PHYSICAL REVIEW A

VOLUME 42, NUMBER 10

15 NOVEMBER 1990

Kramers problem for overdamped systems driven by correlated noise:
Results for vanishing diffusion coefficients

R. Mannella
Dipartimento di Fisica, Universita degli Studi di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy

V. Palleschi and P. Grigolini
Instituto di Fisica Atomica e Molecolare, via del Giardino 7, 56127 Pisa, Italy
(Received 20 November 1989; revised manuscript received 9 July 1990)

We have obtained results for the activation energy in bistable overdamped systems driven by
colored noise. Our results cover the region of small diffusion coefficients and small to large correla-
tion times. A scaling relation between the escape rate from one attractor to the other and the
diffusion coefficient allows us to obtain results for the activation energy in the limit of vanishingly
small diffusion coefficients. Numerical results for both the activation energy and the mean first-
passage time are compared with theoretical predictions.

I. INTRODUCTION

In the recent past, one of the most debated problems
within the community of stochastic physics has been the
calculation of the activation rate in overdamped bistable
systems in the presence of correlated fluctuations.! Quite
a few conflicting theories have been presented, and in
many cases the comparison with experiments (where with
the experiment we mean the result of a Monte Carlo
simulation, either digital® or analog, or the numerical
solution of some eigenstate and eigenvalue problem,* via,
amongst others, the continued-matrix procedures) has
added to confusion, instead of helping in understanding
the underlying physics. As already pointed out® (see also
Ref. 7), a source of difficulty is the fact that all (Monte
Carlo) simulations are performed at finite and relatively
large values of the diffusion coefficient, where the various
theories proposed are not completely reliable. A most
notable attempt to extrapolate results in the limit of van-
ishing diffusion coefficients can be found in Ref. 4(b), but
unfortunately the scaling relations introduced there can-
not be used in the most interesting regime, intermediate
to large correlation times of the colored noise driving the
system of interest. It is the purpose of this paper to prove
that it is possible to find a relation between activation en-
ergies at finite values of the diffusion coefficient and the
corresponding value for vanishing diffusion coefficients,
even for intermediate to large correlation times of the
external noise. Incidentally, our results allow the calcula-
tion of a meaningful (at logarithmic accuracy) escape rate
virtually for any value of the diffusion coefficient (though
we should say that for diffusion coefficients which are or-
der of the barrier height probably the whole idea of es-
cape rate should be revised), for small-to-large values of
the noise correlation time. The activation energies and
the escape rates that we have computed will then be com-
pared to the predictions of some theoretical approaches.
Finally, some conclusions will be drawn on the possibility
of alternative derivations of Fokker-Planck like effective
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operators for systems driven by colored noise via a path-
integral approach.

II. THEORETICAL BACKGROUND

This section is not a full and comprehensive review of
the topic, but simply a brief outline of the problems in-
volved and a basis to understand the general background.
We refer the reader to a recent review!® for a more
comprehensive approach and for a full bibliographic list.
Another slightly more dated review,!®’ devoted to “clas-
sical” problems, is worth mentioning. Here we will then
limit our discussion to some recent theoretical develop-
ments which are of direct relevance to our work, and
which have not been tested previously. We would like to
add that other important approaches (like the ones based
on the fluctuating potential ideas® ™ '°), though very in-
teresting on their own, will not be discussed here because
of minor relevance to the present work.

