
(M=2). Solid lines are mean-field and dashed lines are Bethe
lattice results.

FIG. 10. Same as Fig. 8, for polymers {M~00 ). In the inset,
part of the graph is enlarged, and the result on the Husimi lat-
tice is also plotted (dotted lines).
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TABLE I. Entropy at full coverage (p= 1) for square (z =4) and cubic (z =6) lattices in several ap-
proximations.

MF

0.1931
0.4923
0.3863

0.3959
0.8167
0.7918

Bethe

0.2616
0.5067
0.4055

0.4401
0.8249
0.7985

Husimi

0.2674
0.5089
0.4090

0.4413
0.8255
0.7986

First order

0.2556
0.5023
0.3863

0.4375
0.8233
0.7918

Second order

0.2687
0.5101
0.3967

0.4433
0.8268
0.7964

Best value

0.2916'

0.3866'

0.4465'

'Reference 2.
Reference 15.

'References 7 and 8.

the graphs, the results on the Husimi lattice are almost
coincident with the ones obtained on the Bethe lattice, so
only mean-field and Bethe lattice results are plotted. In
the inset in Fig. 10 an enlarged portion of the graph is
shown, and there the result on the Husimi lattice is also
plotted. For larger values of z the differences between the
three results are even smaller.

The curves corresponding to mean-field and Bethe lat-
tice calculations came from the closed expressions ob-
tained in Sec. III. For the case of the Husimi lattice the
results were obtained numerically, except for dimers
where we succeeded in obtaining a closed expression.
One interesting feature that may be observed in Figs. 5, 6,
and 7 is the development of the singularity in the func-
tion p(x) as M ~ ~ (polymer limit). The graph for M = 5

(Fig. 6) already shows curves p(g) which increase very
slowly for small values of g (and, consequently, of x), and
then the inclination of the curves grows considerably in a
rather small interval of g. In the limit M~~, the
derivative of p(g) is discontinuous at g, =x, !(1+x,).

In Table I we present the results for the entropy of the
chains in the limit p = 1, corresponding to z =4 (square
lattice) and z =6 (cubic lattice). In the case M~ ce, this
corresponds to the entropy of Hamilton walks. For com-
parison, we also show the results coming from the first-
and second-order expansions in (1/z), " and the best re-
sults known to us.

Finally, in Table II the critical activity of polymers on
hypercubic lattices is given, for various values of z. It is
apparent that at higher values of z the differences be-
tween results coming from different approximations be-
come very small, as expected.

VI. CONCLUSION

We considered the problem of calculating the entropy
of self- and mutually avoiding chains formed by M mono-
mers placed on the Bethe lattice and on the Husimi lat-
tice. It was convenient to formulate the problem in an
ensemble which is grand canonica1 with respect to the
number of monomers incorporated into chains. The ac-
tivity of one monomer was denoted by x, and we calculat-
ed expressions of the density p of monomers on the lattice
as a function of x. As expected, the functions p(x ) ob-
tained are monotonic and analytic, with the exception of
the polymer case M ~ ~, where a phase transition is ob-
served at a critical activity x, . The polymer density p(x )

is equal to zero for values of x smaller than x„and be-
comes nonzero for va1ues of x larger than x, .

In general, the solution of the problem on the lattices
we considered is obtained through the evaluation of fixed
points of a set of recursion relations. In the case of the
Bethe lattice, it was possible to find an ansatz for this
fixed point for general M, so we were able to find closed
expressions for p(x) and the entropy s(p). The same hap-
pened for dimers on the Husimi tree. For chains with
molecular weight larger than 2 on the Husimi tree we
had to evaluate the fixed point numerically.

The solutions of the problem on cores of trees may be
viewed as approximations to the exact solution on regular
lattices. So, it is useful to compare the results with others
already known. One comparison we made is with the ex-
act expansion of the entropy in powers of 1/z for hyper-
cubic lattices, obtained up to second order by Nemirov-
sky and Coutinho-Filho. " As expected, we found that if

TABLE II. Critical activity x, for hypercubic lattices.

MF Bethe Husimi First order Second order Best value

4
6
8

10

0.2500
0.1667
0.1250
0.1000

0.3333
0.2000
0.1429
0.1111

0.3425
0.2013
0.1432
0.1112

0.3210
0.1969
0.1416
0.1105

0.3526
0.2053
0.1450
0.1122

0.3791'
0.2135
0.1478'
0.1132'

'Reference 16.
Reference 17,

'Reference 18.
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the Bethe lattice result for s is expanded in powers of 1/z,
the 6rst term is coincident with the exact one. However,
the second-order term of the entropy of dimers on the
Husimi lattice is still wrong, although higher-order terms
are improved relative to the Bethe lattice solution. %e
believe this situation to be the same for all molecular
weights M.

In general, the Husimi lattice results are somewhat
smaller than the value obtained from the second-order
expansion in 1/z. Nevertheless, in cases where exact or
more precise values are available, the deviations of the
Husimi lattice results are typically smaller than 1% for

the case of the square lattice z=4. Since at z~ ~ the
mean-field approximation to this problem is exact, errors
from all approximations become smaller as z is increased.
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