Herein we will be interested in studying the system de-
scribed by the Langevin equations

x=F(x)+y,

\/_
=1, 42D o4y
T T

2.1

where f(t) is a Gaussian variable with average 0 and
standard deviation 1. The particular form of the equa-
tion describing the evolution of y will guarantee that we
have
{(y(s))=0,

(2.2)

lt —sl
T

(y(s)y(t))zgexp

i.e., that y (¢) is a colored noise. The “force” F(x) is gen-
erally chosen to yield a bistable potential, and here we
will consider the form

F(x)=x —x*. (2.3)
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Very generally, it is possible to write the mean first-
passage time (MFPT) in the form

T = A(D,7)exp[S(r)/D], (2.4)

where D and 7 are defined via Eq. (2.2). This expression
becomes more exact the smaller D is made; there is also
the assumption that A4 (D, ) will stay finite or diverge less
than exponentially when D goes to zero. We also want to
stress that for the moment by MFPT we mean the time
taken to go from one attractor to the other (the so-called
Tyo): other possible definitions are the time taken to
reach the separatrix of the deterministic flow (T'g,,) or the
time taken to reach the boundary {x =0, y anything}
(Ty,p). Different definitions have been studied, amongst
others, in Ref. 11.

Some of the most recent theoretical work has been
based on a path-integral approach to the problem, ™4
where attention is devoted to computing, via an
Onsanger-Machlup functional,!® the contribution to
some stationary probability distribution from which a
conditional probability distribution (probability of being
on one attractor at time O and on the other attractor at
time ¢) is derived. Basically, for general potentials, this
method allows the calculation of some kind of action
[really an activation energy, in Kramers language, i.e.,
the quantity S(7) appearing in Eq. (2.4)] via the most
dominant path in the limit of the vanishing diffusion
coefficient. We would like to stress that this calculation
of the activation energy is far from trivial, and in the gen-
eral case can only be done numerically; the only com-
pletely analytical result has been obtained in Ref. 13(b)
approximating F(x) with a piecewise linear potential
(PWLP). The result obtained there for S(7) is

1 1+ Er+172

72 1x I, (2.5)

SPWLP(T)=

Of course, for a complete characterization of the es-
cape mechanism, the calculation of the prefactor [the
term A (D,7) in Eq. (2.4)] should be carried out. Unfor-
tunately this is possible only for particular potentials, like
the connected parabolas introduced in Ref. 13(a) or
around the white-noise limit (r=0). 2@

Given the force of Eq. (2.3), it is in any case possible to
derive an analytical expression for the quantity S(7) in
the limit of large correlation times or in the opposite limit
of white noise (T going to zero). One obtains

1 (2.6a)

(2.6b)

results one would also obtain taking the appropriate lim-
its in Eq. (2.5).

Before the path-integral treatment became fashionable,
the problem had been extensively studied within the stan-
dard approach introduced by Kramers'S in the case of
white noise, i.e., via some sort of Fokker-Planck operator
with suitable boundary conditions and more or less
justified approximations. For the region of intermediate
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to large noise correlation time, essentially we have two
different theoretical approaches based on Fokker-
Planck-like operators: the time-dependent Fokker-
Planck operator of Ref. 8 and the unified colored-noise
approximation (UCNA) of Ref. 17.

The approach based on the time-dependent Fokker-
Planck operator® is a kind of linear response theory ap-
plied to the bidimensional Fokker-Planck operator asso-
ciated to Egs. (2.1) and (2.2), where the interaction term
is dealt with up to second order in perturbation and using
an adiabatic elimination procedure (this approach will be
referred to as local linearization theory or LLT). The
final equation one has to solve is

L (rF(x)— 1)t
M:i —F(x)+2 _a~L_..e__~_‘__~

at dx T ox 1—7F'(x) Plx1),

(2.7)

where the solution P(x,?) must be derived numerically.
From the decay of P(x,t) starting, say, from a § function
centered in x = —1, one can derive a MFPT [we would
like to say that for the noise intensities and correlations
herein considered we have always observed an exponen-
tial decay for P(x,t)]. It has been noticed!® that for small
enough values of 7 such that over the whole x support the
quantity 7F'(x)—1, appearing in the exponent in Eq.
(2.7), is negative, the numerical solution for the MFPT
from Eq. (2.7) coincides with the mean fist-passage time
computed via the Fox theory.!® Equation (2.7) thus al-
lows a simple and direct extension of the Fox result in the
region where a standard Fokker-Planck approach would
break down due to the appearance of negative diffusion
coefficients.

The UCNA (Ref. 17) is again based on an adiabatic el-
imination, but carried out at the Langevin equation level.
One derives the Fokker-Planck operator

Px _ 3 [ Fx
at ox 1—7F'(x)
! 3 1
T G ax 1—rF) [F R0
(2.8)

from which standard techniques allow us to derive a
MFPT. This calculation is not completely straightfor-
ward: the final result, valid for large correlation times (7)
of the noise and small diffusion coefficients is

172
277 1 1 (4 8
= =T - — | =+ 2.9
T 2D*H—2 exp | 75 9+27T , 9
which yields the expression
Sucna(T) =14+ £77) (2.10)

for S(7). Note that this expression gives the right limit
for large 7, but is incorrect in the opposite limit of white
noise, as one would suppose, given the hypothesis as-
sumed by the theory.

We will be comparing S (7) predicted via the different
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theories with the result of simulations. For the theoreti-
cal approach based on a path-integral formulation of the
full (nonlinear) problem we will use the result of numeri-
cal integration. ') For the LLT, the other approach for
which no analytical expression is available, we will solve
Eq. (2.7) numerically for D finite, and prove that the same
scaling holding for the experimental MFPT holds true
also for the MFPT calculated via the LLT, thus allowing
us to derive a meaningful S (7) for the comparison.

Also, given that all the theories give the same value for
S (7) when 7 is large and all but the UCNA give the same
value in the opposite limit of white noise, we will normal-
ize S (7) obtained from the different theories with the help
of Eq. (2.6), i.e., we introduce the quantity 8S (7) defined
as

_ S(1)=5(0)
S(e0)

It is straightforward to write 8S(7) for the different
theories considered here.

Note that all theories presented here are supposedly
exact in the limit of vanishing D. Of course, in this limit
the dominant contribution to the MFPT comes from the
exponent of Eq. (2.4) [the value S (7), which is finite, is di-
vided by a quantity D going to zero].

After considering the activation energy, we will turn to
the comparison of the actual MFPT values from the
simulations and the corresponding MFPT from the
theoretical treatments. The problem of the activation
rate has received considerable attention, particularly for
small 7 values. A very detailed discussion of the most im-
portant results can be found in Ref. 1(a). It should be
noted, however, that at the best of our knowledge no
comparison has ever been carried out between numerical
simulations and the theoretical results for T, of Ref. 19
based on a two-dimensional Fokker-Planck operator, or
the theoretical predictions on T, from Ref. 12(d).

The main result of Ref. 19 has been to derive expres-
sions or T, via suitable expansions of a two-dimensional
Fokker-Planck operator with appropriate boundary con-
ditions. The authors there derived two different expres-
sions for T, depending on the relative value of 7 and D.
For 7 << D the result found is

88 (1) (2.11)

o
T=—=(14+3r+ - )e!/* :
‘/2( it e (2.12)
and in the opposite limit 7>>D,
7 V1—4r 1437 1 r
= — |1+— .
V2 Vitar 1-2P 4D | 2 2.13)

It is understood that in both cases D and 7 must be
(much) smaller than 1. In Ref. 19 the authors have also
carried out a uniform expansion which yields the expres-
sion, valid for D <<1 and 7 << 1:

172
T=_T_ 1—27(1—3D)
v2 | 1+7(4—3D)
1 9 7 3
X B T )
exp 2D 27- 8D+272 (2.14)
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For the path-integral calculation of the escape rates,
one has to calculate the fluctuations around the dominant
path. We refer the reader to Ref. 12(d) for the details of
the calculation, and we simply quote the final result, valid
for the force of Eq. (2.3). Assuming that we can write the
MFPT as in Eq. (2.4), the expression derived for the pre-
factor, valid for small 7 and in the weak-noise limit, i.e.,
small D, is

A(D,7)= !

T
— (2.15)
V2 1—%T+%TZ+O(T3)

where we have specialized the rather general expression
of Ref. 12(d) to the force of Eq. (2.4). Note that here
with MFPT we mean T, not T},. The expression for
T, has been obtained dividing Ty, by 2, after Ref. 9.

Equations (2.11)—(2.15) will be checked against numer-
ical simulations in the following sections.

III. SIMULATIONS

The numerical simulations have been executed using
the algorithm described elsewhere,?® with a minor
modification which allows a better accuracy?! with no in-
crease of the CPU time. The original corrector step (see
Ref. 22), an Adams-Moulton of order zero, has been re-
placed by an Adams-Moulton of order 1. Also, the calcu-
lation of the stochastic term, for speed reasons, has been
kept up to terms of order 1 in the integration time step.
The number of trajectories considered has always been
1000 and all trajectories have been initialized from the
point {x =—1, y random from the appropriate Gaussian
distribution}. We have obtained values for the time tak-
en to go from one attractor to the other, to reach the
boundary {x =0, y anything}, and to reach the separatrix
of the deterministic flow in the two-dimensional space of
Eq. (2.1). Other quantities like noise distributions at the
different boundaries have also been computed. Some of
our computed values for the time taken to go from one
attractor to the other (T,) and to reach the boundary
{x =0, y anything} (T,,) are reported, respectively, in
Tables I and II.

The basic problem is that if it were rather simple to
compute a MFPT for finite values of the noise intensity,
it would be impossible to perform the simulations for
vanishing diffusion coefficients. But we should not forget
that at this stage we really need (and want) to compute
the activation energy, not the MFPT. It is then natural
to consider the quantity

S(r,D)=Dlog,(T) , (3.1)

which coincides with S (7) when D goes to zero. In Fig. 1
we have plotted S (7, D) from our simulations as function
of D. The linear dependence of S(7,D) on D is striking
for the values here considered. Corrections to the prefac-
tor due to finite diffusion coefficients would not show on
this scale for the values of D considered. Note also that
the statistical uncertainty is smaller than the symbols
used in the figure. It is clearly possible and reasonable to
assume for S (7, D) a functional dependence on D given by
a constant plus a linear term, in the form
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TABLE 1. Values of T, (time taken to go from one attractor to the other) for different values of 7

and D.
\ 0.1 1 2 3 4 5 7 10
D

0.06 392.6 1993.8

0.07 215.7 1016.4

0.08 133.8 538.0

0.09 102.6 342.6

0.10 75.35 264.1 840.4

0.11 61.05 191.7 617.9

0.12 51.65 163.4 434.8 1127.7 2775.5 6754.8

0.15 33.13 90.09 221.8 493.8 1051.8 2081.6 8203.4 58242

0.20 22.01 55.56 120.5 228.3 393.0 737.1 2051.4 8742.7

0.30 13.96 32.94 59.44 98.36 151.2 238.0 505.8 1582.0
S(r,D)=Da+S () . (3.2) iting cases of very small 7 or very large 7, but their agree-

The constant term will of course yield the S(7) values
needed for the comparison with the theory.

A similar procedure must be followed to obtain .S(7)
for the LLT. In Fig. 2 we have plotted the quantity
S (7,D) obtained integrating Eq. (2.7), and it is clear that
a fit with a constant plus a linear term is again appropri-
ate. The constant term will be taken as the S(7) for the
LLT. For the sake of completeness, we would like to add
that a fairly extensive study of the prefactor for different
D and 7 has been carried out in Ref. 9(c).

IV. COMPARISON BETWEEN SIMULATIONS
AND THEORY: ACTIVATION ENERGY

The results of fitting our data with a constant plus a
linear term are reported in Table III, together with the
theoretical predictions from Ref. 12(c). The agreement is
extremely good over the whole range of 7 values con-
sidered. To carry out a better comparison, though, it is
better to normalize both theoretical predictions and nu-
merical results with the help of the asymptotic results
[Egs. (2.6)], considering 8S () instead of S(7). For the
predictions from Ref. 12(c) and for the LLT,® as already
pointed out, we will normalize S(7) numerically. Indeed
in Ref. 12(c) some expansions are derived around the lim-

ment with the result of our simulations would not be par-
ticularly good and they are not considered here. For the
other theoretical approaches considered here, we readily
obtain

BSUCNA(T)ZI_E

for the approach based on the UCNA (Ref. 17) [Eq.
(2.10)], and

4.1

1
1+16/277

for the path-integral approach applied to a piecewise
linear approximation of the anharmonic potential [Eq.
(2.5)]. 13

The comparison between different theories and the nu-
merical simulations is presented in Fig. 3. The simula-
tion results are in brilliant agreement with the theoretical
predictions of Ref. 12(c). We believe that this theory is
able to accurately describe the escape process, at least in
the limit of small D. We can also add that the apparently
astonishing rise of 8S (7) above its limiting value at large
T, very clear at finite 7, is probably due to the interplay of
color and nonlinearity: in fact, the theory of Ref. 13(b)
which is based on a piecewise linearization, fails in repro-
ducing the nonmonotonous behavior of 85 (7); it is fair to

8S pwia(T)= 4.2)

TABLE II. Values of T\, (time to reach the boundary {x =0, y any} starting from the initial attrac-

tor) for different values of 7 and D.

T 0.1 1 2 4 5 7 10
D
0.06 267.2 1872.2
0.07 141.5 923.3
0.08 87.8 491.1
0.09 64.94 313.6
0.10 48.35 238.2 825.3
0.11 38.88 169.7 599.5
0.12 29.81 144.4 422.6 1109.4 2748.6 6744.3
0.15 19.68 76.17 210.8 483.7 1047.2 2069.4 8191.4 58241
0.20 12.02 46.45 113.0 221.0 386.6 732.9 2049.5 8741.0
0.30 7.301 26.31 53.57 93.55 145.4 235.6 503.1 1580.3
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FIG. 1. Squares, natural logarithm of Ty, times D vs D for
different values of 7 from the digital simulations; straight lines,
linear fits to the data. From bottom to top we have 7=0.1, 1, 2,
3,4,5,7,and 10.

say that nevertheless Eq. (4.2) is a remarkably good inter-
polation formula from small to large 7. As for the
UCNA of Ref. 17, Fig. 3 shows that is reproduces the
correct behavior of 6S (7) only in the limit of very large 7:
we think that the UCNA, very useful when describing
equilibrium situations, might have limitations in describ-
ing dynamic processes (though a Fokker-Planck operator
of the UCNA type appears in the path-integral formalism
when the dominant contribution to the action is evalu-
ated, but see below). Also, we should bear in mind that
the UCNA does not pretend to describe the escape mech-
anism in every detail for small to intermediate 7, but only
to work in the limit of very large 7. It is arguable that
probably amongst the theories considered here the
UCNA is the easiest to derive but also the one with the
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FIG. 2. Symbols, natural logarithm of Ty, times D vs D for
different values of 7 from the numerical solution of the Fokker-
Planck operator of the LLT; straight lines, linear fits to the
data. From bottom to top we have 7=0.1, 1, 3, 5, 7, and 10.
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TABLE III. Values of the fitting parameters of the
D In(Ty,,). The fitting formula used is D In(T,,)=a+DS (7).
For comparison, theoretical values of S, (7) from Ref. 12(c)
are reported.

T S(7) a S'theor (T)
0.1 0.2516 1.8115 0.2512
0.5 0.2721 2.1548 0.2727
1.0 0.3083 2.4689 0.3129
2.0 0.3996 2.7609 0.4008
3.0 0.4875 2.9691 0.4892
4.0 0.5814 3.0776 0.5765
5.0 0.6633 3.2641 0.6627
7.0 0.8368 3.4380 0.8323
10.0 1.0702 3.7849 1.0818

narrowest range of application. As for the LLT of Ref. 8,
still based on a Fokker-Planck approach, the predicted
escape rate gives a better agreement with the simulations
than the UCNA over the whole 7 range at the cost of
some slightly involved calculations, though both are
worse than the approaches based on the path integral for-
malism. It is an open question whether the corrections to
the LLT carried out with the method of Der,?* taking
into account the interplay between color and anharmoni-
city, could lead to a better agreement with simulations.

In the inset of Fig. 3 we have plotted 85 (7) at D =0.1
(diamonds), together with 8S(7) at D =0 (squares) and
the theory (solid line) of Ref. 12(c). It is striking how the
behavior of 8S(7) is qualitatively different for D =0.1
and D =0, and also that, though we could still with some
difficulty claim that the limit of 6S (7) for large  is some-

1.50

1.25 | —
~ 100 [ .
g . P ]
> 075 * e
8 . / % _/. 6 crrm—T T 1
;)/ : Ve _l ‘E_ ° —f ]
I 050 Sy 3 R

i ; 3 o —3
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7] H / 2E © =1
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10~ 10 10 10 10
T

FIG. 3. Value of 8S(r) for different theories and for our
simulations vs 7. Solid line, theory of Ref. 12(c); dashed line,
Eq. (4.2); dash-dotted line, Eq. (4.1); crosses plus error bars, nu-
merical solution of the LLT (from Ref. 8); squares, values for
8S(7) obtained from our simulations. Note the remarkably
good agreement between simulations and the theory of Ref.
12(c). Inset: 8S(7) at D =0.1 (diamonds), D =0 (squares), and
theory (solid line) of Ref. 12(c) vs 7. Note the qualitative
different behavior of 8S(7) and the slower rate of convergency
to a limiting value when D is changed from O to 0.1.
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where around 1, the convergency is incredibly slower (see
for a similar point Ref. 9).

V. COMPARISON BETWEEN SIMULATIONS
AND THEORY: MEAN FIRST-PASSAGE TIMES

The comparison between the MFPT (T, in this sec-
tion) predicted from the theory and the numerical simula-
tions should again be carried out for very small values of
D. Of course, with the help of Egs. (4.1) and (4.2), for the
experimental MFPT’s we have immediately

S (1)

a(t)+ D

T =lexp , (5.1)

where the factor 1 is due to the fact that we are consider-

ing Tp. It is then straightforward to derive values of the
MFPT for a variety of D.

The comparison is presented in Fig. 4, where we have
plotted the MFPT as function of D for different values of
7, and in Fig. 5 where we have plotted the MFPT as
function of 7 for different values of D. The symbols are
always the result of the numerical simulations, normal-
ized to the white-noise limit. The upper solid curve is Eq.
(2.14), the lower solid curve is Eq. (2.13), the dash-dotted
line is Eq. (2.12) and the dashed line is the prediction
from the path-integral treatment. In Fig. 4(c) no curve
corresponding to Eq. (2.13) is present due to breakdown
of the expression for the values of 7 considered. First of
all, we note that the path-integral approach is in reason-
able agreement with the result of the simulations, the
agreement becoming not satisfactory only for large values
of D, where probably not only the prefactor is not accu-
rate enough but even the idea of using the extremizing
path to compute the activation energy is not correct (in
other words, paths which are fairly distant from the ex-
tremizing one are probably contributing with an appre-
ciable weight to the escape rate). Note that Eq. (2.14) is
also in reasonable agreement with the simulations over
the range of = and D values; one might expect it to work
(small 7 and D). Equation (2.13), on the other hand,
seems to be of much narrower application (we remind the
reader that it should work for D <<7): only (see Fig. 4) at
very small D the theory seems to agree well with the nu-
merical simulations, and even in this region it does not do
better that the path-integral formulation or the expres-
sion of Eq. (2.14). The amazing thing is however the very
good agreement between Eq. (2.12) and the simulations.
We would expect it to work in the region where 7 <<D:
this is indeed the case, as it is clear from Fig. 5. The
most surprising thing, of course, is that, as one a pos-
teriori would expect, the agreement theory and numerical
simulations gets worse the smaller D is made (in fact, in
this case the inequality 7<<D is no longer satisfied). It
should be appreciated that Eq. (2.12) was first suggested
(for small 7 and D, with no explicit mention to the rela-
tive magnitude) to describe the escape rate mechanism,?
and for a long time, basing the proof on experimental
simulations performed at finite D, it was assumed that it
would work better the smaller the diffusion coefficient
was made. We think that our results show clearly that

5951

this is not the case, and as D is made smaller the range of
validity of Eq. (2.12) narrows down to smaller and small-
er values of 7. We would like to conclude this section
saying that both the theoretical predictions of Ref. 19
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FIG. 4. T, (MFPT) vs D for (a) 7=0.1, (b) 7=0.2, and (c)
7=0.5. The upper solid curve is Eq. (2.14), the lower solid
curve (when present) is Eq. (2.13), the dash-dotted curve is Eq.
(2.12), and the dashed line is the path-integral approach predic-
tion. The symbols are obtained from the numerical simulations.
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and the path integral formulation of the escape problem!'?
seem to be fully vindicated by our numerical simulations.

VI. COMMENT ON THE RELATION BETWEEN
DOMINANT PATHS IN THE ACTION AND
MOST PROBABLE PATHS IN THE PHASE SPACE

In the previous sections we have noted the very good
agreement between numerical simulations and the

1000 LA I
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FIG. 5. T, (MFPT) vs 7 for (a) D =0.05, (b) D =0.1, and

(c) D =0.15. 'Ighe upper solid curve is Eq. (2.14), the lower solid
curve is Eq. (2.13), the dash-dotted curve is Eq. (2.12), and the
dashed line is the path-integral approach prediction. The sym-
bols are obtained from the numerical simulations.

R. MANNELLA, V. PALLESCHI, AND P. GRIGOLINI 42

theoretical approach of Ref. 12 based on the path in-
tegral formalism. We believe that this is probably the
most powerful and most useful approach to the under-
standing of the escape mechanism. Having said this, we
would like to add a few comments. Let us go back to the
way the action in Eq. (2.4) is calculated. One has to com-
pute the action along the path which extremizes the ac-
tion itself, extremal path derived solving the Euler-
Lagrange equations associated to the action. Now, from
the differential equations of the extremal path it would be
possible to write an effective Fokker-Planck operator
which, at lowest order in the time derivatives, coincides
with the Fokker-Planck operator obtained within the
UCNA approach. However, we believe that one thing is
the extremizing path used to evaluate the action and
another thing is the most probable path in the space of
the real trajectories. Though we do not have a formal
proof of this and, even if our conjecture might be true, a
formal proof could be probably difficult to obtain, we
would like to argue that our simulations strongly support
our viewpoint. Before introducing our argument, we re-
mind the reader that in the path-integral approach the
path extremizing the action starts from {x =—1, y =0}
and ends in {x =1, y =0} going through the point
{x =0, y =0] [see also inset of Fig. 2 in Ref. 12(c)]. We
are going to show that the most probable path in the tra-
jectories space does not go through {x =0, y =0].

Evidence that supports our conjecture is the success of
the fluctuating potential approach in describing the dy-
namics in the case of very colored noise: when x crosses
the boundary {x —O0, y anything] the noise is by
definition different from zero [it is roughly order® of
Ve =2v'3/3, but see Ref. 9(a)]. Also, some numerical evi-
dence that this is the case (at least for finite values of D)
can be found in the numerical work of Ref. 10.

We have calculated the average value y,, of the noisy
term y when x crosses the boundary {x =0, y anything},
for different values of D and 7. First of all, we have no-
ticed (Fig. 6) that for large enough values of 7 [for the
force of Eq. (2.3), values of 7 larger than something order
of 1; in general, we guess, if @ 18 the frequency at the
top of the potential barrier, 7 greater than 1/w,] v,
value for different D and 7 scale on a universal curve
when plotted against the scaling parameter first intro-
duced in Ref. 9. To make contact with the theory, we
should make D very small, which means that the scaling
parameter must go to infinity: in Fig. 6 the scaling pa-
rameter is still finite, though very large, but clearly the
universal curve one can draw through our data points
seems to asymptotically approach the straight line
Yay=V., where y.=2V'3/3 is the critical value for the
noise derived from a fluctuating potential approach. We
think that this is a strong proof that for any value of 7, as
long as 7 is large enough, the most probable path in the
trajectories space goes through the point {x =0, y =y,_}
in the limit of vanishing D. To further support our view,
we have plotted in the inset of Fig. 6 values of y,, as
function of D only, for some values of 7. Again, it is clear
that the extrapolation to D =0 of a line drawn through
the data points cuts the ordinate axis at a value very close
to y., a value markedly different from y =0.
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FIG. 6. Average value of y (y,,) when x crosses the boundary x =0 vs the scaling parameter introduced in Ref. 9. The same sym-

bol identifies values of y,, corresponding to the same value of 7 (

different D). Note that even for quite different values of D and 7, the

data points almost scale when plotted as function of 7/D (14 1/7)?. The dashed line is the value predicted by the fluctuating poten-

tial approach of Ref. 8. In the inset, values of y,, as a function

of D only, for different 7 values. Note that a line through the points

would cut the ordinate axis close to the arrow, pointing to the value of y,, predicted by the fluctuating potential.

VII. CONCLUSIONS

To summarize, we have carried out a refined simula-
tion of a bistable system driven by colored (strongly
colored) noise. The algorithm used, faster and more pre-
cise than any algorithm previously used, to our
knowledge, particularly when a MFPT is concerned, al-
lowed for very good statistics even for large correlation
times and small intensities of the noise. We have found a
previously unknown scaling relation between the MFPT
and the noise intensity which allowed us to obtain the ac-
tivation energies for the system under study in the limit
of vanishing diffusion coefficients, after fitting the loga-
rithm of the MFPT with a constant plus a linear term in
D. In turn, it has been possible to compare different (and
in some sense, conflicting) theories in the limit when they
should become exact: we have clearly demonstrated that
as far as activation energies are concerned, the results ob-
tained in Ref. 12 via a path-integral approach are ex-
tremely good. This should settle a long-standing problem
in stochastic nonlinear physics. We have also studied the
problem of the activation rate (not simply the activation
energy) in the limit of small 7 and for several values of D.
Again, the results obtained via the path-integral formal-
ism are in satisfactory agreement with the simulations,
though the other theoretical approach considered, based
on a two-dimensional Fokker-Planck operator, is also
reasonable in the appropriate region of applicability. We

have also extensively commented on the possibility that
the path used to compute the external action within the
path-integral approach might have little to do with the
trajectories in the real space. The proof goes through the
evaluation of the average value of the noise when the sys-
tem crosses a particular boundary in the phase space. Fi-
nally, we would like to say that our tabulated values for
the activation-energy fitting parameters could be used to
obtain mean first-passage times even for intermediate
values of D not covered in the simulations, via appropri-
ate interpolations, given the very good agreement be-
tween fit and actual data. We believe that this will be
very useful to researchers in the field, saving them from
repeating the simulations from the very beginning, and
making available data in the most interesting region, i.e.,
very small diffusion coefficients and intermediate to large
noise correlation times; it should be noted that we have
quoted values also for the linear term, which should
make it possible to obtain reliable values even for the pre-
factor (to a logarithmic accuracy) for small enough D.
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